Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"генотерапевтический лекарственный препарат"', χρόνος αναζήτησης: 0,91δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Исследование проводилось без спонсорской поддержки.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Принято в печать (Online First) ; БИОпрепараты. Профилактика, диагностика, лечение; Принято в печать (Online First) ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/580/953; https://www.biopreparations.ru/jour/article/view/580/954; https://www.biopreparations.ru/jour/article/view/580/965; https://www.biopreparations.ru/jour/article/view/580/966; https://www.biopreparations.ru/jour/article/view/580/969; https://www.biopreparations.ru/jour/article/view/580/973; https://www.biopreparations.ru/jour/article/view/580/974; https://www.biopreparations.ru/jour/article/downloadSuppFile/580/1127; https://www.biopreparations.ru/jour/article/downloadSuppFile/580/1128; https://www.biopreparations.ru/jour/article/downloadSuppFile/580/1146; https://www.biopreparations.ru/jour/article/downloadSuppFile/580/1150; https://www.biopreparations.ru/jour/article/downloadSuppFile/580/1159; Солдатов АА, Авдеева ЖИ, Горенков ДВ, Хантимирова ЛМ, Гусева СГ, Меркулов ВА. Проблемные аспекты разработки и регистрации генотерапевтических препаратов. БИОпрепараты. Профилактика, диагностика, лечение. 2022;22(1):6–22. https://doi.org/10.30895/2221-996X-2022-22-1-6-22; Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med. 2024;14(3):e1607. https://doi.org/10.1002/ctm2.1607; Егорова ТВ, Пискунов АА, Потеряев ДА. Генная терапия наследственных заболеваний на основе аденоассоциированных вирусных векторов: современные проблемы применения и пути их решения. БИОпрепараты. Профилактика, диагностика, лечение. 2024;24(2):123–39. https://doi.org/10.30895/2221-996X-2024-24-2-123-139; Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93. https://doi.org/10.1128/CMR.00008-08; Brister JR, Muzyczka N. Mechanism of Rep-mediated adeno-associated virus origin nicking. J Virol. 2000;74(17):7762–71. https://doi.org/10.1128/JVI.74.17.7762-7771.2000; McCarty DM, Ryan JH, Zolotukhin S, Zhou X, Muzyczka N. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol. 1994;68(8):4998–5006. https://doi.org/10.1128/jvi.68.8.4998-5006.1994; Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV serotypes and their applications in gene therapy: An overview. Cells. 2023;12(5):785. https://doi.org/10.3390/cells12050785; Wang J-H, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. https://doi.org/10.1038/s41392-024-01780-w; Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80. https://doi.org/10.1016/j.omtm.2018.01.002; Juran JM. Juran on quality by design: the new steps for planning quality into goods and services. Free Press; 1992.; François A, Bouzelha M, Lecomte E, Broucque F, Penaud-Budloo M, Adjali O, et al. Accurate titration of infectious AAV particles requires measurement of biologically active vector genomes and suitable controls. Mol Ther Methods Clin Dev. 2018;10:223–36. https://doi.org/10.1016/j.omtm.2018.07.004; Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, et al. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. Mol Ther Methods Clin Dev. 2021;20:740–54. https://doi.org/10.1016/j.omtm.2021.02.010; Lock M, Alvira MR, Chen S-J, Wilson JM. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR. Human Gene Ther Methods. 2014;25(2):115–25. https://doi.org/10.1089/hgtb.2013.131; Dobnik D, Kogovsek P, Jakomin T, Kosir N, Tusek Znidaric M, Leskovec M, et al. Accurate quantification and characterization of adeno-associated viral vectors. Front Microbiol. 2019;10:1570. https://doi.org/10.3389/fmicb.2019.01570; Gao K, Li M, Zhong L, Su Q, Li J, Li S, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects. Mol Ther Methods Clin Dev. 2014;1(9):20139. https://doi.org/10.1038/mtm.2013.9; Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther. 2016;24(2):287–97. https://doi.org/10.1038/mt.2015.187; Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604. https://doi.org/10.1089/hum.2010.202; Kaspar BK, Hatfield JM, Balleydier J, Kaspar AA, Hodge RE. Means and method for producing and purifying viral vectors. Patent of the United States No. US 2021/0317474 A1; 2021.; Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, et al. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev. 2022;26:471–94. https://doi.org/10.1016/j.omtm.2022.07.018; Martino AT, Suzuki M, Markusic DM, Zolotukhin I, Ryals RC, Moghimi B, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9–dependent innate immune responses in the liver. Blood. 2011;117(24):6459–68. https://doi.org/10.1182/blood-2010-10-314518; Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity — ‘one and done’ or ‘slower and lower’? Expert Opin Biol Ther. 2022;22(9):1067–71. https://doi.org/10.1080/14712598.2022.2060737; Allen JM, Debelak DJ, Reynolds TC, Miller AD. Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J Virol. 1997;71(9):6816–22. https://doi.org/10.1128/jvi.71.9.6816-6822.1997; Song L, Samulski RJ, Hirsch ML. Adeno-associated virus vector mobilization, risk versus reality. Hum Gene Ther. 2020;31(19–20):1054–67. https://doi.org/10.1089/hum.2020.118; Wright J. Product-related impurities in clinical-grade recombinant AAV vectors: Characterization and risk assessment. Biomedicines. 2014;2(1):80–97. https://doi.org/10.3390/biomedicines2010080; Giles AR, Sims JJ, Turner KB, Govandasamy L, Alvira MR, Lock M, Wilson JM. Deamidation of amino acids on the surface of adeno-associated virus capsids leads to charge heterogeneity and altered vector function. Mol Ther. 2018;26(12):2848–62. https://doi.org/10.1016/j.ymthe.2018.09.013; Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM, Leib RD, et al. Methods matter: Standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol Ther Methods Clin Dev. 2020;18:98–118. https://doi.org/10.1016/j.omtm.2020.05.018; Murray S, Nilsson CL, Hare JT, Emmett MR, Korostelev A, Ongley H, et al. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry. J Virol. 2006;80(12):6171–6. https://doi.org/10.1128/JVI.02417-05; Aloor A, Zhang J, Gashash EA, Parameswaran A, Chrzanowski M, Ma C, et al. Site-specific N-glycosylation on the AAV8 capsid protein. Viruses. 2018;10(11):644. https://doi.org/10.3390/v10110644; Lecomte E, Tournaire B, Cogne B, Dupont JB, Lindenbaum P, Martin-Fontaine M, et al. Advanced characterization of DNA molecules in rAAV vector preparations by single-stranded virus next-generation sequencing. Mol Ther Nucleic Acids. 2015;4(10):e260. https://doi.org/10.1038/mtna.2015.32; Sheng L, Cai F, Zhu Y, Pal A, Athanasiou M, Orrison B, et al. Oncogenicity of DNA in vivo: Tumor induction with expression plasmids for activated H-ras and c-myc. Biologicals. 2008;36(3):184–97. https://doi.org/10.1016/j.biologicals.2007.11.003; Hauck B, Murphy SL, Smith PH, Qu G, Liu X, Zelenaia O, et al. Undetectable transcription of cap in a clinical AAV vector: Implications for preformed capsid in immune responses. Mol Ther. 2009;17(1):144–52. https://doi.org/10.1038/mt.2008.227; Chadeuf G, Ciron C, Moullier P, Salvetti A. Evidence for encapsidation of prokaryotic sequences during recombinant adeno-associated virus production and their in vivo persistence after vector delivery. Mol Ther. 2005;12(4):744–53. https://doi.org/10.1016/j.ymthe.2005.06.003; Астапова ОВ, Берчатова АА. Генотерапевтические препараты: аспекты доклинического изучения безопасности. Безопасность и риск фармакотерапии. 2023;11(1):73–96. https://doi.org/10.30895/2312-7821-2023-11-1-329; Prince WS, Baker DL, Dodge AH, Ahmed AE, Chestnut RW, Sinicropi DV. Pharmacodynamics of recombinant human DNase I in serum. Clin Exp Immunol. 2001;113(2):289–96. https://doi.org/10.1046/j.1365-2249.1998.00647.x; Duong T, McAllister J, Eldahan K, Wang J, Onishi E, Shen K, et al. Improvement of precision in recombinant adeno-associated virus infectious titer assay with droplet digital PCR as an endpoint measurement. Hum Gene Ther. 2023;34(15–16):742–57. https://doi.org/10.1089/hum.2023.014; Schnödt M, Büning H. Improving the quality of adeno-associated viral vector preparations: The challenge of product-related impurities. Hum Gene Ther Methods. 2017;28(3):101–8. https://doi.org/10.1089/hgtb.2016.188; https://www.biopreparations.ru/jour/article/view/580

  2. 2
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Работа выполнена без спонсорской поддержки.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 123-139 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 123-139 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/572/857; https://www.biopreparations.ru/jour/article/view/572/845; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/876; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/877; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/878; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/879; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/976; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/991; Мельникова ЕВ, Меркулов ВА, Меркулова ОВ. Генная терапия нейродегенеративных заболеваний: достижения, разработки, проблемы внедрения в клиническую практику. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(2):127–47. https://doi.org/10.30895/2221-996X-2023-433; Baas L, van der Graaf R, van Hoorn ES, Bredenoord AL, Meijer K. The ethics of gene therapy for hemophilia: a narrative review. J Thromb Haemost. 2023;21(3):413–20. https://doi.org/10.1016/j.jtha.2022.12.027; Fischer MD, Simonelli F, Sahni J, Holz FG, Maier R, Fasser C, et al. Real-world safety and effectiveness of voretigene neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE study. Biomolecules. 2024;14(1):122. https://doi.org/10.3390/biom14010122; Stingl K, Kempf M, Jung R, Kortuem F, Righetti G, Reith M, et al. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res. 2023;92:101115. https://doi.org/10.1016/j.preteyeres.2022.101115; Thomas S, Conway KM, Fapo O, Street N, Mathews KD, Mann JR, et al. Time to diagnosis of Duchenne muscular dystrophy remains unchanged: findings from the Muscular Dystrophy Surveillance, Tracking, and Research Network, 2000–2015. Muscle Nerve. 2022;66(2):193–7. https://doi.org/10.1002/mus.27532; Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381–9. https://doi.org/10.1038/s41591-022-01866-4; Motyl AAL, Gillingwater TH. Timing is everything: Clinical evidence supports pre-symptomatic treatment for spinal muscular atrophy. Cell Rep Med. 2022;3(8):100725. https://doi.org/10.1016/j.xcrm.2022.100725; Crooke ST. A call to arms against ultra-rare diseases. Nat Biotechnol. 2021;39(6):671–7. https://doi.org/10.1038/s41587-021-00945-0; Duan D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol Ther. 2023;31(11):3123–6. https://doi.org/10.1016/j.ymthe.2023.10.015; Mendell JR, Connolly AM, Lehman KJ, Griffin DA, Khan SZ, Dharia SD, et al. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Mol Ther Methods Clin Dev. 2022;25:74–83. https://doi.org/10.1016/j.omtm.2022.02.011; Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol. 2022;13:991832. https://doi.org/10.3389/fimmu.2022.991832; Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of recombinant adeno-associated virus (AAV) vectors for gene transfer. BioDrugs. 2023;37(3):311–29. https://doi.org/10.1007/s40259-023-00585-7; DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol. 2012;86(12):6947–58. https://doi.org/10.1128/jvi.07232-11; Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, Agbandje-McKenna M. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol. 2006;80(23):11556–70. https://doi.org/10.1128/jvi.01536-06; Börner K, Kienle E, Huang LY, Weinmann J, Sacher A, Bayer P, et al. Pre-arrayed Pan-AAV peptide display libraries for rapid single-round screening. Mol Ther. 2020;28(4):1016–32. https://doi.org/10.1016/j.ymthe.2020.02.009; Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S, Tellez L, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919–38.e22. https://doi.org/10.1016/j.cell.2021.08.028; Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A, El Andari J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11(1):5432. https://doi.org/10.1038/s41467-020-19230-w; Zolotukhin S, Trivedi PD, Corti M, Byrne BJ. Scratching the surface of RGD-directed AAV capsid engineering. Mol Ther. 2021;29(11):3099–100. https://doi.org/10.1016/j.ymthe.2021.10.020; El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Pham QH, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv. 2022;8(38):eabn4704. https://doi.org/10.1126/sciadv.abn4704; Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, et al. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab. 2024;81:101899. https://doi.org/10.1016/j.molmet.2024.101899; Rode L, Bär C, Groß S, Rossi A, Meumann N, Viereck J, et al. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol Ther. 2022;30(12):3601–18. https://doi.org/10.1016/j.ymthe.2022.07.003; Stanton AC, Lagerborg KA, Tellez L, Krunnfusz A, King EM, Ye S, et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med. 2023;4(1):31–50.e8. https://doi.org/10.1016/j.medj.2022.11.002; Adachi K, Enoki T, Kawano Y, Veraz M, Nakai H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat Commun. 2014;5:3075. https://doi.org/10.1038/ncomms4075; Han J, Zhu L, Zhang J, Guo L, Sun X, Huang C, et al. Rational engineering of adeno-associated virus capsid enhances human hepatocyte tropism and reduces immunogenicity. Cell Prolif. 2022;55(12):e13339. https://doi.org/10.1111/cpr.13339; Mével M, Bouzelha M, Leray A, Pacouret S, Guilbaud M, Penaud-Budloo M, et al. Chemical modification of the adeno-associated virus capsid to improve gene delivery. Chem Sci. 2019;11(4):1122–31. https://doi.org/10.1039/c9sc04189c; Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep. 2023;13(1):8436. https://doi.org/10.1038/s41598-023-35547-0; Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, et al. Extracellular vesicle-encapsulated adenoassociated viruses for therapeutic gene delivery to the heart. Circulation. 2023;148(5):405–25. https://doi.org/10.1161/circulationaha.122.063759; Powell SK, Rivera-Soto R, Gray SJ. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med. 2015;19(102):49–57. PMCID: PMC4505817; Скопенкова ВВ, Егорова ТВ, Бардина МВ. Мышечно-специфические промоторы для генной терапии. Acta Naturae. 2021;13(1):47–58. https://doi.org/10.32607/actanaturae.11063; Markusic DM, Hoffman BE, Perrin GQ, Nayak S, Wang X, LoDuca PA, et al. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol Med. 2013;5(11):1698–709. https://doi.org/10.1002/emmm.201302859; Colella P, Sellier P, Costa Verdera H, Puzzo F, van Wittenberghe L, Guerchet N, et al. AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate Pompe mice. Mol Ther Methods Clin Dev. 2018;12:85–101. https://doi.org/10.1016/j.omtm.2018.11.002; Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, et al. Muscle-specific, liver-detargeted adenoassociated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa−/− mice. J Inherit Metab Dis. 2024;47(1):119–34. https://doi.org/10.1002/jimd.12625; Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C, et al. Liverspecific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2011;18(4):403–10. https://doi.org/10.1038/gt.2010.157; Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med. 2016;6(2):37–54. https://doi.org/10.5493/wjem.v6.i2.37; Muhuri M, Zhan W, Maeda Y, Li J, Lotun A, Chen J, et al. Novel combinatorial microRNA-binding sites in AAV vectors synergistically diminish antigen presentation and transgene immunity for efficient and stable transduction. Front Immunol. 2021;12:674242. https://doi.org/10.3389/fimmu.2021.674242; Subramanian M, McIninch J, Zlatev I, Schlegel MK, Kaittanis C, Nguyen T, et al. RNAi-mediated rheostat for dynamic control of AAV-delivered transgenes. Nat Commun. 2023;14(1):1970. https://doi.org/10.1038/s41467-023-37774-5; Guilbaud M, Devaux M, Couzinié C, Le Duff J, Toromanoff A, Vandamme C, et al. Five years of successful inducible transgene expression following locoregional adeno-associated virus delivery in nonhuman primates with no detectable immunity. Hum Gene Ther. 2019;30(7):802–13. https://doi.org/10.1089/hum.2018.234; Wu X, Yu Y, Wang M, Dai D, Yin J, Liu W, et al. AAV-delivered muscone-induced transgene system for treating chronic diseases in mice via inhalation. Nat Commun. 2024;15(1):1122. https://doi.org/10.1038/s41467-024-45383-z; Wright JF. Codon modification and PAMPs in clinical AAV vectors: the tortoise or the hare? Mol Ther. 2020;28(3):701–3. https://doi.org/10.1016/j.ymthe.2020.01.026; Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes. Front Immunol. 2021;12:675897. https://doi.org/10.3389/fimmu.2021.675897; Wright JF. Quantification of CpG motifs in rAAV genomes: avoiding the toll. Mol Ther. 2020;28(8):1756–8. https://doi.org/10.1016/j.ymthe.2020.07.006; Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med. 2021;13(580):eabd3438. https://doi.org/10.1126/scitranslmed.abd3438; Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72(3):2224–32. https://doi.org/10.1128/jvi.72.3.2224-2232.1998; Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50. https://doi.org/10.1016/s1525-0016(03)00095-9; Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604. https://doi.org/10.1089/hum.2010.202; Wright JF, Wellman J, High KA. Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther. 2010;10(5):341–9. https://doi.org/10.2174/156652310793180715; Powers AD, Piras BA, Clark RK, Lockey TD, Meagher MM. Development and optimization of AAV hFIX particles by transient transfection in an iCELLis(®) fixed-bed bioreactor. Hum Gene Ther Methods. 2016;27(3):112–21. https://doi.org/10.1089/hgtb.2016.021; Taylor N. Pfizer ramps up bioprocessing capacity for DMD gene therapy trial. BioPharma Reporter; 2019. https://www.biopharma-reporter.com/Article/2019/08/08/Pfizer-ramps-up-bioprocessing-capacity-for-DMDgene-therapy-trial; Florea M, Nicolaou F, Pacouret S, Zinn EM, Sanmiguel J, Andres-Mateos E, et al. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol Ther Methods Clin Dev. 2023;28:146–59. https://doi.org/10.1016/j.omtm.2022.12.009; Rebula L, Raspor A, Bavčar M, Štrancar A, Leskovec M. CIM monolithic chromatography as a useful tool for endotoxin reduction and purification of bacteriophage particles supported with PAT analytics. J Chromatogr B Analyt Technol Biomed Life Sci. 2023;1217:123606. https://doi.org/10.1016/j.jchromb.2023.123606; Haley J, Jones JB, Petraki S, Callander M, Shrestha S, Springfield E, Adamson L, Chilkoti A, Dzuricky MJ, Luginbuhl KM. IsoTag™AAV: an innovative, scalable & non-chromatographic method for streamlined AAV manufacturing. Cell Gene Ther Insights. 2022;8(10):1287–1300. https://doi.org/10.18609/cgti.2022.190; Wada M, Uchida N, Posadas-Herrera G, Hayashita-Kinoh H, Tsunekawa Y, Hirai Y, Okada T. Large-scale purification of functional AAV particles packaging the full genome using short-term ultracentrifugation with a zonal rotor. Gene Ther. 2023;30(7–8):641–8. https://doi.org/10.1038/s41434-023-00398-x; Strobel B, Miller FD, Rist W, Lamla T. Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Hum Gene Ther Methods. 2015;26(4):147–57. https://doi.org/10.1089/hgtb.2015.051; Khanal O, Kumar V, Jin M. Adeno-associated viral capsid stability on anion exchange chromatography column and its impact on empty and full capsid separation. Mol Ther Methods Clin Dev. 2023;31:101112. https://doi.org/10.1016/j.omtm.2023.101112; Su W, Patrício MI, Duffy MR, Krakowiak JM, Seymour LW, Cawood R. Self-attenuating adenovirus enables production of recombinant adeno-associated virus for high manufacturing yield without contamination. Nat Commun. 2022;13(1):1182. https://doi.org/10.1038/s41467-022-28738-2; Coronel J, Al-Dali A, Patil A, Srinivasan K, Braß T, Hein K, Wissing S. High titer rAAV production in bioreactor using ELEVECTA™ stable producer cell lines. In: Proceedings of the ESGCT 2021 Digital Meeting, Virtual, 19–22 October 2021.; Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80. https://doi.org/10.1016/j.omtm.2018.01.002; Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. https://doi.org/10.1038/s41392-024-01780-w; Liu P, Mayer A. Advances in recombinant adeno-associated virus production for gene therapy. American Pharmaceutical Review. 2022. https://www.americanpharmaceuticalreview.com/Featured-Articles/589113-Advances-in-Recombinant-Adeno-Associated-Virus-Production-for-Gene-Therapy/; https://www.biopreparations.ru/jour/article/view/572