Εμφανίζονται 1 - 11 Αποτελέσματα από 11 για την αναζήτηση '"гетерологичная экспрессия"', χρόνος αναζήτησης: 0,58δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке Российского научного фонда, грант № 23-24-00563 (Соколов А.С.).

    Πηγή: Acta Biomedica Scientifica; Том 9, № 5 (2024); 75-83 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5036/2902; Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci. 2024; 49(2): 105-118. doi:10.1016/j.tibs.2023.10.003; Chen L, Kashina A. Post-translational modifications of the protein termini. Front Cell Dev Biol. 2021; 9: 719590. doi:10.3389/fcell.2021.719590; Nguyen KT, Kim JM, Park SE, Hwang CS. N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway. J Biol Chem. 2019; 294(12): 4464-4476. doi:10.1074/jbc.RA118.006913; Wingfield PT. N-terminal methionine processing. Curr Protoc Protein Sci. 2017; 88: 6.14.1-6.14.3. doi:10.1002/cpps.29; Arif A, Mohammed K, Nadeem MS. Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon alpha-2b. Turk J Biol. 2018; 42(3): 240-249. doi:10.3906/biy-1801-83; Rawlings ND. Using the MEROPS database for investigation of lysosomal peptidases, their inhibitors, and substrates. Methods Mol Biol. 2017; 1594: 213-226. doi:10.1007/978-1-4939-6934-0_14; Roderick SL, Matthews BW. Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: A new type of proteolytic enzyme. Biochemistry. 1993; 32(15): 3907-3912. doi:10.1021/bi00066a009; D’souza VM, Bennett B, Copik AJ, Holz RC. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry. 2000;39(13):3817-3826. doi:10.1021/bi9925827; Meng L, Ruebush S, D’souza VM, Copik AJ, Tsunasawa S, Holz RC. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry. 2002; 41(23): 7199-7208. doi:10.1021/bi020138p; Bala S, Reddi B, Addlagatta A. A single amino acid difference between archaeal and human type 2 methionine aminopeptidases differentiates their affinity towards ovalicin. Biochim Biophys Acta Proteins Proteom. 2023; 1871(2): 140881. doi:10.1016/j.bbapap.2022.140881; Bala SC, Haque N, Pillalamarri V, Reddi R, Kashyap R, Marapaka AK, et al. Discovery of a new class of type 1 methionine aminopeptidases that have relaxed substrate specificity. Int J Biol Macromol. 2019; 129: 523-529. doi:10.1016/j.ijbiomac.2019.02.055; Arya T, Reddi R, Kishor C, Ganji RJ, Bhukya S, Gumpena R, et al. Identification of the molecular basis of inhibitor selectivity between the human and streptococcal type I methionine aminopeptidases. J Med Chem. 2015; 58(5): 2350-2357. doi:10.1021/jm501790e; Goya Grocin A, Kallemeijn WW, Tate EW. Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci. 2021; 42(10): 870-882. doi:10.1016/j.tips.2021.07.004; Friese-Hamim M, Ortiz Ruiz MJ, Bogatyrova O, Keil M, Rohdich F, Blume B, et al. Novel methionine aminopeptidase 2 inhibitor M8891 synergizes with VEGF receptor inhibitors to inhibit tumor growth of renal cell carcinoma models. Mol Cancer Ther. 2024; 23(2): 159-173. doi:10.1158/1535-7163.MCT-23-0102; Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, et al. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother. 2023; 67(11): e0056023. doi:10.1128/aac.00560-23; Carducci MA, Wang D, Habermehl C, Bödding M, Rohdich F, Lignet F, et al. A first-in-human, dose-escalation study of the methionine aminopeptidase 2 inhibitor M8891 in patients with advanced solid tumors. Cancer Res Commun. 2023; 3(8): 1638-1647. doi:10.1158/2767-9764.CRC-23-0048; Steinberg E, Esa R, Schwob O, Stern T, Orehov N, Zamir G, Hubert A, et al. Methionine aminopeptidase 2 as a potential target in pancreatic ductal adenocarcinoma. Am J Transl Res. 2022; 14(9): 6243-6255.; Helgren TR, Chen C, Wangtrakuldee P, Edwards TE, Staker BL, Abendroth J, et al. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem. 2017; 25(3): 813-824. doi:10.1016/j.bmc.2016.11.013; Zhang M, He S, Han X, Cui J, Wang H, Huo X, et al. Discovery of potential antituberculosis agents targeted methionine aminopeptidase 1 of Mycobacterium tuberculosis by the developed fluorescent probe. Anal Chem. 2023; 95(44): 16210-16215. doi:10.1021/acs.analchem.3c02952; Ye M, Xiong L, Dong Y, Xie C, Zhang Z, Shen L, et al. The potential role of the methionine aminopeptidase gene PxMetAP1 in a cosmopolitan pest for Bacillus thuringiensis toxin tolerance. Int J Mol Sci. 2022; 23(21): 13005. doi:10.3390/ijms232113005; Reddi B, Kishor C, Jangam A, Bala S, Rajeswari Batchu U, Gundla R, et al. Regioselectivity in inhibition of peptide deformylase from Haemophilus influenzae by 4- vs 5-azaindole hydroxamic acid derivatives: Biochemical, structural and antimicrobial studies. Bioorg Chem. 2022; 128: 106095. doi:10.1016/j.bioorg.2022.106095; Bala S, Yellamanda KV, Kadari A, Ravinuthala VSU, Kattula B, Singh OV, et al. Selective inhibition of Helicobacter pylori methionine aminopeptidase by azaindole hydroxamic acid derivatives: Design, synthesis, in vitro biochemical and structural studies. Bioorg Chem. 2021; 115: 105185. doi:10.1016/j.bioorg.2021.105185; Nandan A, Nampoothiri KM. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol. 2020; 104(12): 5243-5257. doi:10.1007/s00253-020-10641-9; Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, Lipton M, et al. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep. 2022; 39(7): 110834. doi:10.1016/j.celrep.2022.110834; Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, et al. Using deubiquitylating enzymes as research tools. Methods Enzymol. 2005; 398: 540-554. doi:10.1016/S0076-6879(05)98044-0; Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995; 4(11): 2411-2423. doi:10.1002/pro.5560041120; You C, Lu H, Sekowska A, Fang G, Wang Y, Gilles AM, et al. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis. BMC Microbiol. 2005; 5: 57. doi:10.1186/1471-2180-5-57; Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018; 27(1): 135-145. doi:10.1002/pro.3290; Reddi R, Arya T, Kishor C, Gumpena R, Ganji RJ, Bhukya S, et al. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents. FEBS J. 2014; 281(18): 4240-4248. doi:10.1111/febs.12847; Irfan I, Ali A, Reddi B, Khan MA, Hasan P, Ahmed S, et al. Design, synthesis and mechanistic studies of novel isatin-pyrazole hydrazone conjugates as selective and potent bacterial MetAP inhibitors. Antibiotics (Basel). 2022; 11(8): 1126. doi:10.3390/antibiotics11081126; Lapteva YS, Bykov VV, Trunilina MV, Boldaevsky IS, Kudryashov TA, Vologzhannikova AA, et al. Obtaining overstable methionine aminopeptidase for the removal of methionine from recombinant proteins. Journal Biomed. 2023; 19(3E): 47-51. doi:10.33647/2713-0428-19-3Е-47-51; https://www.actabiomedica.ru/jour/article/view/5036

  4. 4
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 66, № 5 (2022); 509-516 ; Доклады Национальной академии наук Беларуси; Том 66, № 5 (2022); 509-516 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1090/1093; A decade of research on the second messenger c-di-AMP / W. Yin [et al.] // FEMS Microbiol. Rev. – 2020. – Vol. 44, N 6. – P. 701–724. https://doi.org/10.1093/femsre/fuaa019; Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge / M. V. Sanchez [et al.] // PLoS ONE. – 2014. – Vol. 9, N 8. – Art. e104824. https://doi.org/10.1371/journal.pone.0104824; Cyclic di-adenosine monophosphate: a promising adjuvant candidate for the development of neonatal vaccines / D. Lirussi [et al.] // Pharmaceutics. – 2021. – Vol. 13, N 2. – Art. 188. https://doi.org/10.3390/ pharmaceutics13020188; Yan, H. The Promise and challenges of cyclic dinucleotides as molecular adjuvants for vaccine development / H. Yan, W. Chen // Vaccines. – 2021. – Vol. 9, N 8. – Art. 917. https://doi.org/10.3390/vaccines9080917; Chemical synthesis, purification, and characterization of 3′-5′-linked canonical cyclic dinucleotides (CDNs) / C. Wang [et al.] // Meth. Enzymol. – 2019. – Vol. 625. – P. 41−59. https://doi.org/10.1016/bs.mie.2019.04.022; Villaverde, A. Protein aggregation in recombinant bacteria: Biological role of inclusion bodies / A. Villaverde, M. M. Carrio // Biotechnol. Lett. – 2003. – Vol. 25, N 17. – P. 1385–1395. https://doi.org/10.1023/a:1025024104862; Schramm, F. D. Protein aggregation in bacteria / F. D. Schramm, K. Schroeder, K. Jonas // FEMS Microbiol. Rev. – 2020. – Vol. 44, N 1. – P. 54–72. https://doi.org/10.1093/femsre/fuz026; Enzymatic synthesis of 2′-ara and 2′-deoxy analogues of c-di-GMP / A. S. Shchokolova [et al.] // Nucleos. Nucleot. Nucl. Acids. – 2015. – Vol. 34, N 6. – P. 416–423. https://doi.org/10.1080/15257770.2015.1006775; Thermostable adenosine 5′-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies / S. Kamel [et al.] // Sci. Rep. – 2021. – Vol. 11, N 1. – Art. 16880. https://doi.org/10.1038/s41598- 021-96073-5; Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer / A. K. Singh [et al.] // Nat. Commun. – 2022. – Vol. 13, N 1. – Art. 878. https://doi.org/10.1038/s41467- 022-28509-z; Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth / F. M. Mehne [et al.] // J. Biol. Chem. – 2013. – Vol. 288, N 3. – P. 2004–2017. https://doi.org/10.1074/jbc. m112.395491; Создание рекомбинантного штамма Escherichia coli – продуцента диаденилатциклазы и ее использование для синтеза цикло-ди-АМФ / И. С. Казловский [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2015. – № 4. – С. 51–55.; Green, M. R. Molecular cloning. A laboratory manual. 4th ed. / M. R. Green, J. Sambrook. – New York, 2012. – 630 p.; Quan, J. Circular polymerase extension cloning of complex gene libraries and pathways / J. Quan, J. Tian // PLoS ONE. – 2009. – Vol. 4, N 7. – Art. e6441. https://doi.org/10.1371/journal.pone.0006441; Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications / A. Bhatwa [et al.] // Front. Bioeng. Biotechnol. – 2021. – Vol. 9. – Art. 630551. https:// doi.org/10.3389/fbioe.2021.630551; https://doklady.belnauka.by/jour/article/view/1090

  5. 5
  6. 6
  7. 7
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Foundation for Basic Research (No. 18-29-07007) and the Ministry of Science and Higher Education of the Russian Federation, and was performed using the experimental climate control facility in the Institute of Bioengineering (Research Center of Biotechnology, Russian Academy of Sciences).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 25, № 5 (2021); 492-501 ; Вавиловский журнал генетики и селекции; Том 25, № 5 (2021); 492-501 ; 2500-3259 ; 10.18699/VJ21.052

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3107/1531; Alhindi T., Zhang Z., Ruelens P., Coenen H., Degroote H., Iraci N., Geuten K. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network. Sci. Rep. 2017;7:44948. DOI 10.1038/srep44948.; Ampomah-Dwamena C., Morris B.A., Sutherland P., Veit B., Yao J.L. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 2002;130(2):605-617. DOI 10.1104/pp.005223.; Angenent G.C., Franken J., Busscher M., van Dijken A., van Went J.L., Dons H.J., van Tunen A.J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995;7(10): 1569-1582. DOI 10.1105/tpc.7.10.1569.; Busi M.V., Bustamante C., D’Angelo C., Hidalgo-Cuevas M., Boggio S.B., Valle E.M., Zabaleta E. MADS-box genes expressed during tomato seed and fruit development. Plant Mol. Biol. 2003;52(4): 801-815. DOI 10.1023/a:1025001402838.; Castillejo C., Romera-Branchat M., Pelaz S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 2005;43(4):586-596. DOI 10.1111/j.1365-313X.2005.02476.x.; Coen E.S., Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353(6339):31-37. DOI 10.1038/353031a0.; Ditta G., Pinyopich A., Robles P., Pelaz S., Yanofsky M.F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 2004;14(21):1935-1940. DOI 10.1016/j.cub.2004.; Dong T., Hu Z., Deng L., Wang Y., Zhu M., Zhang J., Chen G. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol. 2013;163(2):1026-1036. DOI 10.1104/pp.113.224436.; Dyachenko E.A., Slugina М.А. Intraspecific variability of the Sus1 sucrose synthase gene in Pisum sativum accessions. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):108-114. DOI 10.18699/VJ18.338. (in Russian); Ferrario S., Immink R.G., Shchennikova A., Busscher-Lange J., Angenent G.C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell. 2003;15(4):914-925. DOI 10.1105/tpc.010280.; Ferrario S., Shchennikova A.V., Franken J., Immink R.G., Angenent G.C. Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 2006;140(3):890-898. DOI 10.1104/pp.105.072660.; Goloveshkina E.N., Shulga O.A., Shchennikova A.V., Kamionskaya A.M., Skryabin K.G. Functional characterization of chrysanthemum SEPALLATA3 homologs CDM77 and CDM44 in transgenic tobacco plants. Dokl. Biol. Sci. 2012;443:87-90. DOI 10.1134/S0012496612020020.; Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001;409(6819):525-529. DOI 10.1038/35054083.; Hugouvieux V., Silva C.S., Jourdain A., Stigliani A., Charras Q., Conn V., Conn S.J., Carles C.C., Parcy F., Zubieta C. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res. 2018;46(10):4966-4977. DOI 10.1093/nar/gky205.; Immink R.G., Tonaco I.A., de Folter S., Shchennikova A., van Dijk A.D., Busscher-Lange J., Borst J.W., Angenent G.C. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 2009;10(2):R24. DOI 10.1186/gb-2009-10-2-r24.; Jang S., Hong M.Y., Chung Y.Y., An G. Ectopic expression of tobacco MADS genes modulates flowering time and plant architecture. Mol. Cells. 1999;9(6):576-586. http://www.molcells.org/journal/view.html?year=1999&volume=9&number=6&spage=576.; Jha P., Ochatt S.J., Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell. Rep. 2020;39(4):431-444. DOI 10.1007/s00299-020-02511-5.; Karlova R., Chapman N., David K., Angenent G.C., Seymour G.B., de Maagd R.A. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 2014;65(16):4527-4541. DOI 10.1093/jxb/eru316.; Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0. molecular biology and evolution. Mol. Biol. Evol. 2016;33:1870-1874. DOI 10.1093/molbev/msw054.; Lenhard M., Bohnert A., Jürgens G., Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell. 2001;105(6):805-814. DOI 10.1016/s0092-8674(01)00390-7.; Leseberg C.H., Eissler C.L., Wang X., Johns M.A., Duvall M.R., Mao L. Interaction study of MADS-domain proteins in tomato. J. Exp. Bot. 2008;59:2253-2265. DOI 10.1093/jxb/ern094.; Li N., Huang B., Tang N., Jian W., Zou J., Chen J., Cao H., Habib S., Dong X., Wei W., Gao Y., Li Z. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant Cell Physiol. 2017;58(12):2241-2256. DOI 10.1093/pcp/pcx158.; Melzer R., Verelst W., Theissen G. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res. 2009;37(1):144-157. DOI 10.1093/nar/gkn900.; Pelaz S., Ditta G.S., Baumann E., Wisman E., Yanofsky M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405(6783):200-203. DOI 10.1038/35012103.; Pelaz S., Gustafson-Brown C., Kohlami S.E., Crosby W.L., Yanofsky M.F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 2001a;26:385-394. DOI 10.1046/j.1365-313x.2001.2641042.x.; Pelaz S., Tapia-López R., Alvarez-Buylla E.R., Yanofsky M.F. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 2001b;11(3): 182-184. DOI 10.1016/s0960-9822(01)00024-0.; Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., Lifschitz E. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1991;1(2):255-266. DOI 10.1111/j.1365-313X.1991.00255.x.; Pnueli L., Hareven D., Broday L., Hurwitz C., Lifschitz E. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell. 1994;6(2):175-186. DOI 10.1105/tpc.6.2.175.; Qi X., Liu C., Song L., Li M. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. Plant Sci. 2020;301:110634. DOI 10.1016/j.plantsci.2020.110634.; Roldan M.V.G., Périlleux C., Morin H., Huerga-Fernandez S., Latrasse D., Benhamed M., Bendahmane A. Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci. Rep. 2017;7(1):4402. DOI 10.1038/s41598-017-04556-1.; Schilling S., Pan S., Kennedy A., Melzer R. MADS-box genes and crop domestication: the jack of all traits. J. Exp. Bot. 2018;69(7):1447-1469. DOI 10.1093/jxb/erx479.; Schmidt G.W., Delaney S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genom. 2010; 283(3):233-241. DOI 10.1007/s00438-010-0511-1.; Shchennikova A.V., Shulga O.A., Immink R., Skryabin K.G., Angenent G.C. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 2004;134(4):1632-1641. DOI 10.1104/pp.103.036665.; Shima Y., Fujisawa M., Kitagawa M., Nakano T., Kimbara J., Nakamura N., Shiina T., Sugiyama J., Nakamura T., Kasumi T., Ito Y. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci. Biotechnol. Biochem. 2014;78(2):231-237. DOI 10.1080/09168451.2014.878221.; Slugina M.A., Dyachenko E.A., Kochieva E.Z., Shchennikova A.V. Structural and functional diversification of SEPALLATA genes TM5 and RIN in tomato species (section Lycopersicon). Dokl. Biochem. Biophys. 2020;492(1):152-158. DOI 10.1134/S1607672920030102.; Smaczniak C., Immink R.G., Angenent G.C., Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. 2012;139(17):3081-3098. DOI 10.1242/dev.074674.; Theissen G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 2001;4(1):75-85. DOI 10.1016/s1369-5266(00)00139-4.; Theissen G., Saedler H. Plant biology. Floral quartets. Nature. 2001; 409(6819):469-471. DOI 10.1038/35054172.; Urbanus S.L., de Folter S., Shchennikova A.V., Kaufmann K., Immink R.G., Angenent G.C. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 2009;9:5. DOI 10.1186/1471-2229-9-5.; Vrebalov J., Pan I.L., Arroyo A.J., McQuinn R., Chung M., Poole M., Rose J., Seymour G., Grandillo S., Giovannoni J., Irish V.F. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009;21(10):3041-3062. DOI 10.1105/tpc.109.066936.; Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296:343-346. DOI 10.1126/science.1068181.; Wang R., Tavano E.C.D.R., Lammers M., Martinelli A.P., Angenent G.C., de Maagd R.A. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/ Cas9-mutagenesis. Sci. Rep. 2019;9(1):1696. DOI 10.1038/s41598-018-38170-6.; Wang Y., Zhang J., Hu Z., Guo X., Tian S., Chen G. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. Int. J. Mol. Sci. 2019;20(12):2961. DOI 10.3390/ijms20122961.; Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F., Meyerowitz E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992; 69(5):843-859. DOI 10.1016/0092-8674(92)90295-n.; Zhang J., Hu Z., Wang Y., Yu X., Liao C., Zhu M., Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Sci. 2018a;272:75-87. DOI 10.1016/j.plantsci.2018.03.031.; Zhang J., Hu Z., Yao Q., Guo X., Nguyen V., Li F., Chen G. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci. Rep. 2018b;8(1): 3413. DOI 10.1038/s41598-018-21672-8.; Zhang S., Lu S., Yi S., Han H., Liu L., Zhang J., Bao M., Liu G. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Planta. 2017; 245(2):439-457. DOI 10.1007/s00425-016-2617-0.; Zhao H.B., Jia H.M., Wang Y., Wang G.Y., Zhou C.C., Jia H.J., Gao Z.S. Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra). Gene. 2019;717:144045. DOI 10.1016/j.gene.2019.144045.; https://vavilov.elpub.ru/jour/article/view/3107

  8. 8
  9. 9
  10. 10
  11. 11