-
1Academic Journal
Authors: Pavlova N.V., Dyomin S.S., Churnosov M.I., Ponomarenko I.V.
Contributors: The work was performed without external funding, Работа выполнена без спонсорской поддержки
Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 50-62 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 50-62 ; 2413-3787 ; 2313-805X
Subject Terms: breast cancer, risk factors, biological mechanisms, matrix metalloproteinases, genome wide associations study, candidate genes, germ-line mutations, рак молочной железы, факторы риска, биологические механизмы, матриксные металлопротеиназы, полногеномные ассоциативные исследования, гены-кандидаты, герминальные мутации
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/676/347; https://umo.abvpress.ru/jour/article/view/676
-
2Academic Journal
Authors: Dribnokhodova O.P., Mironov K.O., Pozdysheva E.A., Vinokurov M.A., Korchagin V.I., Akimkin V.G.
Contributors: 0
Source: Annals of the Russian academy of medical sciences; Vol 79, No 6 (2024); 481-489 ; Вестник Российской академии медицинских наук; Vol 79, No 6 (2024); 481-489 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.796
Subject Terms: genetic predisposition, hereditary cancer syndrome, pharmacogenetics, mutations, single nucleotide polymorphisms, онкогенетика, соматические мутации, герминальные мутации, генетическая предрасположенность, фармакогенетика
File Description: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/17937/2076; https://vestnikramn.spr-journal.ru/jour/article/view/17937/2081; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145521; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145522; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/17937/145887
-
3Academic Journal
Source: Педиатрия. Восточная Европа. :251-258
Subject Terms: 0301 basic medicine, герминальные мутации, системная химиотерапия, консолидирующая терапия, cytostatic drugs, retinoblastoma, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, ретинобластома, germline mutations, systemic chemotherapy, consolidation treatment, цитостатические препараты
-
4Academic Journal
Authors: K. V. Menshikov, A. V. Sultanbaev, Sh. I. Musin, A. A. Izmailov, I. A. Menshikova, N. I. Sultanbaeva, E. V. Popova, L. A. Khammatova, К. В. Меньшиков, А. В. Султанбаев, Ш. И. Мусин, А. А. Измайлов, И. А. Меньшиков, Н. И. Султанбаева, Е. В. Попова, Л. А. Хамматова
Source: Creative surgery and oncology; Том 12, № 1 (2022); 48-55 ; Креативная хирургия и онкология; Том 12, № 1 (2022); 48-55 ; 2076-3093 ; 2307-0501
Subject Terms: соматические мутации, BRCA1/2 protein, chemotherapy, targeted therapy, PARP inhibitors, germinal mutations, genetic screening, somatic mutations, BRCA1/2 белок, химиотерапия, таргетная терапия, PARP-ингибиторы, герминальные мутации, генетический скрининг
File Description: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/674/484; Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI:10.1158/0008-5472. CAN-14-0155; Cancer Stat Facts: Pancreatic Cancer. National Cancer Institute: SEER [cited 2022 Feb 28]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html.; Ansari D., Friess H., Bauden M., Samnegård J., Andersson R. Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment. Oncotarget. 2018;9(5):6644–51. DOI:10.18632/oncotarget.24019; Azar I., Virk G., Esfandiarifard S., Wazir A., Mehdi S. Treatment and survival rates of stage IV pancreatic cancer at VA hospitals: a nationwide study. J Gastrointest Oncol. 2019;10(4):703–11. DOI:10.21037/jgo.2018.07.08; Sultanbaev A., Minniakhmetov I., Menshikov K., Sultanbaeva N., Nasretdinov A., Musin S. Identification of gene mutations in patients with breast cancer in a region located in the southeast of the European part of Russia. Ann Oncol. 2020;31(6):S1241–54. DOI:10.1016/annonc/annonc351; Ben-David U., Beroukhim R., Golub T.R. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019;19(2):97–109. DOI:10.1038/s41568-018-0095-3; Birrer N., Chinchilla C., Del Carmen M., Dizon D.S. Is hormone replacement therapy safe in women with a BRCA mutation?: a systematic review of the contemporary literature. Am J Clin Oncol. 2018;41(3):313–5. DOI:10.1097/COC.0000000000000269; Bartsch D.K., Matthäi E., Mintziras I., Bauer C., Figiel J., Sina-Boemers M., et al. The German national case collection for familial pancreatic carcinoma (FaPaCa)—knowledge gained in 20 years. Dtsch Arztebl Int. 2021;118(Forthcoming):163–8. DOI:10.3238/arztebl.m2021.0004; Miki Y., Swensen J., Shattuck-Eidens D., Futreal P.A., Harshman K., Tavtigian S., et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. DOI:10.1126/science.7545954; Wooster R., Bignell G., Lancaster J., Swift S., Seal S., Mangion J., et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. DOI:10.1038/378789a0; Choi M., Kipps T., Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15(8):1781–91. DOI:10.1158/1535-7163.MCT-15-0945; Chartron E., Theillet C., Guiu S., Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol. 2019;133:58–73. DOI:10.1016/j.critrevonc.2018.10.012; Lowery M.A., Wong W., Jordan E.J., Lee J.W., Kemel Y., Vijai J., et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst. 2018;110(10):1067–74. DOI:10.1093/jnci/djy024; Elta G.H., Enestvedt B.K., Sauer B.G., Lennon A.M. ACG clinical guideline: diagnosis and management of pancreatic cysts. Am J Gastroenterol. 2018;113(4):464–79. DOI:10.1038/ajg.2018.14; Sekine M., Nishino K., Enomoto T. Differences in ovarian and other cancers risks by population and BRCA mutation location. Genes (Basel). 2021;12(7):1050. DOI:10.3390/genes12071050; European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018;67(5):789–804. DOI:10.1136/gutjnl-2018-316027; Faraoni I., Graziani G. Role of BRCA mutations in cancer treatment with Poly (ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). 2018;10(12):487. DOI:10.3390/cancers10120487; Hu C., Hart S.N., Polley E.C., Gnanaolivu R., Shimelis H., Lee K.Y., et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401–9. DOI:10.1001/jama.2018.6228; Hu C., Hart S.N., Bamlet W.R., Moore R.M., Nandakumar K., Eckloff B.W., et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev. 2016;25(1):207–11. DOI:10.1158/1055-9965.EPI-15-0455; Salo-Mullen E.E., O’Reilly E.M., Kelsen D.P., Ashraf A.M., Lowery M.A., Yu K.H., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121(24):4382–8. DOI:10.1002/cncr.29664; Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., MacgregorDas A., et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90. DOI:10.1200/JCO.2017.72.3502; Murphy K.M., Brune K.A., Griffin C., Sollenberger J.E., Petersen G.M., Bansal R., et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17 %. Cancer Res. 2002;62(13):3789–93. PMID: 12097290; George A., Kaye S., Banerjee S. Delivering widespread BRCA testing and PARP inhibition to pa tients with ovarian cancer. Nat Rev Clin Oncol. 2017;14(5):284–96. DOI:10.1038/nrclinonc.2016.191; Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. DOI:10.1056/NEJMoa1903387; Sultanbaev A., Sultanbaeva N., Nasretdinov A., Menshikov K., Minniakhmetov I., Musin S., et al. Organization of screening for prostate cancer in carriers of germinal mutations in the BRCA1/2 genes. Eur Urol Open Sci. 2020;21(Suppl. 2):S59. DOI:10.1016/S2666-1683(20)36064-X; Gröschel S., Hübschmann D., Raimondi F., Horak P., Warsow G., Fröhlich M., et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. 2019;10(1):1635. DOI:10.1038/s41467-019-09633-9; Gorodetska I., Kozeretska I., Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109–27. DOI:10.7150/jca.30410; Godet I., Gilkes D.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):10.15761/ICST.1000228. DOI:10.15761/ICST.1000228; Roberts N.J., Jiao Y., Yu J., Kopelovich L., Petersen G.M., Bondy M.L., et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. DOI:10.1158/2159-8290.CD-11-0194; Sultanbaev A., Nasretdinov A., Sultanbaeva N., Menshikov K., Musin S., Izmailov A., et al. Hereditary prostate cancer screening. Eur Urol Open Sci. 2020;21(Suppl. 3):S155. DOI:10.1016/S2666-1683(20)36212-1; van Os N.J., Roeleveld N., Weemaes C.M., Jongmans M.C., Janssens G.O., Taylor A.M., et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17. DOI:10.1111/cge.12710; Zhen D.B., Rabe K.G., Gallinger S., Syngal S., Schwartz A.G., Goggins M.G., et al. BRCA1, BRCA2, PALB2, and CDKN2A muta tions in familial pancreatic cancer: a PACGENE study. Genet Med. 2014;17(7):569–77. DOI:10.1038/gim.2014.153; Matsubayashi H., Takaori K., Morizane C., Kiyozumi Y. Familial pancreatic cancer and surveillance of high-risk individuals. Gut Liver. 2019;13(5):498–505. DOI:10.5009/gnl18449; Konings I.C.A.W., Harinck F., Poley J-W., Aalfs C.M., van Rens A., Krak N.C., et al. Prevalence and progression of pancreatic cystic precursor lesions differ between groups at high risk of developing pancreatic cancer. Pancreas. 2017;46(1):28–34. DOI:10.1097/MPA.0000000000000725; Chaffee K.G., Oberg A.L., McWilliams R.R., Majithia N., Allen B.A., Kidd J., et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med. 2018;20(1):119–27. DOI:10.1038/gim.2017.85; Borecka M., Zemankova P., Vocka M., Soucek P., Soukupova J., Kleiblova P., et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209(5):199–204. DOI:10.1016/j.cancergen.2016.03.003; Wong W., Raufi A.G., Safyan R.A., Bates S.E., Manji G.A. BRCA Muta - tions in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020:12 2731–42. DOI:10.2147/CMAR.S211151; Masamune A., Kikuta K., Hamada S., Nakano E., Kume K., Inui A., et al. Nationwide survey of hereditary pancreatitis in Japan. J Gastroen - terol. 2018;53(1):152–60. DOI:10.1007/s00535-017-1388-0; Rebours V., Boutron-Ruault M.C., Schnee M., Férec C., Maire F., Hammel P., et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroen - terol. 2008;103(1):111–9. DOI:10.1111/j.1572-0241.2007.01597.x; Shelton C.A., Umapathy C., Stello K., Yadav D., Whitcomb D.C. Hereditary pancreatitis in the United States: survival and rates of pan - creatic cancer. Am J Gastroenterol. 2018;113(9):1376. DOI:10.1038/s41395-018-0194-5; Keihanian T., Barkin J.A., Souto E.O. Early detection of pancreatic cancer: risk factors and the current state of screening modalities. Gas - troenterol Hepatol (NY). 2021;17(6):254–62. PMID: 34776799; Syngal S., Brand R.E., Church J.M., Giardiello F.M., Hampel H.L., Burt R.W., et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. DOI:10.1038/ajg.2014.435; Tattersall A., Ryan N., Wiggans A.J., Rogozińska E., Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev. 2022;2(2):CD007929. DOI:10.1002/14651858.CD007929.pub4; Tutt A., Robson M., Garber J.E., Domchek S.M., Audeh M.W., Weitzel J.N., et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. DOI:10.1016/S0140-6736(10)60892-6; Lowery M.A., Lee A, Tobias E., Sung P., Bhanot U., Shakya R., et al. Evaluation of PARP inhibition as a platinum sparing strategy in Brca2-deficient pancreatic tumors. J Clin Oncol. 2014;32:e15237. DOI:10.1200/jco.2014.32.15_suppl.e15237; McCabe N., Lord C.J., Tutt A.N., Martin N.M., Smith G.C., Ashworth A. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the in - hibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther. 2005;4(9):934–6. DOI:10.4161/cbt.4.9.2141; Lowery M.A., Kelsen D.P., Stadler Z.K., Yu K.H., Janjigian Y.Y., Ludwig E., et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implica - tions, and future directions. Oncologist. 2011;16(10):1397–402. DOI:10.1634/theoncologist.2011-0185; Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmaña J., et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. DOI: 10. 1200/JCO.2014.56.2728; Lowery M.A., Kelsen D.P., Capanu M., Smith S.C., Lee J.W., Stadler Z.K., et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2017;89:19–26. DOI:10.1016/j.ejca.2017.11.004; Kunzmann V., Algül N., Goekkurt E., Siegler G.M., Martens U.M., Waldschmidt D., et al. 671OConversion rate in locally advanced pancreatic cancer (LAPC) after nab-paclitaxel/gemcitabine- or FOLFIRINOX-based induction chemotherapy (NEOLAP): Final results of a multicenter randomised phase II AIO trial. Ann Oncol. 2019;30(5):247. DOI:10.1093/annonc/mdz247; Dahan L., Williet N., Le Malicot K., Phelip J.M., Desrame J., Bouché O., et al. Randomized phase II trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the PANOPTIMOXPRODIGE 35 Trial. J Clin Oncol. 2021;39(29):3242–50. DOI:10.1200/JCO.20.03329; Golan T., Hammel P., Reni M., Cutsem E.V., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27. DOI:10.1056/NEJMoa1903387; O’Reilly E.M., Lee J.W., Lowery M.A., Capanu M., Stadler Z.K., Moore M.J., et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer. 2018;124(7):1374– 82. DOI:10.1002/cncr.31218; O’Reilly E.M., Lee J.W., Zalupski M., Capanu M., Park J., Golan T., et al. Randomized, multicenter, phase ii trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adeno - carcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88. DOI:10.1200/JCO.19.02931; Murai J., Zhang Y., Morris J., Ji J., Takeda S., Doroshow J.H., et al. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther. 2014;349(3):408–16. DOI:10.1124/jpet.113.210146; Yap T.A., Plummer R., Azad N.S., Helleday T. The DNA damaging revolution: PARP inhibitors and beyond. Am Soc Clin Oncol Edu. 2019;39:185–95. DOI:10.1200/EDBK_238473; McCann K.E. Advances in the use of PARP inhibitors for RCA1/2associated breast cancer: talazoparib. Future Oncol. 2019;15(15):1707–15. DOI:10.2217/fon-2018-0751; Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. DOI:10.1158/1078-0432.CCR-13-2287; Golmard L., Castéra L., Krieger S., Moncoutier V., Abidallah K., Tenreiro H., et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet. 2017;25(12):1345–53. DOI:10.1038/s41431-017-0021-2; Villarroel M.C., Rajeshkumar N.V., Garrido-Laguna I., De Jesus-Acosta A., Jones S., Maitra A., et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10(1):3–8. DOI:10.1158/1535-7163.MCT-10-0893; Chan D., Clarke S., Gill A.J., Chantrill L., Samra J., Li B.T., et al. Patho - genic PALB2 mutation in metastatic pancreatic adenocarcinoma and neuroendocrine tumour: a case report. Mol Clin Oncol. 2015;3(4):817– 9. DOI:10.3892/mco.2015.533; Shroff R.T., Hendifar A., McWilliams R.R., Geva R., Epelbaum R., Rolfe L., et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018;2018:PO.17.00316. DOI:10.1200/PO.17.00316; Lowery M.A., Jordan E.J., Basturk O., Ptashkin R.N., Zehir A., Berger M.F., et al. Real-time genomic profiling of pancreatic ductal adenocar - cinoma: potential actionability and correlation with clinical phenotype. Clin Cancer Res. 2017;23 (20):6094–100. DOI:10.1158/1078-0432.CCR-17-0899; Mirza M.R., Monk B.J., Herrstedt J., Sc D.M., Oza A.M., Mahner S., et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. DOI:10.1056/NEJMoa1611310; Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. DOI:10.1016/S1470-2045(16)30559-9; Clarke N., Wiechno P., Alekseev B., Sala N., Jones R., Kocak I., et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19(7):975–86. DOI:10.1016/S1470-2045(18)30365-6; Hussain M., Mateo J., Fizazi K., Saad F., Shore N.D., Sandhu S., et al. LBA12_PR — PROfound: Phase III study of olaparib versus enzaluta - mide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene altera - tions. Ann Oncol. 2019;30(suppl.5):v881–2. DOI:10.1093/annonc/mdz394.039; https://www.surgonco.ru/jour/article/view/674
-
5Academic Journal
-
6Academic Journal
Authors: O. A. Mailyan, A. S. Kalpinskiy, I. V. Reshetov, K. M. Nyushko, B. Ya. Alekseev, S. P. Kokin, V. A. Stakanov, M. P. Golovashchenko, О. А. Маилян, А. С. Калпинский, И. В. Решетов, К. М. Нюшко, Б. Я. Алексеев, С. П. Кокин, В. А. Стаканов, М. П. Головащенко
Source: Cancer Urology; Том 17, № 1 (2021); 82-88 ; Онкоурология; Том 17, № 1 (2021); 82-88 ; 1996-1812 ; 1726-9776
Subject Terms: герминальные мутации, metastatic castration-resistant prostate cancer, mutations in DNA repair genes, PARP inhibitor, somatic mutations, germline mutations, метастатический кастрационно-резистентный рак предстательной железы, мутации в генах репарации ДНК, PARP-ингибитор, соматические мутации
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1432/1252; Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 250 с.; Lang S.H., Swift S.L., White H. et al. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol 2019;55(3):597-616. DOI:10.3892/ijo.2019.4842.; Castro E., Mateo J., Olmos D. et al. Targeting DNA repair: the role of parp inhibition in the treatment of castrationresistant prostate cancer. Cancer J 2016;22(5):353-6. DOI:10.1097/PPO.0000000000000219.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001.; Chung J.H., Dewal N., Sokol E. et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO Precis Oncol 2019;3:PO.18.00283. DOI:10.1200/PO.18.00283.; Abida W., Armenia J., Gopalan A. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029. DOI:10.1200/PO.17.00029.; Caldecott K.W. Single-strand break repair and genetic disease. Nat Rev Genet 2008;9(8):619-31. DOI:10.1038/nrg2380.; Hoeijmakers J.H. DNA damage, aging, and cancer. N Engl J Med 2009;361(15):1475-85. DOI:10.1056/NEJMra0804615.; Clancy S. Genetic Recombination. Nat Educat 2008;1(1):41.; Burkle A., Virag L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med 2013;34(6):1046-65. DOI:10.1016/j.mam.2012.12.010.; Литвинов С.В. Основные пути репарации двойных разрывов геномной ДНК и взаимодействия между ними. Цитология и генетика 2014;48(3):64-77.; Heeke A.L., Pishvaian M.J., Lynce F. et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol 2018;2018:PO.17.00286. DOI:10.1200/PO.17.00286.; Langelier M.F., Eisemann T., Riccio A.A. et al. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr Opin Struct Biol 2018;53:187-98. DOI:10.1016/j.sbi.2018.11.002.; Caffo O., Veccia A., Kinspergher S. et al. Aberrations of DNA repair pathways in prostate cancer: future implications for clinical practice? Front Cell Dev Biol 2018;6:71. DOI:10.3389/fcell.2018.00071.; Rouleau M., Patel A., Hendzel M.J. et al. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010;10(4):293-301. DOI:10.1038/nrc2812.; Virtanen V., Paunu K., Ahlskog J.K. et al. Rationale and current clinical development. Genes (Basel) 2019;10(8):565. DOI:10.3390/genes10080565.; Cook S.A., Tinker A.V. PARP Inhibitors and the evolving landscape of ovarian cancer management: a review. BioDrugs 2019;33(3):255-73. DOI:10.1007/s40259-019-00347-4.; Keung M.Y.T., Wu Y., Vadgama J.V. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med 2019;8(4):435. DOI:10.3390/jcm8040435.; Kote-Jarai Z., Leongamornlert D., Saunders E. et al. BRCA2 is a moderate penetrance gene contributing to youngonset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011;105(8):1230-4. DOI:10.1038/bjc.2011.383.; Antoniou A., Pharoah P.D., Narod S. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003;72(5):1117-30. DOI:10.1086/375033.; Swift S.L., Lang S.H., White H. et al. Effect of DNA damage response mutations on prostate cancer prognosis: a systematic review. Future Oncol 2019;15(28):3283-303. DOI:10.2217/fon-2019-0298.; Edwards S.M., Evans D.G., Hope Q. et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 2010;103(6):918-24. DOI:10.1038/sj.bjc.6605822.; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67.; Fachal L., Gomez-Caamano A., Celeiro-Munoz C. et al. BRCA1 mutations do not increase prostate cancer risk: results from a meta-analysis including new data. Prostate 2011;71(16):1768-79. DOI:10.1002/pros.21394.; Cui M., Gao X.S., Gu X. et al. BRCA2 mutations should be screened early and routinely as markers of poor prognosis: evidence from 8,988 patients with prostate cancer. Oncotarget 2017;8(25):40222-32. DOI:10.18632/oncotarget.16712.; Oh M., Alkhushaym N., Fallatah S. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 2019;79(8):880-95. DOI:10.1002/pros.23795.; NCCN Guideline with Evidence Blocks - Prostate Cancer Version 2.2021. Available at: http://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443-53. DOI:10.1056/NEJMoa1603144.; Castro E., Romero-Laorden N., Del Pozo A. et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37(6):490-503. DOI:10.1200/JCO.18.00358.; Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85. DOI: https://dx.doi.org/10.18565/urology.2019.5.79-85.; Kaufman B., Shapira-Frommer R., Schmutzler R.K. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33(3):244-50. DOI:10.1200/JCO.2014.56.2728.; Mateo J., Carreira S., Sandhu S. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373(18):1697-708. DOI:10.1056/NEJMoa1506859.; Mateo J., Porta N., Bianchini D. et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21(1):162-74. DOI:10.1016/S1470-2045(19)30684-9.; Abida W., Patnaik A., Campbell D. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38(32):3763-72. DOI:10.1200/JCO.20.01035.; Smith M.R., Sandhu S.K., Kelly W.K. et al. Pre-specified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD). Annal Oncol 2019;30(suppl_5):v851-934. DOI:10.1093/annonc/mdz394.; de Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castrationresistant prostate cancer. N Engl J Med 2020;382(22):2091-102. DOI:10.1056/NEJMoa1911440.; https://oncourology.abvpress.ru/oncur/article/view/1432
-
7Academic Journal
Authors: A. A. Kirichek, L. N. Lyubchenko, V. B. Matveev, А. А Киричек, Л. Н. Любченко, В. Б. Матвеев
Source: Cancer Urology; Том 14, № 2 (2018); 109-121 ; Онкоурология; Том 14, № 2 (2018); 109-121 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2018-14-2
Subject Terms: таргетный скрининг, family history, germline mutation, BRCA1, BRCA2, HOXB13, CHEK2, Lynch syndrome, targeted screening, семейный анамнез, герминальные мутации, синдром Линча
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/832/770; https://oncourology.abvpress.ru/oncur/article/view/832/800; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68(1):7–30. DOI:10.3322/caac.21442. PMID: 29313949.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65(2):87–108. DOI:10.3322/caac.21262. PMID: 25651787.; Torre L.A., Siegel R.L., Ward E.M., Jemal A. Global cancer incidence and mortality rates and trends – an update. Cancer Epidemiol Biomarkers Prev 2016;25(1):16–27. DOI:10.1158/1055-9965.EPI-15-0578. PMID: 26667886.; Noone A.M., Howlader N., Krapcho M. et al. SEER Cancer Statistics Review, 1975–2015, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2015/, based on November 2017 SEER data submission, posted to the SEER web site, April 2018.; Состояние онкологической помощи населению России в 2017 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2018. 236 с.; Злокачественные новообразования в России в 2016 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2018. 250 с.; Hamdy F.C., Donovan J.L., Lane J.A. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375(15):1415–24. DOI:10.1056/NEJMoa1606220. PMID: 27626136.; Wilt T.J., Jones K.M., Barry M.J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 2017;377(2):132–42. DOI:10.1056/NEJMoa1615869. PMID: 28700844.; Patrikidou A., Loriot Y., Eymard J.C. et al. Who dies from prostate cancer? Prostate Cancer Prostatic Dis 2014;17(4):348–52. DOI:10.1038/pcan.2014.35. PMID: 25311767.; Киричек А.А., Камолов Б.Ш., Савё Н.А., В.Б. Матвеев. О стадировании онкоурологических заболеваний по обновленной TNM-классификации 8-го издания. Онкоурология 2018;14(1): 166–72. DOI:10.17650/1726-9776-2018-14-1-166-172.; Zumsteg Z.S., Zelefsky M.J., Woo K.M. Unification of favourable intermediate-, unfavourable intermediate-, and very highrisk stratification criteria for prostate cancer. BJU Int 2017;120(5B):E87–95. DOI:10.1111/bju.13903. PMID: 28464446.; Zumsteg Z.S., Chen Z., Howard L.E. et al. Modified risk stratification grouping using standard clinical and biopsy information for patients undergoing radical prostatectomy: results from SEARCH. Prostate 2017;77(16):1592–600. DOI:10.1002/pros.23436. PMID: 28994485.; Шкурников М.Ю., Макарова Ю.А., Князев Е.Н. и др. Экспрессия циркулирующих микроРНК в связи с лимфогенным метастазированием рака предстательной железы. Онкоурология 2018;14(1):87–93. DOI:10.17650/17269776-2018-14-1-87-93.; Saad F., Latour M., Lattouf J.B. et al. Biopsy based proteomic assay predicts risk of biochemical recurrence after radical prostatectomy. J Urol 2017;197(4):1034– 40. DOI:10.1016/j.juro.2016.09.116. PMID: 27725152.; Eeles R., Goh C., Castro E. et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014;11(1):18–31. DOI:10.1038/nrurol.2013.266. PMID: 24296704.; Kiciński M., Vangronsveld J., Nawrot T.S. An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 2011;6(10):e27130. DOI:10.1371/journal.pone.0027130. PMID: 22073129.; Cerhan J.R., Parker A.S., Putnam S.D. et al. Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev 1999;8: 53–60. PMID: 9950240.; Huncharek M., Haddock K.S., Reid R. et al. Smoking as a risk factor for prostate cancer: a meta-analysis of 24 prospective cohort studies. Am J Public Health 2010;100(4):693–701. DOI:10.2105/AJPH.2008.150508. PMID: 19608952.; Nair-Shalliker V., Smith D.P., Egger S. et al. Sun exposure may increase risk of prostate cancer in the high UV environment of New South Wales, Australia: a case-control study. Int J Cancer 2012;131(5):E726–32. PMID: 22173996.; Cuzick J., Thorat M.A., Andriole G. et al. Prevention and early detection of prostate cancer. Lancet Oncol 2014;15(11):e484– 92. DOI:10.1016/S1470-2045(14)702116. PMID: 25281467.; Mucci L.A., Hjelmborg J.B., Harris J.R. et al . Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016;315(1):68–76. DOI:10.1001/jama.2015.17703. PMID: 26746459.; MacInnis R.J., Antoniou A.C., Eeles R.A. et al. Prostate cancer segregation analyses using 4390 families from UK and Australian population-based studies. Genet Epidemiol 2010;34(1):42–50. DOI:10.1002/gepi.20433. PMID: 19492347.; Demichelis F., Stanford J.L. Genetic predisposition to prostate cancer: update and future perspectives. Urol Oncol 2015;33(2):75–84. DOI:10.1016/j.urolonc.2014.04.021. PMID: 24996773.; Helfand B.T., Kearns J., Conran C. et al. Clinical validity and utility of genetic risk scores in prostate cancer. Asian J Androl 2016;18(4):509–14. DOI:10.4103/1008-682X.182981. PMID: 27297129.; Stelloo S., Nevedomskaya E., Kim Y. et al. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 2018;37(3):313–22. DOI:10.1038/onc.2017.330. PMID: 28925401.; Kim Y.R., Oh K.J., Park R.Y. et al. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol Cancer 2010;9:124. DOI:10.1186/1476-4598-9-124. PMID: 20504375.; Ewing C.M., Ray A.M., Lange E.M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;12;366(2):141–9. DOI:10.1056/NEJMoa1110000. PMID: 22236224.; Beebe-Dimmer J.L., Hathcock M., Yee C. et al. The HOXB13 G84E mutation is associated with an increased risk for prostate cancer and other malignancies. Cancer Epidemiol Biomarkers Prev 2015;24(9):1366–72. DOI:10.1158/1055-9965.EPI-15-0247. PMID: 26108461.; Chen Z., Greenwood C., Isaacs W.B. et al. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis 2013;34(6):1260–4. DOI:10.1093/carcin/bgt055. PMID: 23393222.; Stott-Miller M., Karyadi D.M., Smith T. et al. HOXB13 mutations in a populationbased, case-control study of prostate cancer. Prostate 2013;73(6):634–41. DOI:10.1002/pros.22604. PMID: 23129385.; Zabalza C.V., Adam M., Burdelski C. et al. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget 2015;6(14):12822–34. DOI:10.18632/oncotarget.3431. PMID: 25825985.; Xu J., Lange E., Lu L. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013;132(1):5–14. DOI:10.1007/s00439-012-1229-4. PMID: 23064873.; Kluźniak W., Wokołorczyk D., Kashyap A. et al. The G84E mutation in the HOXB13 gene is associated with an increased risk of prostate cancer in Poland. Prostate 2013;73(5):542–8. DOI:10.1002/pros.22594. PMID: 23334858.; Kote-Jarai Z., Mikropoulos C., Leongamornlert D.A. et al. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol 2015;26(4):756–61. DOI:10.1093/annonc/mdv004. PMID: 25595936.; Lin X., Qu, L., Chen Z. et al. A novel germline mutation in HOXB13 is associated with prostate cancer risk in chinese men. Prostate 2013;73(2):169– 75. DOI:10.1002/pros.22552. PMID: 22718278.; Hayano T., Matsui H., Nakaoka H. et al. Germline variants of prostate cancer in japanese families. PLoS One 2016;11(10):e0164233. DOI:10.1371/journal.pone.0164233. PMID: 27701467.; Maia S., Cardoso M., Pinto P. et al. Identification of two novel HOXB13 germline mutations in portuguese prostate cancer patients. PLoS One 2015;15;10(7):e0132728. DOI:10.1371/journal.pone.0132728. PMID: 26176944.; Сытенкова К.В., Поспехова Н.И., Поддубная И.В. и др. Клинические особенности различных генотипических вариантов при наследственном и спорадическом раке молочной железы. Российский биотерапевтический журнал 2011;10(2):3–12. [; Edwards S.M., Kote-Jarai Z., Meitz J. et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003;72(1):1–12. PMID: 12474142.; Leongamornlert D., Mahmud N., Tymrakiewicz M. et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106(10):1697–701. DOI:10.1038/bjc.2012.146. PMID: 22516946.; Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31(14):1748–57. DOI:10.1200/JCO.2012.43.1882. PMID: 23569316.; Akbari M.R., Trachtenberg J., Lee J. et al. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst 2012;104(16):1260–2. DOI:10.1093/jnci/djs288. PMID: 22781434.; Albitar F., Diep K., Ma W., Albitar M. Synonymous polymorphisms in HOXB13 as a protective factor for prostate cancer. J Cancer 2015;6(5):409–11. DOI:10.7150/jca.11413. PMID: 25874003.; Breyer J.P., Avritt T.G., McReynolds K.M. et al. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2012;21(8):1348–53. DOI:10.1158/1055-9965.EPI-12-0495. PMID: 22714738.; Chen H., Ewing C.M., Zheng S. et al. Genetic factors influencing prostate cancer risk in Norwegian men. Prostate 2018;78(3):186–192. DOI:10.1002/pros.23453. PMID: 29181843.; Gudmundsson J., Sulem P., Gudbjartsson D.F. et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet 2012;44(12):1326–9. DOI:10.1038/ng.2437. PMID: 23104005.; Karlsson R., Aly M., Clements M. et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 2014;65(1):169–76. DOI:10.1016/j.eururo.2012.07.027. PMID: 22841674.; Laitinen V.H., Wahlfors T., Saaristo L. et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2013;22(3):452–60. DOI:10.1158/1055-9965.EPI-12-1000-T. PMID: 23292082.; MacInnis R.J., Severi G., Baglietto L. et al. Population-based estimate of prostate cancer risk for carriers of the HOXB13 missense mutation G84E. PLoS One 2013;8(2):e54727. DOI:10.1371/journal.pone.0054727. PMID: 23457453.; Storebjerg T.M., Høyer S., Kirkegaard P. et al. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int 2016;118(4):646– 53. DOI:10.1111/bju.13416. PMID: 26779768.; Witte J.S., Mefford J., Plummer S.J. et al. HOXB13 mutation and prostate cancer: studies of siblings and aggressive disease. Cancer Epidemiol Biomarkers Prev 2013;22(4):675–80. DOI:10.1158/1055-9965.EPI-12-1154. PMID: 23396964.; Castro E., Goh C., Leongamornlert D. et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol 2015;68(2):186–93. DOI:10.1016/j.eururo.2014.10.022. PMID: 25454609.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443– 53. DOI:10.1056/NEJMoa1603144. PMID: 27433846.; Robinson D., Van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215–28. DOI:10.1016/j.cell.2015.05.001. PMID: 26000489.; Näslund-Koch C., Nordestgaard B.G., Bojesen S.E. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study. J Clin Oncol 2016;34(11):1208–16. DOI:10.1200/JCO.2015.63.3594. PMID: 26884562.; Hale V., Weischer M., Park J. CHEK2 1100delC mutation and risk of prostate cancer. Prostate Cancer 2014;2014:294575. DOI:10.1155/2014/294575. PMID: 25431674.; Wang Y., Dai B., Ye D. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8(9):15708–15. PMID: 26629066.; Wu Y., Yu H., Zheng S.L. et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018 78(8):607–15. DOI:10.1002/pros.23505. PMID: 29520813.; Ryan S., Jenkins M.A., Win A.K. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2014;23(3):437–49. DOI:10.1158/1055-9965.EPI-13-1165. PMID: 24425144.; Raymond V.M., Mukherjee B., Wang F. et al. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 2013;31(14):1713–8. DOI:10.1200/JCO.2012.44.1238. PMID: 23530095.; Haraldsdottir S., Hampel H., Wei L. et al. Prostate cancer incidence in males with Lynch syndrome. Genet Med 2014;16(7):553–7. DOI:10.1038/gim.2013.193. PMID: 24434690.; Møller P., Seppälä T.T., Bernstein I. et al. Cancer risk and survival in path MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut 2018;67(7):1306–16. DOI:10.1136/gutjnl-2017-314057. PMID: 28754778.; Liss M.A., Chen H., Hemal S. et al. Impact of family history on prostate cancer mortality in white men undergoing prostate specific antigen based screening. J Urol 2015;193(1):75–9. DOI:10.1016/j.juro.2014.07.085. PMID: 25066872.; Батенева Е.И., Филиппова М.Г., Тюляндина А.С. и др. Результаты генетического скрининга герминальных мутаций в генах BRCA1 и BRCA2 у больных раком молочной железы и больных раком яичника в российской популяции. Онкогинекология 2015;(3):34–9.; Bancroft E.K., Page E.C., Castro E. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 2014;66(3):489–99. DOI:10.1016/j.eururo.2014.01.003. PMID: 24484606.; https://oncourology.abvpress.ru/oncur/article/view/832
-
8Academic Journal
Authors: V. B. Matveev, A. A. Kirichek, A. V. Savinkova, A. V. Khachaturyan, D. A. Golovina, L. N. Lyubchenko, В. Б. Матвеев, А. А. Киричек, А. В. Савинкова, А. В. Хачатурян, Д. А. Головина, Л. Н. Любченко
Source: Cancer Urology; Том 14, № 4 (2018); 53-67 ; Онкоурология; Том 14, № 4 (2018); 53-67 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2018-14-4
Subject Terms: безметастатическая выживаемость, germline mutations, CHEK2, mutation I157T, mutation IVS2+1G>A, prognostic factor, biochemical relapse free survival, metastasis-free survival, герминальные мутации, мутация I157T, мутация IVS2+1G>A, прогностический фактор, выживаемость без биохимического рецидива
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/889/808; Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 250 с.; Состояние онкологической помощи населению России в 2017 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 236 с.; D’Amico A.V., Whittington R., Malkowicz S.B. et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol 2001;166(6):2185—8. PMID: 11696732.; Zumsteg Z.S., Chen Z., Howard L.E. et al. Modified risk stratification grouping using standard clinical and biopsy information for patients undergoing radical prostatectomy: results from SEARCH. Prostate 2017;77(16):1592— 600. DOI:10.1002/pros.23436. PMID: 28994485. Available at: https://doi.org/10.1002/pros.23436.; Park Y.H., Kim Y., Yu H. et al. Is lympho-vascular invasion a powerful predictor for biochemical recurrence in pT3 N0 prostatecancer? Results from the K-CaP database. Sci Rep 2016;6:25419. DOI:10.1038/srep25419. PMID: 27146602.; Zareba P., Flavin R., Isikbay M. et al. Perineural invasion and risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev 2017;26(5):719—26. DOI:10.1158/1055-9965.EPI-16-0237. PMID: 28062398.; Bravi C.A., Shariat Sh.F., Mirone V. et al. MP34-09 Prevalence and prognostic impact of prostate cancer histological variants at radical prostatectomy: a long-term, single center analysis. J Urol;199(4):e441. Available at: https://doi.org/10.1016/j.juro.2018.02.1101.; Robinson D., Van Allen E.M., Wu Y.M. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5): 1215—28. DOI:10.1016/j.cell.2015.05.001. PMID: 26000489.; Ghabili K., Nguyen K., Hsiang W. et al. National trends in the management of patients with positive surgical margins at the time of radical prostatectomy. J Clin Oncol 2018;36:6_suppl:111. DOI:10.1200/JCO.2018.36.6_suppl.111.; Bandini M., Preisser F., Soligo M. et al. MP21-14 Stage-migration and survival of lymph node positive prostate cancer patients: a comprehensive trend analyses of surgically treated men over the last two decades. J Urol;199(4):e268. Available at: https://doi.org/10.1016/j.juro.2018.02.705.; Castro E., Goh C., Olmos D. et al. Germ-line BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748—57. DOI:10.1200/JCO.2012.43.1882. PMID:23569316. Available at: https://doi.org/10.1200/JCO.2012.43.1882.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443—53. PMID: 27433846. Available at: https://doi.org/10.1056/NEJMoa1603144.; Gin V.N., Hegarty S.E., Hyatt C. et al. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate 2018;1—7. Available at: https://doi.org/10.1002/pros.23739.; Pan M., Cong P„ Wang Y. et al. Novel LOVD databases for hereditary breast cancer and colorectal cancer genes in the Chinese population. Hum Mutat 2011;32(12):1335—40. DOI:10.1002/humu.21588. PMID: 21901790.; Киричек А.А., Камолов Б.Ш., Савёлов НА., Матвеев В.Б. О стадировании онкоурологических заболеваний по обновленной TNM-классификации 8-го издания. Онкоурология. 2018;14(1):166—72. DOI:10.17650/1726-9776-2018-14-1-166-172.; Hirao A., Kong Y.Y., Matsuoka S. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000;287:1824—7. PMID: 10710310.; Cai Z., Chehab N.H., Pavletich N.P. Structure and activation mechanism of the CHK2 DNA damage checkpointkinase. Mol Cell 2009;35:818—29. DOI:10.1016/j.molcel.2009.09.007. PMID: 19782031.; Ahn J., Urist M., Prives C. The Chk2 protein kinase. DNA Repair (Amst) 2004;3:1039—47. DOI:10.1016/j.dnarep.2004.03.033. PMID: 15279791.; Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003;3:421 —9. PMID: 12781359.; Stracker T.H., Usui T., Petrini J.H. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009;8:1047—54. DOI:10.1016/j.dnarep.2009.04.012. PMID: 19473886.; Harper J.W., Elledge S.J. The DNA da-mage response: ten years after. Mol Cell 2007;28:739—45. DOI:10.1016/j.molcel.2007.11.015. PMID: 18082599.; Falck J., Mailand N., Syljuasen R.G. et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842—7. DOI:10.1038/35071124. PMID: 11298456.; Matsuoka S., Rotman G., Ogawa A. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad.Sci USA 2000;97:10389—94. DOI:10.1073/pnas.190030497. PMID: 10973490.; Lukas C., Falck J., Bartkova J. et al. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 2003;5: 255—60. DOI:10.1038/ncb945. PMID: 12598907.; Antoni L., Sodha N., Collins I. et al. CHK2 kinase: cancer susceptibility and cancer therapy — two sides of the same coin? Nat Rev Cancer 2007;7:925—36. DOI:10.1038/nrc2251. PMID: 18004398.; Meijers-Heijboer H., van den Ouweland A., Klijn J. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002;31:55-9. DOI:10.1038/ng879. PMID: 11967536.; Vahteristo P., Bartkova J., Eerola H. et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 2002;71:432-8. DOI:10.1086/341943. PMID: 12094328.; Aktas D., Arno M.J., Rassool F. et al. Analysis of CHK2 in patients with myelodysplastic syndromes. Leuk Res 2002;26:985-7. PMID: 12363465.; Dong X., Wang L., Taniguchi K. et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 2003;72:270— 80. DOI:10.1086/346094. PMID: 12533788.; Kleibl Z., Havranek O., Hlavata I. et al. The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer 2009;45(4):618—24. DOI:10.1016/j.ejca.2008.09.022. PMID: 18996005.; Matsuoka S., Nakagawa T., Masuda A. et al. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res 2001;61:5362-5. PMID: 11454675.; Miller C.W., Ikezoe T., Krug U. et al. Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosomes Cancer 2002;33:17-21. PMID: 11746983.; Наседкина Т.В., Громыко О.Е., Емельянова М.А. и др. Определение герминальных мутаций в генах BRCA1, BRCA2 и CHEK2 с использованием биочипов у больных раком молочной железы. Молекулярная биология 2014;48(2):243-50. DOI:10.7868/S0026898414020141.; Батенева Е.И., Филиппова М.Г., Тюляндина А.С. и др. Высокая частота мутаций в генах BRCA1, BRCA2, CHEK2, NBN, BLM у больных раком яичников в российской популяции. Опухоли женской репродуктивной системы 2014;(4):51 —6.; Батенева Е.И. Новая диагностическая панель для выявления наследственной предрасположенности к развитию рака молочной железы и рака яичников. Автореф. дис. . на канд. мед. наук. РОНЦ им. Н.Н. Блохина, M., 2015. C. 22.; Cybulski C., Wokolorczyk D., Kluzniak W. et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 2013;108(2):461-8. DOI:10.1038/bjc.2012.486. PMID: 23149842.; Seppala E.H., Ikonen T., Mononen N. et al. CHEK2 variants associate with he-reditary prostate cancer. Br J Cancer 2003;89(10):1966—70. DOI:10.1038/sj.bjc.6601425. PMID: 14612911.; Paulo P., Maia S., Pinto C. et al. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet 2018;14(4):e1007355. DOI:10.1371/journal.pgen.1007355. PMID: 29659569.; Wu Y., Yu H., Zheng S.L. et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018;78(8):607—15. DOI:10.1002/pros.23505. PMID: 29520813.; https://oncourology.abvpress.ru/oncur/article/view/889
-
9Academic Journal
Authors: I. A. Pokataev, A. S. Popova, I. S. Abramov, M. A. Emelyanova, Т. V. Nasedkina, L. N. Lyubchenko, L. S. Bazin, E. V. Artamonova, M. Yu. Fedyanin, S. Ph. Menshikova, S. A. Tjulandin, И. А. Покатаев, А. С. Попова, И. С. Абрамов, М. А. Емельянова, Т. В. Наседкина, Л. Н. Любченко, И. С. Базин, Е. В. Артамонова, М. Ю. Федянин, С. Ф. Меньшикова, С. А. Тюляндин
Source: Malignant tumours; Том 8, № 3 (2018); 5-12 ; Злокачественные опухоли; Том 8, № 3 (2018); 5-12 ; 2587-6813 ; 2224-5057
Subject Terms: полимеразная цепная реакция, germline mutations, homologous recombination genes, BRCA1, BRCA2, polymerase chain reaction, герминальные мутации, гены гомологичной рекомбинации ДНК
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/557/393; Состояние онкологической помощи населению России в 2016 году / По ред. Каприна А. Д., Старинского В. В., Петровой Г. В. М.: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИРЦ» Минздрава России, 2017. 236 с.; Stathis A., Moore M. J. Advanced pancreatic carcinoma: current treatment and future challenges. Nature Reviews Clinical Oncology. 2010. Vol. 7. No. 3. P. 163–172.; Conroy T., Desseigne F., Ychou M., Bouche O., Guimbaud R., Becouarn Y. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.New England J. Medicine. 2011. Vol. 364. No. 19. P. 1817–1825.; Von Hoff D. D., Ervin T., Arena F. P., Chiorean E. G., Infante J., Moore M. et al. Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. New England J. Medicine. 2013. Vol. 369. No. 18. P. 1691–1703.; Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2017. CA: A Cancer J. Clinicians. Vol. 67. P. 7–30.; Kleeff J., Korc M., Apte M., La Vecchia C., Johnson C. D., Biankin A. V. et al. Pancreatic cancer.Nature Reviews Disease Primers. 2016. Vol. 2. P. 16022.; Noone A. M., Cronin K. A., Altekruse S F., Howlader N., Lewis D. R., Petkov V. I., Penberthy L. Cancer incidence and survival trends by subtype using data from the Surveillance Epidemiology and End Results Program, 1992-2013. Cancer Epidemiology and Prevention Biomarkers.2017. Vol. 26. P. 632–641.; Waddell N., Pajic M., Patch A. M., Chang D. K., Kassahn K. S., Bailey P. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015. Vol. 518. No. 7540. P. 495–501.; Holter S., Borgida, A., Dodd A., Grant R., Semotiuk K., Hedley D. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J. Clinical Oncology. 2015. Vol. 33. No. 28. P. 3124–3129.; Luo G., Lu Y., Jin K., Cheng H., Guo M., Liu Z. et al. Pancreatic cancer: BRCA mutation and personalized treatment. Expert Review of Anticancer Therapy. 2015. Vol. 15. No. 10. P. 1223–1231.; Becker A. E., Hernandez Y. G., Frucht H., Lucas A. L. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J. Gastroenterology: WJG. 2014. Vol. 20. No. 32. P. 11182–11198.; Lucas A. L., Shakya R., Lipsyc M. D., Mitchel E. B., Kumar S., Hwang C. High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clinical Cancer Research. 2013. Vol. 19. No. 13. P. 3396–3403.; Murphy K. M., Brune K. A., Griffin C., Sollenberger J. E., Petersen G. M., Bansal R. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17 %. Cancer Research. 2002. Vol. 62. No. 13. P. 3789–3793.; Lowery M. A., Kelsen D. P., Stadler Z. K., Kenneth H. Y., Janjigian Y. Y., Ludwig E. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. The Oncologist. 2011. Vol. 16. No. 10. P. 1397–1402.; Blair A. B., Groot V. P., Gemenetzis G., Wei J., Cameron J. L., Weiss M. J. BRCA1 / BRCA2 Germline Mutation Carriers and Sporadic Pancreatic Ductal Adenocarcinoma. J. American College of Surgeons.2018. Vol. 226. No. 4. P. 630–637.; Golan T., Kanji Z. S., Epelbaum R., Devaud N., Dagan E., Holter S. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. British J. Cancer.2014. Vol. 111. No. 6. P. 1132–1138.; Наседкина Т.В., Громыко О.Е., Емельянова М.А., Игнатова Е.О., Казубская Т.П., Портной С.М., Заседателев А.С., Любченко Л.Н. Определение герминальных мутаций в генах BRCA1, BRCA2 и CHEK2 с использованием биочипов у больных раком молочной железы. Молекулярная биология. 2014. Т. 48. № 2. С. 243–250.; Prokofyeva D., Bogdanova N., Bermisheva M., Zinnatullina G., Hillemanns P., Khusnutdinova E. et al. Rare occurrence of PALB2 mutations in ovarian cancer patients from the Volga-Ural region. Clinical Genetics. 2012. Vol. 82. No. 1. P. 100–101.; Daly M. B., Pilarski R., Berry M., Buys S. S., Farmer M., Friedman S. et al. NCCN Guidelines Insights: genetic / familial high-risk assessment: breast and ovarian, version 1.2018. J. National Comprehensive Cancer Network. 2018.; Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., Macgregor-Das A. et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J. Clinical Oncology.2017. Vol. 35. No. 30. P. 3382–3390.; Lowery M. A., Wong W., Jordan E. J., Lee J. W., Kemel Y., Vijai J. et al. Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms. JNCI: J. National Cancer Institute.2018. Vol. 110. No. 10.; Kaufman B., Shapira-Frommer R., Schmutzler R. K., Audeh M. W., Friedlander M., Balmana J. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1 / 2 mutation. J. Clinical Oncology. 2014. Vol. 33. No. 3. P. 244–250.; Кашинцев А. А., Янус Г. А., Коханенко Н. Ю., Моисеенко В. М., Ханевич М. Д., Роман Л. Д. и др. Встречаемость мутаций в генах BRCA1 и BRCA2 у больных раком поджелудочной железы. Сибирский онкологический журнал. 2013. Т. 5. № 59.; Wallace A. J. New challenges for BRCA testing: a view from the diagnostic laboratory. European J. Human Genetics. 2016. Vol. 24. No. S1. P. S10.; Tyulyandina A., Gorbunova V., Khokhlova S., Kolomiets L., Filipenko M., Imyanitov E. et al. Profile of BRCA1 / BRCA2 mutations in Russian ovarian cancer population detected by NGS and MLPA analysis: Interim results of OVATAR study. AACR 2018 Proceedings. Abstracts 1–3027. No. 1241.; Bartsch D. K., Krysewski K., Sina-Frey M., Fendrich V., Rieder H., Langer P. Low frequency of CHEK2 mutations in familial pancreatic cancer. Familial Cancer. 2006. Vol. 5. No. 4. P. 305–308.; Dudley B., Karloski E., Monzon F. A., Singhi A. D., Lincoln S. E., Bahary N., Brand R. E. Germline mutation prevalence in individuals with pancreatic cancer and a history of previous malignancy. Cancer. 2018. Vol. 124. No. 8. P. 1691–1700.; https://www.malignanttumors.org/jour/article/view/557
-
10Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: полное экзомное секвенирование, соматические мутации, герминальные мутации, рак предстательной железы
Access URL: https://openrepository.ru/article?id=190778
-
11Academic Journal
Authors: НОВИКОВА Е.И., СНИГИРЕВА Г.П.
Subject Terms:
СЕКВЕНИРОВАНИЕ "НОВОГО ПОКОЛЕНИЯ" (NGS),ДИАГНОСТИЧЕСКИЙ И ПРОГНОСТИЧЕСКИЙ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ МЕТОД,ГЕРМИНАЛЬНЫЕ МУТАЦИИ,СОМАТИЧЕСКИЕ МУТАЦИИ ПЕРСОНАЛИЗИРОВАННАЯ МЕДИЦИНА,NEXT-GENERATION SEQUENCING (NGS),DIAGNOSIS AND PROGNOSIS MOLECULAR GENETIC METHOD,GERMLINE MUTATIONS,SOMATIC MUTATIONS,PERSONALIZED MEDICINE File Description: text/html
-
12Academic Journal
Authors: Zborovskaya I.B.
Source: Advances in Molecular Oncology; Vol 1, No 2 (2014); 4-15 ; Успехи молекулярной онкологии; Vol 1, No 2 (2014); 4-15 ; 2413-3787 ; 2313-805X
Subject Terms: oncomarkers, signaling pathways, germline mutations, allelic polymorphism, microRNA, DNA methylation, polyadenylation, splicing, transcriptom, tumor stem cells, онкомаркеры, сигнальные пути, герминальные мутации, аллельный полиморфизм, микроРНК, метилирование ДНК, полиаденилирование, сплайсинг, транскриптом, стволовые клетки опухоли
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/19/21; https://umo.abvpress.ru/jour/article/view/19
-
13Academic Journal
Source: Вестник Российского научного центра рентгенорадиологии Минздрава России.
Subject Terms: СЕКВЕНИРОВАНИЕ 'НОВОГО ПОКОЛЕНИЯ' (NGS),ДИАГНОСТИЧЕСКИЙ И ПРОГНОСТИЧЕСКИЙ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ МЕТОД,ГЕРМИНАЛЬНЫЕ МУТАЦИИ,СОМАТИЧЕСКИЕ МУТАЦИИ ПЕРСОНАЛИЗИРОВАННАЯ МЕДИЦИНА,NEXT-GENERATION SEQUENCING (NGS),DIAGNOSIS AND PROGNOSIS MOLECULAR GENETIC METHOD,GERMLINE MUTATIONS,SOMATIC MUTATIONS,PERSONALIZED MEDICINE, 3. Good health
File Description: text/html
-
14Academic Journal
Subject Terms: рак почки, ДНК-диагностика, герминальные мутации, химерные гены
File Description: text/html
-
15Academic Journal
Authors: Пароконная, А., Лушникова, А., Любченко, Л., Полевая, Е., Поспехова, Н.
Subject Terms: РАК МОЛОЧНОЙ ЖЕЛЕЗЫ, БЕРЕМЕННЫЕ И ЛАКТИРУЮЩИЕ ЖЕНЩИНЫ, ГЕРМИНАЛЬНЫЕ МУТАЦИИ ГЕНОВ BRCA1/ BRCA2, MMTV-РОДСТВЕННЫЙ ПРОВИРУС, ВЫЖИВАЕМОСТЬ БОЛЬНЫХ, ПРОГНОЗ ЗАБОЛЕВАНИЯ, GERMINAL MUTATIONS OF BRCA1/BRCA2 GENES
File Description: text/html
-
16Academic Journal
Source: Успехи молекулярной онкологии.
Subject Terms: ОНКОМАРКЕРЫ,СИГНАЛЬНЫЕ ПУТИ,ГЕРМИНАЛЬНЫЕ МУТАЦИИ,АЛЛЕЛЬНЫЙ ПОЛИМОРФИЗМ,МИКРОРНК,МЕТИЛИРОВАНИЕ ДНК,ПОЛИАДЕНИЛИРОВАНИЕ,СПЛАЙСИНГ,ТРАНСКРИПТОМ,СТВОЛОВЫЕ КЛЕТКИ ОПУХОЛИ, 3. Good health
File Description: text/html
-
17Academic Journal
Source: Вестник РОНЦ им. Н. Н. Блохина РАМН.
File Description: text/html
-
18Academic Journal
Source: Сибирский онкологический журнал.
Subject Terms: РАК МОЛОЧНОЙ ЖЕЛЕЗЫ, БЕРЕМЕННЫЕ И ЛАКТИРУЮЩИЕ ЖЕНЩИНЫ, ГЕРМИНАЛЬНЫЕ МУТАЦИИ ГЕНОВ BRCA1/ BRCA2, MMTV-РОДСТВЕННЫЙ ПРОВИРУС, ВЫЖИВАЕМОСТЬ БОЛЬНЫХ, ПРОГНОЗ ЗАБОЛЕВАНИЯ, GERMINAL MUTATIONS OF BRCA1/BRCA2 GENES, 3. Good health
File Description: text/html
-
19Academic Journal
Authors: Гилязова Ирина Ришатовна, Мустафин Артур Тагирович, Кунсбаева Гульназ Бахтияровна, Бермишева Марина Алексеевна, Павлов Валентин Николаевич, Измайлов Адель Альбертович, Хуснутдинова Эльза Камилевна
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: рак предстательной железы, полное экзомное секвенирование, соматические мутации, герминальные мутации
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190778/1/nora.pdf; 575.224.2; https://openrepository.ru/article?id=190778
Availability: https://openrepository.ru/article?id=190778
-
20Electronic Resource
Authors: Гилязова Ирина Ришатовна, Мустафин Артур Тагирович, Кунсбаева Гульназ Бахтияровна, Бермишева Марина Алексеевна, Павлов Валентин Николаевич, Измайлов Адель Альбертович, Хуснутдинова Эльза Камилевна
Index Terms: рак предстательной железы, полное экзомное секвенирование, соматические мутации, герминальные мутации, article
URL:
http://hdl.handle.net/rour/190778uri
В поисках моделей персонализированной медицины