-
1
-
2
-
3Academic Journal
Συγγραφείς: Шертаев , Мухаметамин
Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 Part 2 (2025): Eurasian Journal of Medical and Natural Sciences; 215-222 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 215-222 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 215-222 ; 2181-287X
Θεματικοί όροι: Медицинская биология, диагностика, лечение, профилактика, молекулярная медицина, биомаркеры, генная терапия, клеточные технологии, наномедицина, персонализированная медицина, Medical biology, diagnostics, treatment, prevention, molecular medicine, biomarkers, gene therapy, cellular technologies, nanomedicine, personalized medicine
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://in-academy.uz/index.php/EJMNS/article/view/64709
-
4Academic Journal
Συγγραφείς: P. A. Suchkova, S. A. Panova, O. Ya. Lisenko, K. P. Raevskij, П. А. Сучкова, С. А. Панова, О. Я. Лисенко, К. П. Раевский
Συνεισφορές: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования
Πηγή: The Russian Archives of Internal Medicine; Том 15, № 4 (2025); 275-283 ; Архивъ внутренней медицины; Том 15, № 4 (2025); 275-283 ; 2411-6564 ; 2226-6704
Θεματικοί όροι: патогенетическая терапия, review, targeted therapy, genetic therapy, gene editing, genetic vector, обзор, таргетная терапия, противовоспалительная терапия, генная терапия, геномное редактирование, вирусный вектор
Περιγραφή αρχείου: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/2045/1430; https://www.medarhive.ru/jour/article/view/2045/1438; Grasemann H., Ratjen F.N. Cystic Fibrosis. The New England Journal of Medicine. 2023;389(18):1693-1707. doi:10.1056/NEJMra2216474.; López-Valdez J.A., Aguilar-Alonso L.A., Gándara-Quezada V. et al. Cystic fibrosis: current concepts. Boletin Medico del Hospital Infantil de Mexico. 2021;78(6):584-596. doi:10.24875/BMHIM.20000372.; Chen Q., Shen Y., Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Models and Experimental Medicine. 2021;4(3):220- 232. doi:10.1002/ame2.12180.; Farinha C.M., Callebaut I. Molecular mechanisms of cystic fibrosis — how mutations lead to misfunction and guide therapy. Bioscience Reports. 2022;42(7):1. doi:10.1042/BSR20212006.; Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. Journal of Translational Medicine. 2017;15(1):84. doi:10.1186/s12967-017-1193-9.; Elborn J.S., Konstan M.W., Taylor-Cousar J.L. et al. Empire-CF study: A phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(6):1026-1034. doi:10.1016/j.jcf.2021.08.007.; Konstan M.W., Polineni D., Chmiel J.F. et al. Efficacy and safety of LAU-7b in a Phase 2 trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2024;24(1):83-90. doi:10.1016/j.jcf.2024.07.004.; Chmiel J.F., Flume P., Downey D.G. et al. Lenabasum JBT101- CF-001 Study Group. Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(1):78-85. doi:10.1016/j.jcf.2020.09.008.; Яковлев Я.Я., Бурнышева О.В., Готлиб М.Л и др. Микробиота нижних дыхательных путей и ее чувствительность к антибактериальным препаратам у больных муковисцидозом детей. Мать и Дитя в Кузбассе. 2022;3(90):41-47. doi:10.24412/2686-7338-2022-3-41-47.; Fischer R., Schwarz C., Weiser R. et al. Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. Journal of Cystic Fibrosis. 2022;21(5):821-829. doi:10.1016/j.jcf.2022.01.003.; Burgener E.B., Moss R.B. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Current opinion in pediatrics. 2018;30(3):372-377. doi:10.1097/MOP.0000000000000627.; Ломунова М.А., Гершович П.М. Генная терапия муковисцидоза: достижения и перспективы. Acta Naturae. 2023;15(2):20-31. doi:10.32607/actanaturae.11708.; Wille P.T., Rosenjack J., Cotton C. et al. Identification of AAV Developed for cystic fibrosis gene therapy that restores CFTR function in human cystic fibrosis patient cells. Journal of Cystic Fibrosis. 2019;18(39). doi:10.1016/S1569-1993(19)30241-3.; Taylor-Cousar J.L., Mermis J., Gifford A. et al. WS06.01 CFTR transgene expression in airway epithelial cells following aerosolized administration of the AAV-based gene therapy 4D-710 to adults with cystic fibrosis lung disease. Journal of Cystic Fibrosis. 2024;23(1):11. doi:10.1016/S1569-1993(24)00140-1.; Смирнихина С.А., Лавров А.В. Современное патогенетическое лечение и разработка новых методов генной и клеточной терапии муковисцидоза. Гены и клетки. 2018;13(3):23-31. doi:10.23868/201811029.; Robinson E., MacDonald K.D., Slaughter K. et al. Lipid nanoparticledelivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Molecular Therapy. 2018;26(8):2034-2046. doi:10.1016/j.ymthe.2018.05.014.; Rowe S.M., Zuckerman J.B., Dorgan D. et al. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. Journal of Cystic Fibrosis. 2023;22(4):656-664. doi:10.1016/j.jcf.2023.04.008.; Davies J.C., Polineni D., Boyd A.C. et al. Lentiviral Gene Therapy for Cystic Fibrosis. A Promising Approach and First-in-Human Trial. American Journal of Respiratory and Critical Care Medicine. 2024;210(12):1398-1408. doi:10.1164/rccm.202402-0389CI.; Ishimaru D., Bhattacharjee R., Casillas J. et al. WS05.01 RCT2100 rescues CFTR function in human bronchial epithelial cells and improves mucociliary clearance in CF ferrets. Journal of Cystic Fibrosis. 2024;23(1):9. doi:10.1016/S1569-1993(24)00131-0.; Lee J.A., Cho A., Huang E.N. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine. 2021;19:1-15. doi:10.1186/s12967-021-03099-4.; Sui H., Xu X., Su Y. et al. Gene therapy for cystic fibrosis: Challenges and prospects. Frontiers in pharmacology. 2022;13:1015926. doi:10.3389/fphar.2022.1015926.; Wang G. Genome Editing for Cystic Fibrosis. Cells. 2023;12(12):1555. doi:10.3390/cells12121555.; Janik E., Niemcewicz M., Ceremuga M. et al. Various Aspects of a Gene Editing System-CRISPR-Cas9. International Journal of Molecular Sciences. 2020;21(24):9604. doi:10.3390/ijms21249604.; Liu Q., Sun Q., Yu J. Gene Editing’s Sharp Edge: Understanding Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Transactions on Materials, Biotechnology and Life Sciences. 2024;3:170-179. doi:10.62051/e47ayw75.; Becker S., Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021;2:100007. doi:10.1016/j.ggedit.2021.100007.; Kantor A., McClements M.E., MacLaren R.E. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences. 2020;21(17):6240. doi:10.3390/ijms21176240.; Scholefield J., Harrison P.T. Prime editing — an update on the field. Gene Therapy. 2021;28(7):396–401. doi:10.1038/s41434-021-00263-9.; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021;31(2):226-236. doi:10.18093/0869-0189-2021-31-2-226-236.; Aslam A.A., Sinha I.P., Southern K.W. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database of Systematic Reviews. 2023;(3). doi:10.1002/14651858.CD012040.pub3.; Haq I., Almulhem M., Soars S. et al. Precision Medicine Based on CFTR Genotype for People with Cystic Fibrosis. Pharmacogenomics and Personalized Medicine. 2022;5(15):91-104. doi:10.2147/PGPM.S245603.; Каширская Н.Ю., Петрова Н.В., Зинченко Р.А. Клиническая эффективность и безопасность комбинированного препарата ивакафтор/лумакафтор у пациентов с муковисцидозом: обзор международных исследований. Вопросы современной педиатрии. 2021;20(6):558-566. doi:10.15690/vsp.v20i6S.2363.; Konstan M.W., McKone E.F., Moss R.B. et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. The Lancet Respiratory Medicine. 2017;5(2):107–118. doi:10.1016/S2213-2600(16)30427-1.; Gavioli E.M., Guardado N., Haniff F. et al. A current review of the safety of cystic fibrosis transmembrane conductance regulator modulators. Journal of Clinical Pharmacy and Therapeutics. 2021;46(2):286–294. doi:10.1111/jcpt.13329.; Черменский А.Г., Гембицкая Т.Е., Орлов А.В. и др. Применение таргетной терапии лумакафтором/ивакафтором у больных муковисцидозом. Медицинский Совет. 2022;16(4):98-106. doi:10.21518/2079-701X-2022-16-4-98-106.; Taylor-Cousar J.L., Munck A., McKone E.F. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. The New England Journal of Medicine. 2017,377(21):2013-2023. doi:10.1056/NEJMoa1709846.; Bardin E., Pastor A., Semeraro M. et al. Modulators of CFTR. Updates on clinical development and future directions. European Journal of Medicinal Chemistry. 2021;213(3):113195. doi:10.1016/j.ejmech.2021.113195.; Scott C. Bell, Peter J. Barry, Kris De Boeck et al. CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials. Journal of Cystic Fibrosis. 2019;18(5):700-707. doi:10.1016/j.jcf.2019.04.014.; Пятеркина О.Г., Карпова О.А., Бегиева Г.Р. и др. Региональный опыт наблюдения за детьми с муковисцидозом, получающими таргетную терапию, в Республике Татарстан. Пульмонология. 2024;34(2):277-282. doi:10.18093/0869-0189-2024-34-2-277-282.; Кондратьева Е.И., Одинаева Н.Д., Паснова Е.В. и др. Эффективность и безопасность тройной терапии (элексакафтор / тезакафтор / ивакафтор) у детей с муковисцидозом: 12-месячное наблюдение. Пульмонология. 2024;34(2):218-224. doi:10.18093/0869-0189-2024-34-2-218-224.; Поляков Д.П., Погодина А.А., Кондратьева Е.И. и др. Влияние таргетной терапии муковисцидоза на течение хронического риносинусита у ребенка: первый российский опыт. Российская оториноларингология. 2023;22(3):86–92. doi:10.18692/1810-4800-2023-3-86-92.; Keating C., Yonker L.M., Vermeulen F. et al. Vanzacaftor–tezacaftor– deutivacaftor versus elexacaftor–tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00411-9.; Hoppe J.E., Ajay S Kasi, Pittman J.E. et al. Vanzacaftor–tezacaftor– deutivacaftor for children aged 6–11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): an analysis from a single-arm, phase 3 trial. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00407-7.; https://www.medarhive.ru/jour/article/view/2045
-
5Academic Journal
Συγγραφείς: Kirakosyan, Svetlana, Киракосян, Светлана, Կիրակոսյան, Սվետլանա
Πηγή: State and Law; Vol. 99 No. 2 (2024): State and Law; 5-19 ; Պետություն և իրավունք; Հտ․ 99 Հմր․ 2 (2024): Պետություն և իրավունք; 5-19 ; Պետություն և իրավունք; Հտ․ 99 Հմր․ 2 (2024): State and Law; 5-19 ; Государство и право; Том 99 № 2 (2024): Государство и право; 5-19 ; 2738-2508 ; 1829-023X ; 10.46991/SL/2024.99
Θεματικοί όροι: genetic engineering, gene therapy, genetic enhancement, prevention, somatic cell editing, germline genome editing, best interest of the child, human genome editing, գենետիկ ինժեներիա, մարդու գեների փոփոխություններ, գենաբուժություն, գենային բարելավում, կանխարգելում, սոմատիկ բջիջների փոփոխություն, վերարտադրողական բջիջների փոփոխություն, երեխայի լավագույն շահ, Генная инженерия, модификация генов человека, генная терапия, генетическое улучшение, профилактика, изменение соматических клеток, изменение репродуктивных клеток, наилучшие интересы ребенка
Περιγραφή αρχείου: application/pdf
-
6Academic Journal
Συγγραφείς: T N. Kireeva, D. I. Zhigalina, N. A. Skryabin, Т. Н. Киреева, Д. И. Жигалина, Н. А. Скрябин
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 279-289 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 279-289 ; 2500-3259 ; 10.18699/vjgb-25-20
Θεματικοί όροι: CRISPR/Cas9, CFTR, CFTR mutations, CFTR modulators, gene therapy, genome editing, ген CFTR, мутации CFTR, модуляторы CFTR, генная терапия, геномное редактирование
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4547/1935; Alton E.W.F.W., Armstrong D.K., Ashby D., Bayfield K.J., Bilton D., Bloomfield E.V., Boyd A.C., … Waller M.D., Wasowicz M.Y., Wilson J.M., Wolstenholme-Hogg P., UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3(9):684-691. doi 10.1016/S2213-2600(15)00245-3; Amelina E.L., Krasovskiy S.A., Usacheva M.V., Krylova N.A. Pathogenic treatment of cystic fibrosis: the first clinical case in Russia. Pulmonologiya = Russian Pulmonology. 2017;27(2):298-301. doi 10.18093/0869-0189-2017-27-2-298-301 (in Russian); Amelina E.L., Krasovskiy S.A., Shumkova G.L., Krylova N.A. Тargeted therapy for CF patients with F508del/F508del genotype. Pulmonologiya = Russian Pulmonology. 2019;29(2):235-238. doi 10.18093/0869-0189-2019-29-2-235-238 (in Russian); Bell S.C., Mall M.A., Gutierrez H., Macek M., Madge S., Davies J.C., Burgel P.R., … Southern K.W., Sivam S., Stephenson A.L., Zampoli M., Ratjen F. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8(1):65-124. doi 10.1016/S22132600(19)30337-6; Bengtson C., Silswal N., Baumlin N., Yoshida M., Dennis J., Yerrathota S., Kim M., Salathe M. The CFTR amplifier nesolicaftor rescues TGF-β1 inhibition of modulator-corrected F508del CFTR function. Int J Mol Sci. 2022;23(18):10956. doi 10.3390/ijms231810956; Bessonova L., Volkova N., Higgins M., Bengtsson L., Tian S., Simard C., Konstan M.W., Sawicki G.S., Sewall A., Nyangoma S., Elbert A., Marshall B.C., Bilton D. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73(8):731-740. doi 10.1136/thoraxjnl-2017-210394; Boyle M.P., Bell S.C., Konstan M.W., McColley S.A., Rowe S.M., Rietschel E., Huang X., Waltz D., Patel N.R., Rodman D.; VX09809-102 study group. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527-538. doi 10.1016/S2213-2600(14)70132-8; Cao H., Ouyang H., Laselva O., Bartlett C., Zhou Z.P., Duan C., Gunawardena T., Avolio J., Bear C.E., Gonska T., Hu J., Moraes T.J. A helper-dependent adenoviral vector rescues CFTR to wildtype functional levels in cystic fibrosis epithelial cells harbouring class I mutations. Eur Respir J. 2020;56(5):2000205. doi 10.1183/13993003.00205-2020; Dechecchi M.C., Tamanini A., Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. Ann Transl Med. 2018;6(17):334. doi 10.21037/atm.2018.06.48; Egan M.E. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol. 2021;56(1):32-39. doi 10.1002/ppul.2496; Elborn J.S. Cystic fibrosis. Lancet. 2016;388(10059):2519-2531. doi 10.1016/S0140-6736(16)00576-6; Fanen P., Wohlhuter-Haddad A., Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 2014;52:94-102. doi 10.1016/j.biocel.2014.02.023; Flume P.A., Liou T.G., Borowitz D.S., Li H., Yen K., Ordoñez C.L., Geller D.E.; VX 08-770-104 Study Group. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718-724. doi 10.1378/chest.11-2672; Gembitskaya T.E., Chermensky A.G., Boytsova E.P. Cystic fibrosis today: progress and problems, promises of etiopathogenetic therapy. Vrach = The Doctor. 2012;2:5-8 (in Russian); Ginter E.K. Gene therapy of hereditary diseases. Voprosy Meditsinskoi Khimii. 2000;46(3):264-278 (in Russian); Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2015;18(3):50-53 (in Russian); Hanssens L.S., Duchateau J., Casimir G.J. CFTR protein: not just a chloride channel? Cells. 2021;10(11):2844. doi 10.3390/cells10112844; Holkers M., Maggio I., Liu J., Janssen J.M., Miselli F., Mussolino C., Recchia A., Cathomen T., Gonçalves M.A. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5):e63. doi 10.1093/nar/gks1446; Kashirskaya N.Yu., Kapranov N.I. Experience in the treatment of exocrine pancreatic insufficiency in cystic fibrosis in Russia. Russ Med J. 2011;19(7):476-484 (in Russian); Kashirskaya N.Yu., Kapranov N.I. Modern pharmacotherapeutic approaches to the treatment of cystic fibrosis. Farmateka. 2014; 3(276):38-43 (in Russian); Keating D., Marigowda G., Burr L., Daines C., Mall M.A., McKone E.F., Ramsey B.W., Rowe S.M., Sass L.A., Tullis E., McKee C.M., Moskowitz S.M., Robertson S., Savage J., Simard C., Van Goor F., Waltz D., Xuan F., Young T., Taylor-Cousar J.L.; VX16-445-001 Study Group. VX-445 – Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1612-1620. doi 10.1056/NEJMoa1807120; Kerem E., Konstan M.W., De Boeck K., Accurso F.J., Sermet-Gaudelus I., Wilschanski M., Elborn J.S., Melotti P., Bronsveld I., Fajac I., Malfroot A., Rosenbluth D.B., Walker P.A., McColley S.A., Knoop C., Quattrucci S., Rietschel E., Zeitlin P.L., Barth J., Elfring G.L., Welch E.M., Branstrom A., Spiegel R.J., Peltz S.W., Ajayi T., Rowe S.M.; Cystic Fibrosis Ataluren Study Group. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2(7):539-547. doi 10.1016/S2213-2600(14)70100-6; Koehler D.R., Sajjan U., Chow Y.H., Martin B., Kent G., TanswellA.K., McKerlie C., Forstner J.F., Hu J. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci USA. 2003; 100(26):15364-15369. doi 10.1073/pnas.2436478100; Kondratieva E.I., Kashirskaya N.Yu., Kapranov N.I. (Eds.) Cystic Fibrosis: Definition, Diagnostic Criteria, Therapy. Moscow: BORGES Company Publ., 2018 (in Russian); Krasnova M.G., Melianovskaya Y.L., Krasovskiy S.A., Bulatenko N.V., Efremova A.S., Bukharova T.B., Goldshtein D.V. Description of the clinical picture and assessment of functional activity of the CFTR channel in a patient with a complex allele [S466X; R1070Q]. Pulmonologiya = Russ Pulmonology J. 2023;33(2):233-242. doi 10.18093/0869-0189-2023-33-2-233-242 (in Russian); Krasnovidova A.E., Simonova O.I., Chernevich V.P., Pakhomov A.V., Reykh A.P., Pushkov A.A. Genotype-phenotype correlation in siblings with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2023;26(3):159-167. doi 10.46563/1560-9561-2023-263-159-167 (in Russian); Lee J.A., Cho A., Huang E.N., Xu Y., Quach H., Hu J., Wong A.P. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med. 2021;19(1):452. doi 10.1186/s12967-021-03099-4; Lomunova M.A., Gershovich P.M. Gene therapy for fibrosis: recent advances and future prospects. Acta Naturae. 2023;15(2):20-31. doi 10.32607/actanaturae.11708; Maule G., Arosio D., Cereseto A. Gene therapy for cystic fibrosis: progress and challenges of genome editing. Int J Mol Sci. 2020;21(11): 3903. doi 10.3390/ijms21113903; Moran O. On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol. 2014;52:7-14. doi 10.1016/j.biocel.2014.01.024; Olveira C., Padilla A., Dorado A., Contreras V., Garcia-Fuentes E., Rubio-Martin E., Porras N., Doña E., Carmona A., Olveira G. Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med. 2017;49(2):118-123. doi 10.5152/eurasianjmed.2017.17010; OMIM.org [Internet]. Online Mendelian Inheritance in Man®. [cited 2023 Aug 28]. Available from: https://www.omim.org/; Piehler L., Thalemann R., Lehmann C., Thee S., Röhmel J., Syunyaeva Z., Stahl M., Mall M.A., Graeber S.Y. Effects of elexacaftor/ tezacaftor/ivacaftor therapy on mental health of patients with cystic fibrosis. Front Pharmacol. 2023;14:1179208. doi 10.3389/fphar.2023.1179208; Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84-92. doi 10.1186/s12967-017-1193-9; Ren H.Y., Grove D.E., De La Rosa O., Houck S.A., Sopha P., Van Goor F., Hoffman B.J., Cyr D.M. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell. 2013;24(19):3016-3024. doi 10.1091/mbc.E13-05-0240; Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., Zsiga M., Buchwald M., Tsui L.-C., Riordan J.R., Collins F.S. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 2006;245(4922):1059-1065. doi 10.1126/science.2772657; Sherman V.D., Kapranov N.I., Kashirskaya N.Yu. Dornase alpha (Pulmozyme) for the complex treatment of bronchopulmonary process in cystic fibrosis patients. Farmateka. 2011;11(224):42-45 (in Russian); Simonova O.I., Gorinova Yu.V., Chernevich V.P. Cystic fibrosis: a breakthrough in 21st-century therapy. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2020;23(1):35-41. doi 10.18821/15609561-2020-23-1-35-41 (in Russian); Smirnikhina S.A., Lavrov V.A. Modern pathogenesis-based methods and development of new gene and cell-based methods for cystic fibrosis treatment. Genes Cells. 2018;13(3):23-31. doi 10.23868/201811029 (in Russian); Smirnikhina S.A., Kondratyeva E.V., Anuchina A.A., Zaynitdinova M.I., Lavrov A.V. Modeling of cystic fibrosis in HEK293T cell culture and development of a method for the correction of F508del mutation. Medicinskij Vestnik Severnogo Kavkaza = Medical News of North Caucasus. 2020;15(2):158-162. doi 10.14300/mnnc.2020.15038 (in Russian); Spielberg D.R., Clancy J.P. Cystic fibrosis and its management through established and emerging therapies. Annu Rev Genomics Hum Genet. 2016;17:155-175. doi 10.1146/annurev-genom-090314-050024; Sui H., Xu X., Su Y., Gong Z., Yao M., Liu X., Zhang T., Jiang Z., Bai T., Wang J., Zhang J., Xu C., Luo M. Gene therapy for cystic fibrosis: challenges and prospects. Front Pharmacol. 2022;13:1015926. doi 10.3389/fphar.2022.1015926; Suzuki S., Crane A.M., Anirudhan V., Barillà C., Matthias N., Randell S.H., Rab A., Sorscher E.J., Kerschner J.L., Yin S., Harris A., Mendel M., Kim K., Zhang L., Conway A., Davis B.R. Highly efficient gene editing of cystic fibrosis patient-derived airway basal cells results in functional CFTR correction. Mol Ther. 2020;28(7): 1684-1695. doi 10.1016/j.ymthe.2020.04.021; Taylor-Cousar J.L., Munck A., McKone E.F., van der Ent C.K., Moeller A., Simard C., Wang L.T., Ingenito E.P., McKee C., Lu Y., Lekstrom-Himes J., Elborn J.S. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017; 377(21):2013-2023. doi 10.1056/NEJMoa1709846; Van Goor F., Straley K.S., Cao D., González J., Hadida S., Hazlewood A., Joubran J., Knapp T., Makings L.R., Miller M., Neuberger T., Olson E., Panchenko V., Rader J., Singh A., Stack J.H., Tung R., Grootenhuis P.D., Negulescu P. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117-L1130. doi 10.1152/ajplung.00169.2005; Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Cao D., Neuberger T., Turnbull A., Singh A., Joubran J., Hazlewood A., Zhou J., McCartney J., Arumugam V., Decker C., Yang J., Young C., Olson E.R., Wine J.J., Frizzell R.A., Ashlock M., Negulescu P. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA. 2009;106(44):18825-18830. doi 10.1073/pnas.0904709106; Wainwright C.E., Elborn J.S., Ramsey B.W., Marigowda G., Huang X., Cipolli M., Colombo C., Davies J.C., De Boeck K., Flume P.A., Konstan M.W., McColley S.A., McCoy K., McKone E.F., Munck A., Ratjen F., Rowe S.M., Waltz D., Boyle M.P.; TRAFFIC Study Group; TRANSPORT Study Group. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(18):1783-1784. doi 10.1056/NEJMc1510466; Wang G. Genome editing for cystic fibrosis. Cells. 2023;12(12):1555. doi 10.3390/cells12121555; Xia E., Zhang Y., Cao H., Li J., Duan R., Hu J. TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes (Basel). 2019; 10(1):39. doi 10.3390/genes10010039; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017;18(13):1363-1371. doi 10.1080/14656566.2017.1359255; https://vavilov.elpub.ru/jour/article/view/4547
-
7Academic Journal
Συγγραφείς: V. V. Shmarin, A. A. Vasilenko, V. V. Zarubina, T. I. Bocharova, E. Yu. Zakharova, В. В. Шмарин, А. А. Василенко, В. В. Зарубина, Т. И. Бочарова, Е. Ю. Захарова
Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ для ФГБНУ МГНЦ.
Πηγή: Medical Genetics; Том 24, № 1 (2025); 3-12 ; Медицинская генетика; Том 24, № 1 (2025); 3-12 ; 2073-7998
Θεματικοί όροι: генная терапия, lysosomal storage disease, gene therapy, лизосомные болезни накопления, лизосфинголипиды, ферментная заместительная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2599/1842; Geberhiwot T., Wasserstein M., Wanninayake S. et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85.; Zampieri S., Filocamo M., Pianta A. et al. SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants: HUMAN MUTATION. Human Mutation. 2016;37(2):139–47.; Hollak C.E.M., De Sonnaville E.S.V., Cassiman D. et al. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: Disease spectrum and natural course in attenuated patients. Molecular Genetics and Metabolism. 2012;107(3):526–33.; Wasserstein M.P., Desnick R.J., Schuchman E.H. et al. The Natural History of Type B Niemann-Pick Disease: Results From a 10-Year Longitudinal Study. Pediatrics. 2004;114(6):e672–7.; McGovern M.M., Aron A., Brodie S.E. et al. Natural history of Type A Niemann-Pick disease: Possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–32.; Wasserstein M.P., Aron A., Brodie S.E. et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J Pediatr. 2006;149(4):554–9.; McGovern M.M., Dionisi-Vici C., Giugliani R. et al. Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genetics in Medicine. 2017;19(9):967–74.; Cassiman D., Packman S., Bembi B. et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): Literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–13.; Wasserstein M., Godbold J., McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–7.; McGovern M.M., Wasserstein M.P., Giugliani R. et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122(2):e341-349.; Thurberg B.L., Wasserstein M.P., Schiano T. et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann-Pick disease type B). Am J Surg Pathol. 2012;36(8):1234–46.; Mendelson D.S., Wasserstein M.P., Desnick R.J. et al. Type B Niemann-Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology. 2006;238(1):339–45.; Pavlů‐Pereira H., Asfaw B., Poupčtova H. et al. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty‐five Czech and Slovak patients. A multi‐approach study. J of Inher Metab Disea. 2005;28(2):203–27.; Quinn P.J. Sphingolipid symmetry governs membrane lipid raft structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2014;1838(7):1922–30.; Podbielska M., Ariga T., Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. IJMS. 2022;23(10):5330.; Kirkegaard T., Roth A.G., Petersen N.H.T. et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.; Schuchman E.H., Desnick R.J. Types A and B Niemann-Pick disease. Molecular Genetics and Metabolism. 2017;120(1–2):27–33.; Buccinna B., Piccinini M., Prinetti A. et al. Alterations of myelinspecific proteins and sphingolipids characterize the brains of acid sphingomyelinase‐deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry. 2009;109(1):105–15.; Kinnunen P. Sphingomyelinase Activity of LDL A Link between Atherosclerosis, Ceramide, and Apoptosis? Trends in Cardiovascular Medicine. 2002;12(1):37–42.; Charruyer A., Grazide S., Bezombes C. et al. UV-C Light Induces Raft-associated Acid Sphingomyelinase and JNK Activation and Translocation Independently on a Nuclear Signal. Journal of Biological Chemistry. 2005;280(19):19196–204.; Kornhuber J., Muller C.P., Becker K.A. et al. The ceramide system as a novel antidepressant target. Trends in Pharmacological Sciences. 2014;35(6):293–304.; Da Veiga Pereira L., Desnick R.J., Adler D.A. et al.Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1→p15.4. Genomics. 1991;9(2):229–34.; Mihaylova V., Hantke J., Sinigerska I. et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain. 2006;130(4):1050–61.; Simonaro C.M., Desnick R.J., McGovern M.M. et al. The Demographics and Distribution of Type B Niemann-Pick Disease: Novel Mutations Lead to New Genotype/Phenotype Correlations. The American Journal of Human Genetics. 2002;71(6):1413–9.; Ferlinz K., Hurwitz R., Vielhaber G. et al. Occurrence of two molecular forms of human acid sphingomyelinase. Biochemical Journal. 1994;301(3):855–62.; McGovern M.M., Pohl-Worgall T., Deckelbaum R.J. et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81.; Wang R., Qin Z., Huang L. et al. SMPD1 expression profile and mutation landscape help decipher genotype–phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023;160(1):11.; Dardis A., Zampieri S., Filocamo M. et al. Functionalin vitro characterization of 14SMPD1 mutations identified in Italian patients affected by Niemann Pick Type B disease. Hum Mutat. 2005;26(2):164–164.; Pittis M.G., Ricci V., Guerci V.I. et al. Acid sphingomyelinase: Identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon: MUTATIONS IN BRIEF. Hum Mutat. 2004;24(2):186–7.; Jones I., He X., Katouzian F., Darroch P.I., Schuchman E.H. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab. 2008;95(3):152–62.; Simonaro C.M., Park J.H., Eliyahu E. et al. Imprinting at the SMPD1 Locus: Implications for Acid Sphingomyelinase–Deficient Niemann-Pick Disease. The American Journal of Human Genetics. 2006;78(5):865–70.; Oliva P., Schwarz M., Mechtler T.P. et al. Importance to include differential diagnostics for acid sphingomyelinase deficiency (ASMD) in patients suspected to have to Gaucher disease. Molecular Genetics and Metabolism. 2023;139(1):107563.; Piraud M., Pettazzoni M., Lavoie P. et al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J of Inher Metab Disea. 2018;41(3):457–77.; Kuchar L., Sikora J., Gulinello M.E. et al. Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases. Anal Biochem. 2017; 525: 73-77.; Voorink-Moret M., Goorden S.M.I., Van Kuilenburg A.B.P. et al. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Molecular Genetics and Metabolism. 2018;123(2):76–84.; Breilyn M.S., Zhang W., Yu C., Wasserstein M.P. Plasma lyso-sphingomyelin levels are positively associated with clinical severity in acid sphingomyelinase deficiency. Mol Genet Metab Rep. 2021;28:100780.; Diaz G.A., Jones S.A., Scarpa M. et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet Med. 2021;23(8):1543–50.; Wasserstein M., Lachmann R., Hollak C. et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genetics in Medicine. 2022;24(7):1425–36.; Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–92.; Boot R.G., Renkema G.H., Verhoek M. et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273(40):25680–5.; Porter F.D., Scherrer D.E., Lanier M.H. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):56ra81.; Romanello M., Zampieri S., Bortolotti N. et al. Comprehensive Evaluation of Plasma 7-Ketocholesterol and Cholestan-3β,5α,6β-Triol in an Italian Cohort of Patients Affected by Niemann-Pick Disease due to NPC1 and SMPD1 Mutations. Clin Chim Acta. 2016;455:39–45.; Di Rocco M., Vici C.D., Burlina A. et al. Screening for lysosomal diseases in a selected pediatric population: the case of Gaucher disease and acid sphingomyelinase deficiency. Orphanet J Rare Dis. 2023;18(1):197.; Hickey R.E, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center’s experience. J of Inher Metab Disea. J Inherit Metab Dis. 2024;47(6):1363-1370.; McGovern M.M., Wasserstein M.P., Kirmse B. et al. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann–Pick disease type B (acid sphingomyelinase deficiency). Genetics in Medicine. 2016;18(1):34–40.; Wasserstein M.P., Jones S.A., Soran H. et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab. 2015;116(1–2):88–97.; O’Neill R.S., Belousova N., Malouf M.A. Pulmonary Type B Niemann-Pick Disease Successfully Treated with Lung Transplantation. Case Reports in Transplantation. 2019;2019:1–5.; Mannem H., Kilbourne S., Weder M. Lung transplantation in a patient with Niemann–Pick disease. The Journal of Heart and Lung Transplantation. 2019;38(1):100–1.; Uyan Z.S., Karadağ B., Ersu R. et al. Early pulmonary involvement in Niemann‐Pick type B disease: Lung lavage is not useful. Pediatric Pulmonology. 2005;40(2):169–72.; Nicholson A.G., Wells A.U., Hooper J. et al. Successful Treatment of Endogenous Lipoid Pneumonia due to Niemann–Pick Type B Disease with Whole-Lung Lavage. Am J Respir Crit Care Med. 2002;165(1):128–31.; Jin H.K., Carter J.E., Huntley G.W., Schuchman E.H. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002;109(9):1183–91.; Barbon C.M., Ziegler R.J., Li C. et al. AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann-Pick disease. Mol Ther. 2005;12(3):431–40.; Miranda S.R., Erlich S., Friedrich V.L. et al. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther. 2000;7(20):1768–76.; Samaranch L., Perez-Canamas A., Soto-Huelin B. et al. Adeno-associated viral vector serotype 9–based gene therapy for Niemann-Pick disease type A. Sci Transl Med. 2019;11(506):eaat3738.; Beretta G., Shala A.L. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Annals of Neurosciences. 2022;29(1):71–82.
-
8Academic Journal
Πηγή: JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH; Vol. 4 No. 3 (2025): Journal of Healthcare and Life-Science Research; 190-193
Θεματικοί όροι: генная терапия, иммунотерапия, лапароскопия, модификация, искусственный интеллект, терапия, панкреатит
Περιγραφή αρχείου: application/pdf
-
9Academic Journal
Θεματικοί όροι: искусственный интеллект, компьютерное зрение, технологии будущего, симуляторы, клеточные технологии, генная терапия, облачный гейминг
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/68305
-
10Academic Journal
Συγγραφείς: Ekin Begum Karahan, Guvenc Kockaya
Πηγή: Health Economics and Management Review, Vol 3, Iss 4, Pp 15-22 (2022)
Θεματικοί όροι: H1-99, лікарські засоби прогресивної терапії, Medicine (General), регенеративная медицина, cell-based therapy, доступ до ринку, gene therapies, market access, клітинна терапія, regenerative medicine, advanced therapy medicinal products, генная терапия, 3. Good health, Social sciences (General), генна терапія, клеточная терапия, 03 medical and health sciences, R5-920, 0302 clinical medicine, регенеративна медицина, лекарственные средства прогрессивной терапии, доступ к рынку, 0305 other medical science
Περιγραφή αρχείου: application/pdf
-
11Academic Journal
Συγγραφείς: Pichugin А.А., Kovyazina R.R., Trondin А., Alekseev А.G., Kopnin P.B., Gessel T.V., Boichuk S.V.
Συνεισφορές: The work was supported by the Russian Science Foundation (grant No. 25-25-00391)., Работа выполнена при поддержке Российского научного фонда (грант № 25-25-00391).
Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 23-40 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 23-40 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: glioma, glioblastoma, brain tumor, targeted therapy, immunotherapy, cytokine therapy, gene therapy, глиома, глиобластома, опухоль головного мозга, таргетная терапия, иммунотерапия, цитокинотерапия, генная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/727/369; https://umo.abvpress.ru/jour/article/view/727
-
12Academic Journal
Συγγραφείς: Kirakosyan, Svetlana
Πηγή: State and Law; Vol. 98 No. 1 (2024): State and Law; 5-12 ; Պետություն և իրավունք; Vol. 98 No. 1 (2024): Պետություն և իրավունք; 5-12 ; Պետություն և իրավունք; Vol. 98 No. 1 (2024): State and Law; 5-12 ; Государство и право; Том 98 № 1 (2024): Государство и право; 5-12 ; 2738-2508 ; 1829-023X ; 10.46991/https://doi.org/10.46991/SL/2024.98
Θεματικοί όροι: genetic engineering, human genom editing, germline genome editing, genetic enhancement, gene therapy, somatic cell editing, prevention, Генная инженерия, модификация генов человека, генная терапия, генетическое улучшение, профилактика, изменение соматических клеток, изменение репродуктивных клеток, կանխարգելում, սոմատիկ բջիջների փոփոխություն, վերարտադրողական բջիջների փոփոխություն, երեխայի լավագույն շահ։, մարդու գեների փոփոխություններ, գենետիկ ինժեներիա, գենաբուժություն, գենային բարելավում
Περιγραφή αρχείου: application/pdf
-
13Academic Journal
Συγγραφείς: Yulia M. Gomon, Alexey S. Kolbin, Ю. М. Гомон, А. С. Колбин
Συνεισφορές: Not specified., Отсутствует.
Πηγή: Current Pediatrics; Том 23, № 1 (2024); 34-47 ; Вопросы современной педиатрии; Том 23, № 1 (2024); 34-47 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: регистрация, gene therapy, cell therapy, registration, генная терапия, клеточная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3398/1359; Harding SD, Armstrong JF, Faccenda E, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2024. Nucleic Acids Res. 2024;52(D1): D1438–D1449. doi: https://doi.org/10.1093/nar/gkad944; Clinical Pharmacology. Scope, Organisation, Training. Report of a WHO Study group. World Health Organ Tech Rep Ser. 1970;446:5–21.; CIOMS Cumulative glossary with a focus on pharmacovigilance. Geneva, Switzerland: Council for International Organizations of Medical Sciences (CIOMS); 2022. doi: https://doi.org/10.56759/ocef1297; Вербицкая Е.В., Белоусов Д.Ю., Колбин А.С. Доказательная медицина: новое в поиске доказательств // Качественная клиническая практика. — 2023. — № 3. — С. 15–28. — doi: https://doi.org/10.37489/2588-0519-2023-3-15-28; Fraterman S, Xie W, Wu C, et al. New drug modalities offer promise and Peril. 2023. Available online: https://www.bcg.com/publications/2023/benefits-and-risks-of-new-drug-modalities. Accessed on January 01, 2024.; Choi Y, Vinks AA, van der Graaf PH. Novel Therapeutic Modalities: The Future is Now. Clin Pharmacol Ther. 2023;114(3):493–496. doi: https://doi.org/10.1002/cpt.2996; Pizevska M, Kaeda J, Fritsche E, et al. Advanced therapy medicinal products’ translation in Europe: a developers’ perspective. Front Med. 2022;9:757647. doi: https://doi.org/10.3389/fmed.2022.757647; Garrison L, Jackson T, Paul D, Kenston M. Value-based pricing for emerging gene therapies: the economic case for a higher cost-effectiveness threshold. J Manag Care Spec Pharm. 2019;25(7): 793–799. doi: https://doi.org/10.18553/jmcp.2019.18378; Lakdawalla DN, Phelps CE. Evaluation of medical technologies with uncertain benefits. National Bureau of Economic Research. July 11, 2019. Available online: https://www.nber.org/papers/w26058. Accessed on January 27, 2024.; Association of the British Pharmaceutical Industry (ABPI). Advanced therapy medicinal products (ATMPs). Available online: https://www.abpi.org.uk/value-and-access/advanced-therapymedicinal-products-atmps. Accessed on January 01, 2024.; European Medicines Agency. Reflection paper on classification of advanced therapy medicinal products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-classification-advanced-therapy-medicinalproducts_en-0.pdf. Accessed on January 01, 2024.; U.S. Food and Drug Administration (FDA). Code of Federal Regulation. Title 21: Food and drugs. Chapter I: Food and Drug Administration. Subchapter L: Regulations under certain other acts administered by the Food and Drug Administration. Part 1271: Human cells, tissues, and cellular and tissue-based products. Subpart A: General Provisions. Section 1271.3: How does FDA define important terms in this part? Oct 17, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=1271.3. Accessed on January 27, 2024.; U.S. Department of Health and Human Services, Food and Drug Administration. Part II. Application of current statutory authorities to human somatic cell therapy products and gene therapy products; Notice. Federal Register. 1993;58(179):53248–53251. Available online: https://www.fda.gov/media/76647/download. Accessed on January 27, 2024.; BioProcess International. Transforming personalized medicine into off-the-shelf cell therapies. Available online: https://bioprocessintl.com/sponsored-content/allogeneic-cell-therapytransforming-personalized-medicine-into-off-the-shelf-celltherapies. Accessed on January 01, 2024.; Федеральный закон от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств». Доступно по: https://base.garant.ru/12174909. Ссылка активна на 01.01.2024.; Федеральный закон от 05 июня 1996 г. № 86-ФЗ «О государственном регулировании в области генно-инженерной деятельности» Доступно по: https://base.garant.ru/10135402. Ссылка активна на 01.01.2024.; Федеральный закон от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах». Доступно по: https://base.garant.ru/71427992. Ссылка активна на 01.01.2024.; Решение Совета Евразийской экономической комиссии от 3 ноября 2016 г. № 78 «О Правилах регистрации и экспертизы лекарственных средств для медицинского применения» (с изменениями на 24 ноября 2023 г.). Доступно по: https://docs.cntd.ru/document/456026097. Ссылка активна на 27.01.2024.; KEGG. New Drug Approvals in Europe. Available online: https://www.genome.jp/kegg/drug/br08329.html#2. Accessed on September 22, 2023.; KEGG. New Drug Approvals in the USA. Available online: https://www.genome.jp/kegg/drug/br08319.html. Accessed on September 22, 2023.; KEGG. New Drug Approvals in Japan. Available online: https://www.genome.jp/kegg/drug/br08318.html#2. Accessed on September 22, 2023.; Wilkins GC, Lanyi K, Inskip A, et al. A pipeline analysis of advanced therapy medicinal products. Drug Discov Today. 2023;28(5): 103549. doi: https://doi.org/10.1016/j.drudis.2023.103549; European Medicines Agency. Holoclar. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/holoclar. Accessed on September 22, 2023.; European Medicines Agency. Strimvelis. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/strimvelis. Accessed on September 22, 2023.; Goula A, Gkioka V, Michalopoulos E, et al. Advanced therapy medicinal products challenges and perspectives in regenerative medicine. J Clin Med Res. 2020;12(12):780–786. doi: https://doi.org/10.14740/jocmr3964; Rejon-Parrilla JC, Espin J, Garner S, et al. Pricing and reimbursement mechanisms for advanced therapy medicinal products in 20 countries. Front Pharmacol. 2023;14:1199500. doi: https://doi.org/10.3389/fphar.2023.1199500; Aguilera-Cobos L, Rosario-Lozano MP, Ponce-Polo A, et al. Barriers for the evaluation of advanced therapy medicines and their translation to clinical practice: Umbrella review. Health Policy. 2022;126(12):1248–1255. doi: https://doi.org/10.1016/j.healthpol.2022.10.007; Meng J, Wu X, Sun Z, et al. Efficacy and Safety of CAR-T Cell Products Axicabtagene Ciloleucel, Tisagenlecleucel, and Lisocabtagene Maraleucel for the Treatment of Hematologic Malignancies: A Systematic Review and Meta-Analysis. Front Oncol. 2021;11:698607. doi: https://doi.org/10.3389/fonc.2021.698607; Roth TL, Marson A. Genetic Disease and Therapy. Annu Rev Pathol. 2021;16:145–166. doi: https://doi.org/10.1146/annurevpathmechdis-012419-032626; Olowoyeye A, Okwundu CI. Gene therapy for sickle cell disease. Cochrane Database Syst Rev. 2020;11(11):CD007652. doi: https://doi.org/10.1002/14651858.CD007652.pub7; Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci. 2020;21(11):3903. doi: https://doi.org/10.3390/ijms21113903; Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules. 2021;11(8):1179. doi: https://doi.org/10.3390/biom11081179; Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021;104(4):444–454. doi: https://doi.org/10.1080/08164622.2021.1880863; Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet. 2019;28(R1):R31–R41. doi: https://doi.org/10.1093/hmg/ddz133; Wiedemann A, Oussalah A, Jeannesson É, et al. Phenylketonuria, from diet to gene therapy. Med Sci (Paris). 2020;36(8-9):725–734. doi: https://doi.org/10.1051/medsci/2020127; Noone AM, Howlader N, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2015. National Cancer Institute; 2018. Available online: https://seer.cancer.gov/csr/1975_2015. Accessed on January 27, 2024.; Novartis Pharmaceuticals Corporation. Package insert — Kymriah® (tisagenlecleucel). Novartis Pharmaceuticals Corporation; 2018. Available online: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM573941.pdf. Accessed on January 27, 2024.; Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: https://doi.org/10.1056/NEJMoa1709866; Lamble AJ, Myers RM, Taraseviciute A, et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023;7(4):575–585. doi: https://doi.org/10.1182/bloodadvances.2022007423; Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol. 2020;38(17):1938–1950. doi: https://doi.org/10.1200/JCO.19.03279; Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi: https://doi.org/10.1038/nm.4441; Talleur AC, Naik S, Gottschalk S. Preventing relapse after CD19 CAR T-cell therapy for pediatric ALL: the role of transplant and enhanced CAR T cells. Hematology Am Soc Hematol Educ Program. 2023;2023(1):91–96. doi: https://doi.org/10.1182/hematology.2023000424; Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–1805. doi: https://doi.org/10.1038/s41591-021-01497-1; Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–1683. doi: https://doi.org/10.1200/jco.22.01214; Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol. 2021;32(1):34–48. doi: https://doi.org/10.1016/j.annonc.2020.10.478; Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: https://doi.org/10.3324/haematol.2019.229781; Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. doi: https://doi.org/10.1038/s41571-018-0075-2; Epperly R, Shah NN. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. Hematology Am Soc Hematol Educ Program. 2023;2023(1):77–83. doi: https://doi.org/10.1182/hematology.2023000422; Dagar G, Gupta A, Masoodi T, et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med. 2023;21(1):449. doi: https://doi.org/10.1186/s12967-023-04292-3; MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol. 2019;197(1): 52–63. doi: https://doi.org/10.1111/cei.13297; Aijaz A, Li M, Smith D, et al. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng. 2018;2(6):362–376. doi: https://doi.org/10.1038/s41551-018-0246-6; Morgan MA, Büning H, Sauer M, Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells. Front Immunol. 2020;11:1965. doi: https://doi.org/10.3389/fimmu.2020.01965; Lulla PD, Brenner M. Emerging Challenges to Cellular Therapy of Cancer. Cancer J. 2023;29(1):20–27. doi: https://doi.org/10.1097/PPO.0000000000000637; Scherer LD, Brenner MK, Mamonkin M. Chimeric antigen receptors for T-cell malignancies. Front Oncol. 2019;9:126. doi: https://doi.org/10.3389/fonc.2019.00126; Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983–992. doi: https://doi.org/10.1182/blood-2015-02-629527; Pan J, Tan Y, Wang G, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–3351. doi: https://doi.org/10.1200/JCO.21.00389; Li S, Wang X, Yuan Z, et al. Eradication of T-ALL cells by CD7- targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin Cancer Res. 2021;27(5):1242–1246. doi: https://doi.org/10.1158/1078-0432.CCR-20-1271; Pearson AD, Rossig C, Mackall C, et al. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer. 2022;160: 112–133. doi: https://doi.org/10.1016/j.ejca.2021.10.016; Hensel J, Metts J, Gupta A, et al. Adoptive Cellular Therapy for Pediatric Solid Tumors: Beyond Chimeric Antigen Receptor-T Cell Therapy. Cancer J. 2022;28(4):322–327. doi: https://doi.org/10.1097/PPO.0000000000000603; Martinez DR, Permar SR, Fouda GG. Contrasting adult and infant immune responses to HIV infection and vaccination. Clin Vaccine Immunol. 2015;23(2):84–94. doi: https://doi.org/10.1128/CVI.00565-15; Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085; Rahal Z, Abdulhai F, Kadara H, et al. Genomics of adult and pediatric solid tumors. Am J Cancer Res. 2018;8(8):1356–1386.; Casey DL, Cheung NV. Immunotherapy of pediatric solid tumors: treatments at a crossroads, with an emphasis on antibodies. Cancer Immunol Res. 2020;8(2):161–166. doi: https://doi.org/10.1158/2326-6066.CIR-19-0692; Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37(3):208–220. doi: https://doi.org/10.1016/j.it.2016.01.004; Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol. 2023;14:1290762. doi: https://doi.org/10.3389/fimmu.2023.1290762; DeRenzo C, Gottschalk S. Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Adv Exp Med Biol. 2020;1257:109–131. doi: https://doi.org/10.1007/978-3-030-43032-0_10; FDA News Release. FDA Approves First Cellular Therapy to Treat Patients with Type 1 Diabetes. Available online: https://www.fda.gov/news-events/press-announcements/fda-approvesfirst-cellular-therapy-treat-patients-type-1-diabetes. Accessed on January 01, 2024.; Loretelli C, Assi E, Seelam AJ, et al. Cell therapy for type 1 diabetes. Expert Opin Biol Ther. 2020;20(8):887–897. doi: https://doi.org/10.1080/14712598.2020.1748596; Izquierdo C, Ortiz AZ, Presa M, et al. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/antiIL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci Rep. 2018;8(1):8106. doi: https://doi.org/10.1038/s41598-018-26161-6; Penaforte-Saboia JG, Montenegro RM Jr, Couri CE, et al. Microvascular complications in Type 1 diabetes: a comparative analysis of patients treated with autologous nonmyeloablative hematopoietic stem-cell transplantation and conventional medical therapy. Front Endocrinol (Lausanne). 2017:8:331. doi: https://doi.org/10.3389/fendo.2017.00331; Phillips BE, Garciafigueroa Y, Engman C, et al. Tolerogenic dendritic cells and T-regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease; emphasis on Type 1 diabetes therapy. Front Immunol. 2019;10:148. doi: https://doi.org/10.3389/fimmu.2019.00148; D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–1541. doi: https://doi.org/10.1038/nbt1163; Shahjalal HM, Abdal Dayem A, Lim KM, et al. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther. 2018:9(1):355. doi: https://doi.org/10.1186/s13287-018-1099-3; Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022;13(1):264. doi: https://doi.org/10.1186/s13287-022-02941-w; Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–390.; Pelagiadis I, Dimitriou H, Kalmanti M. Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pedia Hematol Oncol. 2008;30(4):301–309. doi: https://doi.org/10.1097/MPH.0b013e31816356e3; Luk F, Carreras-Planella L, Korevaar SS, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol. 2017;8;1042. doi: https://doi.org/10.3389/fimmu.2017.01042; Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7):1729. doi: https://doi.org/10.3390/cells10071729; Dicker A, Le Blanc K, Aström G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308(2):283–290. doi: https://doi.org/10.1016/j.yexcr.2005.04.029; Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–374. doi: https://doi.org/10.1046/j.1365-2141.2003.04284.x; de Sá Silva F, Almeida PN, Rettore JV, et al. Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol. 2012;2012:758102. doi: https://doi.org/10.1155/2012/758102; Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–192. doi: https://doi.org/10.1634/stemcells.19-3-180; Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci. 2021;22(16):8906. doi: https://doi.org/10.3390/ijms22168906; Tong Y, Zuo J, Yue D. Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. Biomed Res Int. 2021;2021:9983664. doi: https://doi.org/10.1155/2021/9983664; Nguyen LT, Trieu TTH, Bui HTH, et al. Allogeneic administration of human umbilical cord-derived mesenchymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants. J Transl Med. 2020;18(1):398. doi: https://doi.org/10.1186/s12967-020-02568-6; Öktem A, Çelik HT, Yiğit Ş, Yurdakök M. The clinical and radiological course of bronchopulmonary dysplasia in twins treated with mesenchymal stem cells and followed up using lung ultrasonography. Turk Pediatri Ars. 2020;55(4):425–429. doi: https://doi.org/10.14744/TurkPediatriArs.2019.88785; Lin WY, Wu KH, Chen CY, et al. Stem Cell Therapy in Children with Traumatic Brain Injury. Int J Mol Sci. 2023;24(19):14706. doi: https://doi.org/10.3390/ijms241914706; Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7(12): 847–856. doi: https://doi.org/10.1002/sctm.17-0219; Baak LM, Wagenaar N, van der Aa NE, et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol. 2022;21(6):528–536. doi: https://doi.org/10.1016/S1474-4422(22)00117-X; Huang L, Zhang C, Gu J, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transpl. 2018;27(2):325–334. doi: https://doi.org/10.1177/0963689717729379; Sun JM, Case LE, McLaughlin C, et al. Motor function and safety after allogeneic cord blood and cord tissue-derived mesenchymal stromal cells in cerebral palsy: An open-label, randomized trial. Dev Med Child Neurol. 2022;64(12):1477–1486. doi: https://doi.org/10.1111/dmcn.15325; Valsecchi C, Croce S, Lenta E, et al. New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res. 2023;192:106796. doi: https://doi.org/10.1016/j.phrs.2023.106796; Baumgartner JE, Baumgartner LS, Baumgartner ME, et al. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med. 2021;10(2):164–180. doi: https://doi.org/10.1002/sctm.20-0026; Смирнов В.Н., Незнанов Н.Г., Морозова Я.В. и др. Применение концентрата ядросодержащих клеток пуповинной крови у детей с аутизмом: безопасность и эффективность метода // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2021. — Т. 121. — № 11-2. — С. 31–37. — doi: https://doi.org/10.17116/jnevro202112111231; Abbuehl JP, Tatarova Z, Held W, Huelsken J. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell. 2017;21(2):241–255. doi: https://doi.org/10.1016/j.stem.2017.07.004; Morata-Tarifa C, Macías-Sánchez MDM, Gutiérrez-Pizarraya A, Sanchez-Pernaute R. Mesenchymal stromal cells for the prophylaxis and treatment of graft-versus-host disease-a meta-analysis. Stem Cell Res Ther. 2020;11(1):64. doi: https://doi.org/10.1186/s13287-020-01592-z; Kurtzberg J, Prockop S, Teira P, et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014;20(2): 229–235. doi: https://doi.org/10.1016/j.bbmt.2013.11.001; Mumme M, Wixmerten A, Miot S, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019;149:w20032. doi: https://doi.org/10.4414/smw.2019.20032; Shaw N, Erickson C, Bryant SJ, et al. Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Eng Part B Rev. 2018;24(2):85–97. doi: https://doi.org/10.1089/ten.teb.2017.0274; Martin I, Jakob M, Schaefer DJ. From Tissue Engineering to Regenerative Surgery. EBioMedicine. 2018;28:11–12. doi: https://doi.org/10.1016/j.ebiom.2018.01.029; Carlier A, Vasilevich A, Marechal M, et al. In silico clinical trials for pediatric orphan diseases. Sci Rep. 2018;8(1):2465. doi: https://doi.org/10.1038/s41598-018-20737-y
-
14Academic Journal
Συγγραφείς: A. V. Kubyshkin, A. I. Balashova, E. V. Gyulbasarova, А. В. Кубышкин, А. И. Балашова, Е. В. Гюльбасарова
Πηγή: General Reanimatology; Том 20, № 2 (2024); 83-92 ; Общая реаниматология; Том 20, № 2 (2024); 83-92 ; 2411-7110 ; 1813-9779
Θεματικοί όροι: правовое регулирование, gene diagnostics, gene therapy, ethics committee, critical conditions, personalized medicine, reanimatology, legal regulation, генная диагностика, генная терапия, этический комитет, критические состояния, персонализированная медицина, реаниматология
Περιγραφή αρχείου: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2435/1813; https://www.reanimatology.com/rmt/article/view/2435/1825; Wong C. UK first to approve CRISPR treatment for diseases: what you need to know. Nature. 2023; 623: 676–677. DOI:10.1038/d41586-023-03590-6. PMID: 37974039.; First baby receives life-saving gene therapy on NHS https://www.england.nhs.uk/2023/02/first-baby-receives-lifesaving-gene-therapy-on-nhs/. Дта обращения 17.11.2023/ Accessed 11/17/ 2023.; Мороз В. В., Смелая Т. В., Голубев А. М., Сальникова Л. Е. Генетика и медицина критических состояний: от теории к практике. Общая реаниматология. 2012; 8 (4): 5.; Жданов Р. И., Семенова Н. В., Арчаков А. И. Реальности и надежды генной терапии. Вопросы медицинской химии. 2000; 46 (3): 197–206.; Птицина С. Н. Применение методов редактирования генома и генной терапии в лечении заболеваний человека. РМЖ. 2021; 10: 57–62.; Федеральный закон от 21.11.2011 N 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации». Собрание законодательства РФ. 28.11.2011; 48: 6724.; Küchenhoff S., Doerflinger,J., Heinzelmann N. The genetic technologies questionnaire: lay judgments about genetic technologies align with ethical theory, are coherent, and predict behaviour. BMC Med Ethics. 2022; 23 (1): 54. DOI:10.1186/s12910-022-00792-x. PMID: 35614491.; Assessing genetic risks: implications for health and social policy. Institute of Medicine (US) Committee on Assessing Genetic Risks. Andrews L. B., Fullarton J. E., Holtzman N. A., Motulsky A. G. (eds.); Washington (DC): National Academies Press (US). 1994. Available at: https://www.ncbi.nlm.nih.gov/books/NBK236044/. Дата обращения 17.11.2023./ Accessed 11/17/2023. PMID: 25144102. DOI:10.17226/2057.; Хельсинкская декларация Всемирной медицинской ассоциации «Этические принципы медицинских исследований на человеке», доступно: http://acto-russia.org/index.php?option=com_content&task=view&id=21. Дата обращения 17.11.2023.; Всеобщая декларация о геноме человека и о правах человека (ЮНЕСКО, 1997 г., одобрена Генеральной Ассамблеей ООН в 1998 г.) доступно: https://www.un.org/ru/documents/decl_conv/declarations/human_genome.shtml. Дата обращения 17.11.2023.; Конвенция Совета Европы о защите прав и достоинства человека в связи с применением достижений биологии и медицины: Конвенция о правах человека и биомедицине. 1996 г. Доступно: https://rm.coe.int/168007d004. Дата обращения 17.11.2023.; World Health Organization. Human Genetics Programme. Proposed international guidelines on ethical issues in medical genetics and genetic services. (Part I). Rev Derecho Genoma Hum. 1998; 8: 219–223. PMID: 15839036.; Международная декларация о генетических данных человека (Международный биоэтический комитет ЮНЕСКО, 2003 г.), доступно: https://www.un.org/ru/documents/decl_conv/declarations/genome_dec.shtml. Дата обращения 17.11.2023.; Нюрнбергский кодекс 1947 год. доступно: http://www.psychepravo.ru/law/int/nyurnbergskij-kodeks.htm. Дата обращения 17.11.2023.; Материалы конференции «Геном человека — 1999». Человек 1999; 4–5. http://vivovoco.ibmh.msk.su/VV/PAPERS/MEN/GEN_ETHICS.HTM. Дата обращения 17.11.2023.; Руководства для работы Комитетов по Этике, проводящих экспертизу биомедицинских исследований. ВОЗ. 2000. (TDR/PRD/ETHICS/2000.1), доступно: https://iris.who.int/bitstream/handle/10665/90912/TDR_PRD_ETHICS_2000.1_rus.pdf?isAllowed=y&sequence=1. Дата обращения 17.11.2023.; Руководство № 1 по созданию комитетов по биоэтике. Биоэтика. 2008; 1: 27–33. Guideline No. 1 on assisting countries in establishing National Bioethics Committees. Bioethics=Bioetika. 2008; 1: 27–33. (in Russ). eLIBRARY ID: 12947090.; ЮНЕСКО [68546]. Руководство № 2 «Деятельность комитетов по биоэтике: правила процедуры и принципы политики». SHS/BIO-2005/10. Доступно: https://unesdoc.unesco.org/search/b1384f13-4dff-41ab-8a04-52eb45c0d5c8. Дата обращения 17.11.2023.; Международные этические руководящие принципы для исследований в области здоровья с участием людей (Подготовлены Советом международных научно-медицинских организаций (СМНМО) в сотрудничестве с Всемирной организацией здравоохранения (ВОЗ), в ред. 2016 г. ISBN: 978 92 9036 088 9. Доступно: https://cioms.ch/wp-content/uploads/2019/01/3027-CIOMS-EthicalGuidelinesRussianLayout2019-1.pdf. Дата обращения 17.11.2023. 2016; Модельный закон «О защите прав и достоинства человека в биомедицинских исследованиях в государствах — участниках СНГ» (принят на двадцать шестом пленарном заседании Межпарламентской Ассамблеи государств — участников СНГ (постановление №26-10 от 18 ноября 2005 г.).; Capps B., Chadwick R., Joly Y., Lysaght T., Mills K., Mulvihill J. J., Zwart H. Statement on bioinformatics and capturing the benefits of genome sequencing for society. Human Genomics. 2019; 13: 24. DOI:10.1186/s40246-019-0208-4.; Иванюшкин А. Я., Попова О. В., Лапин Ю.Е, Смирнов И. Е. Методологические вопросы разработки этического кодекса врача-генетика. Российский педиатрический журнал. 2013; 5: 57–62.; «О Правилах регистрации и экспертизы лекарственных средств для медицинского применения». Решение Совета Евразийской экономической комиссии от 3 ноября 2016 г. № 78. Официальный сайт Евразийского экономического союза http://www.eaeunion.org.21.11.2016.; «Об утверждении Правил надлежащей клинической практики Евразийского экономического союза». Решение Совета Евразийской экономической комиссии от 3 ноября 2016 г. № 79. Официальный сайт Евразийского экономического союза: http://www.eaeunion.org/. 21.11.2016.; «Об утверждении Правил надлежащей практики фармаконадзора Евразийского экономического союза». Решение Совета Евразийской экономической комиссии от 3 ноября 2016 г. № 87 Официальный сайт Евразийского экономического союза http://www.eaeunion.org/. 21.11.2016.; Федеральный закон от 22.06.1998 № 86-ФЗ «О лекарственных средствах». Собрание законодательства РФ. 1998; 26: 3006.; Приказ Росздравнадзора от 17.08.2007 № 2314-Пр/07 «О Комитете по этике». Бюллетень нормативных актов федеральных органов исполнительной власти. 2007; 40.; Федеральный закон от 12.04.2010 № 61-ФЗ «Об обращении лекарственных средств». Собрание законодательства РФ. 2010; 16: 1815.; Приказ Минздрава России от 29.11.2012 № 986н 020 «Об утверждении Положения о Совете по этике». Российская газета. 2013; 39.; Приказ Минздрава России от 10.07.2015 № 435н «Об Этическом комитете Министерства здравоохранения Российской Федерации». Бюллетень нормативных актов федеральных органов исполнительной власти. 2015; 42.; Приказ Минздрава России от 10.07.2015 № 434н (ред. от 25.08.2017). «Об Экспертном совете Министерства здравоохранения Российской Федерации по вопросам организации клинической апробации методов профилактики, диагностики, лечения и реабилитации». Бюллетень нормативных актов федеральных органов исполнительной власти». 2015; 42.; Горбачев В. И., Шмаков А. Н. Нормативно-правовое обеспечение педиатрической анестезиолого-реанимационной помощи. Медицинское право. 2020; 1: 41–47.; https://www.reanimatology.com/rmt/article/view/2435
-
15Academic Journal
Συγγραφείς: V. G. Bogdan, A. S. Doronkina, I. P. Zhavoronok, E. V. Fedorova, T. A. Filippovich, S. G. Lepeshko, S. V. Mankovskaya, В. Г. Богдан, А. С. Доронькина, И. П. Жаворонок, Е. В. Федорова, Т. А. Филиппович, С. Г. Лепешко, С. В. Маньковская
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 2 (2024); 138-147 ; Доклады Национальной академии наук Беларуси; Том 68, № 2 (2024); 138-147 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-2
Θεματικοί όροι: VEGF, gene therapy, plasmid, vascular endothelial growth, генная терапия, плазмида, фактор роста эндотелия сосудов
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1184/1185; Adam, D. J. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial / D. J. Adam, J. D. Beard, Т. Cleveland // Lancet. – 2005. – Vol. 366, N 9501. – Р. 1925–1934. https://doi.org/10.1016/s0140-6736(05)67704-5; Григорьева, А. И. Хронические облитерирующие заболевания артерий нижних конечностей. Современное амбулаторное лечение / А. И. Григорьева // Моск. хирург. журн. – 2022. – Спецвыпуск. – С. 43–51. https://doi.org/10.17238/2072-3180-2022-43-51; Скворцов, В. В. Современные аспекты диагностики и лечения облитерирующего атеросклероза артерий нижних конечностей / В. В. Скворцов, А. В. Сабанов, А. А. Еременко // Лечащий врач. – 2023. – Т. 26, № 6. – С. 55–60. https://doi.org/10.51793/os.2023.26.6.008; Богдан, В. Г. Стимуляция ангиогенеза в комплексном лечении пациентов с хронической артериальной недостаточностью нижних конечностей / В. Г. Богдан, С. Г. Лепешко // Военная медицина. – 2017. – № 2. – С. 117–119.; Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia / M. R. Kibbe [et al.] // Gene Therapy. – 2016. – Vol. 23, N 3. – Р. 306–312. https://doi.org/10.1038/gt.2015.110; Червяков, Ю. В. Эффективность генной терапии и стандартного консервативного лечения хронической ишемии нижних конечностей атеросклеротического генеза / Ю. В. Червяков, О. Н. Власенко // Вестн. хирургии им. И. И. Грекова. – 2018. – Т. 177, № 2. – С. 64–69. https://doi.org/10.24884/0042-4625-2018-177-2-64-69; Gene-based therapies in patients with critical limb ischemia / Р. Kitrou [et al.] // Expert Opin. Biol. Ther. – 2017. – Vol. 17, N 4. – P. 449–456. https://doi.org/10.1080/14712598.2017.1289170; Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia / R. Morishita [et al.] // Arterioscler. Thromb. Vasc. Biol. – 2011. – Vol. 31, N 3. – Р. 713–720. https://doi.org/10.1161/atvbaha.110.219550; Double VERF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus / P. Barc [et al.] // J. Cardiovasc. Transl. Res. – 2021. – Vol. 14, N 3. – P. 409–415. https://doi.org/10.1007/s12265-020-10066-9; Giacca, M. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond / M. Giacca, S. Zacchigna // Gene Ther. – 2012. – Vol. 19, N 6. – Р. 622–629. https://doi.org/10.1038/gt.2012.17; Опыт применения терапевтического ангиогенеза препаратом «Неоваскулген» у пациентов с нешунтабельным поражением артерий нижних конечностей / В. Ю. Михайличенко [и др.] // Тавр. мед.-биол. вестн. – 2022. – Т. 25, № 2. – С. 55–60.; Randall, L. O. A method for measurement of analgesic activity on inflamed tissue / L. O. Randall, J. J. Selitto // Arch. Int. Pharmacodyn. Ther. – 1957. – Vol. 111, N 4. – Р. 409–419.; https://doklady.belnauka.by/jour/article/view/1184
-
16Academic Journal
Συγγραφείς: D. S. Leontyev, F. A. Urusov, D. V. Glazkova, B. V. Belugin, O. V. Orlova, R. R. Mintaev, G. M. Tsyganova, E. V. Bogoslovskaya, G. A. Shipulin, Д. С. Леонтьев, Ф. А. Урусов, Д. В. Глазкова, Б. В. Белугин, О. В. Орлова, Р. Р. Минтаев, Г. М. Цыганова, Е. В. Богословская, Г. А. Шипулин
Συνεισφορές: The study reported in this publication was carried out by the Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency of Russia as part of the publicly funded research project Passive Immunisation., Работа выполнена в рамках государственного задания ФГБУ «ЦСП» ФМБА России «Пассивная иммунизация»
Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 312-321 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 312-321 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3
Θεματικοί όροι: противовирусная активность, human immunodeficiency virus type 1, HIV-1, CD4+ T-lymphocytes, adenoassociated virus, AAV vector, gene therapy, broadly neutralising antibodies, protective efficacy, antiviral activity, вирус иммунодефицита человека типа 1, ВИЧ-1, CD4+ T-лимфоциты, аденоассоциированный вирус, AAV-вектор, генная терапия, широко нейтрализующие антитела, защитная эффективность
Περιγραφή αρχείου: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/599/916; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/938; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/979; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1027; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1028; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1029; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1030; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1036; Kamal S, Bugnon O, Cavassini M, Schneider MP. HIV-infected patients’ beliefs about their chronic co-treatments in comparison with their combined antiretroviral therapy. HIV Med. 2018;19(1):49–58. https://doi.org/10.1111/hiv.12542; Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS, Lee KH, et al. Recent advances in natural anti-HIV triterpenoids and analogs. Med Res Rev. 2020;40(6):2339–85. https://doi.org/10.1002/med.21708; Chirenje ZM, Marrazzo J, Parikh UM. Antiretroviral-based HIV prevention strategies for women. Expert Rev Anti Infect Ther. 2010;8(10):1177–86. https://doi.org/10.1586/eri.10.79; Gruell H, Klein F. Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology. 2018;15(1):73. https://doi.org/10.1186/s12977-018-0455-9; Walker L, Huber M, Doores K, Falkowska E, Pejchal R, Julien J, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 2011;477(7365):466–70. https://doi.org/10.1038/nature10373; Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015;7(319):319ra206. https://doi.org/10.1126/scitranslmed.aad5752; Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522(7557):487–91. https://doi.org/10.1038/nature14411; Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L, Butler AL, et al. Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med. 2018;24(11):1701–7. https://doi.org/10.1038/s41591-018-0186-4; LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. Elife. 2022;11:e76004. https://doi.org/10.7554/eLife.76004; Waters L, Miguel-Buckley R, Poulin S, Arribas J. Broadly neutralizing antibodies for HIV treatment: broad in theory, narrow in reality. Clin Infect Dis. 2023;76(6):1136–41. https://doi.org/10.1093/cid/ciac835; Choudhry V, Zhang M, Dimitrova D, Prabakaran P, Dimitrov A, Fouts T, et al. Antibody-based inhibitors of HIV infection. Expert Opin Biol Ther. 2006;6(5):523–31. https://doi.org/10.1517/14712598.6.5.523; Wang D, Tai P, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9; Bennett MS, Akkina R. Gene therapy strategies for HIV/AIDS: preclinical modeling in humanized mice. Viruses. 2013;5(12):3119–41. https://doi.org/10.3390/v5123119; Van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, et al. AAV-mediated expression of broadly neutralizing and vaccine-like antibodies targeting the HIV-1 envelope V2 region. Mol Ther Methods Clin Dev. 2019;14:100–12. https://doi.org/10.1016/j.omtm.2019.06.002; Shipulin GA, Glazkova DV, Urusov FA, Belugin BV, Dontsova V, Panova AV, et al. Triple combinations of AAV9-vectors encoding Anti-HIV bNAbs provide longterm in vivo expression of human IgG effectively neutralizing pseudoviruses from HIV-1 global panel. Viruses. 2024;16(8):1296. https://doi.org/10.3390/v16081296; Kim KC, Choi BS, Kim KC, Park KH, Lee HJ, Cho YK, et al. A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retroviruses. 2016;32(2):194–202. https://doi.org/10.1089/AID.2015.0211; Søndergaard H, Kvist PH, Haase C. Human T cells de pend on functional calcineurin, tumour necrosis factor-α and CD80/CD86 for expansion and activation in mice. Clin Exp Immunol. 2013;172(2):300–10. https://doi.org/10.1111/cei.12051; Kochina E, Urusov F, Kruglov A, Glazkova D, Shipulin G, Bogoslovskaya E. Double and triple combinations of broadly neutralizing antibodies provide efficient neutralization of all HIV-1 strains from the global panel. Viruses. 2022;14(9):1910. https://doi.org/10.3390/v14091910; van der Velden YU, Villaudy J, Siteur-van Rijnstra E, van der Linden CA, Frankin E, Weijer K, et al. Short communication: protective efficacy of broadly neutralizing antibody PGDM1400 against HIV-1 challenge in humanized mice. AIDS Res Hum Retroviruses. 2018;34(9):790–3. https://doi.org/10.1089/AID.2018.0114; Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A, Eisenreich TR, et al. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci USA. 2013;110(41):16538–43. https://doi.org/10.1073/pnas.1315295110; Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2011;481(7379):81–4. https://doi.org/10.1038/nature10660; Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med. 2022;28(5):1022–30. https://doi.org/10.1038/s41591-022-01762-x; Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology. 2018;15(1):66. https://doi.org/10.1186/s12977-018-0449-7; https://www.biopreparations.ru/jour/article/view/599
-
17Academic Journal
Συγγραφείς: A. V. Tumaev, D. Yu. Voloshin, E. S. Berdinskikh, E. L. Sakhibgaraeva, E. V. Golovin, E. N. Subcheva, O. O. Vasileva, A. A. Galieva, A. A. Chuvashov, E. S. Novikova, A. V. Karabelsky, А. В. Тумаев, Д. Ю. Волошин, Е. С. Бердинских, Е. Л. Сахибгараева, Е. В. Головин, Е. Н. Субчева, О. О. Васильева, А. А. Галиева, А. А. Чувашов, Е. С. Новикова, А. В. Карабельский
Συνεισφορές: The study was funded by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-10-2021-093, Research Project No. GTH-RND-2112)., Финансирование проекта осуществлялось Министерством науки и высшего образования Российской Федерации (Соглашение № 075-10-2021-093, проект GTH-RND-2112).
Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 200-214 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 200-214 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2
Θεματικοί όροι: стабильность стандартного образца, AAV, empty capsid, gene therapy, gene therapy product, pharmaceutical development, quality control methods, reference standard, HEK293, affinity chromatography, physical capsid titre, reference standard stability, пустой капсид, генная терапия, генотерапевтический преперат, фармацевтическая разработка, методы контроля качества, стандартный образец, аффинная хроматография, физический титр капсидов
Περιγραφή αρχείου: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/549/863; https://www.biopreparations.ru/jour/article/view/549/835; https://www.biopreparations.ru/jour/article/view/549/843; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/787; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/933; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/934; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/935; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/936; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/937; https://www.biopreparations.ru/jour/article/downloadSuppFile/549/968; Minskaia E, Galieva A, Egorov AD, Karabelsky AV. Viral vectors in gene replacement therapy. Biochemistry (Mosc). 2023;88(12):2157–78. https://doi.org/10.1134/s0006297923120179; Mendell JR, Al-Zaidy S, Shell R, Arnold WD, RodinoKlapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/nejmoa1706198; Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet. 1997;6(8):1205–14. https://doi.org/10.1093/hmg/6.8.1205; Wang C, Mulagapati SHR, Chen Z, Du J, Zhao X, Xi G, et al. Developing an anion exchange chromatography assay for determining empty and full capsid contents in AAV6.2. Mol Ther Methods Clin Dev. 2019;15:257–63. https://doi.org/10.1016/J.OMTM.2019.09.006; Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. https://doi.org/10.1038/227680A0; Hofmann A, Clokie S, eds. Wilson and Walker’s principles and techniques of biochemistry and molecular biology. 8th ed. Griffith University; 2018. https://doi.org/10.1017/9781316677056; Petersen RL. Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors (Basel). 2017;7(4):49. https://doi.org/10.3390/BIOS7040049; Рябова ЕИ, Деркаев АА, Есмагамбетов ИБ, Щебляков ДВ, Довгий МА, Бырихина ДВ и др. Сравнение различных технологий получения рекомбинантного аденоассоциированного вируса в лабораторном масштабе. БИОпрепараты. Профилактика, диагностика, лечение. 2021;21(4):266–78. https://doi.org/10.30895/2221-996X-2021-21-4-266-278; Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther. 2016;24(2):287. https://doi.org/10.1038/MT.2015.187; Terova O, Soltys S, Hermans P, De Rooij J, Detmers F. Overcoming downstream purification challenges for viral vector manufacturing: enabling advancement of gene therapies in the clinic. Cell and Gene Therapy Insights. 2018;4(2):101–11. https://doi.org/10.18609/CGTI.2018.017; Florea M, Nicolaou F, Pacouret S, Zinn EM, Sanmiguel J, Andres-Mateos E, et al. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol Ther Methods Clin Dev. 2023;28:146–59. https://doi.org/10.1016/J.OMTM.2022.12.009; Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron microscopy methods for virus diagnosis and high-resolution analysis of viruses. Front Microbiol. 2019;9:3255. https://doi.org/10.3389/fmicb.2018.03255; Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, et al. Immunogenicity assessment of AAV-based gene therapies: an IQ consortium industry white paper. Mol Ther Methods Clin Dev. 2022;26:471–94. https://doi.org/10.1016/j.omtm.2022.07.018; Deb PK, Kokaz SF, Abed SN, Paradkar A, Tekade RK. Chapter 6. Pharmaceutical and biomedical applications of polymers. In: Tekade RK, ed. Basic fundamentals of drug delivery. A volume in advances in pharmaceutical product development and research. Amsterdam: Elsevier; 2019. P. 203–67. https://doi.org/10.1016/C2018-0-03215-6; Sommer JM, Smith PH, Parthasarathy S, Isaacs J, Vijay S, Kieran, et al. Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol Ther. 2003;7(1):122–8. https://doi.org/10.1016/S1525-0016(02)00019-9; Grimm D, Storm TA, Hammami N, Graf M, Kay MA, Maheshri N, et al. 899. Directed evolution of the AAV-2 capsid yields novel mutants. Mol Ther. 2003;7(5):S347–8. https://doi.org/10.1016/s1525-0016(16)41341-9; Ульянова КВ, Казаров АА, Пантюшенко МС, Оленев АА, Лягоскин ИВ, Симонов ВМ. Разработка и валидация методики определения концентрации антитела человека, блокирующего связывание PD-1 с лигандами, в сыворотке крови яванского макака методом биослойной интерферометрии. БИОпрепараты. Профилактика, диагностика, лечение. 2020;20(4):257–67.; https://www.biopreparations.ru/jour/article/view/549
-
18Academic Journal
Συγγραφείς: V. A. Merkulov, R. I. Yagudina, V. G. Serpik, В. А. Меркулов, Р. И. Ягудина, В. Г. Серпик
Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00026-24-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D reporting No. 124022200093-9), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-0002624-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022200093-9)
Πηγή: Regulatory Research and Medicine Evaluation; Том 14, № 1 (2024); 14-28 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 1 (2024); 14-28 ; 3034-3453 ; 3034-3062
Θεματικοί όροι: РНК-терапия, cost of medicinal products, value of medicinal products, pipeline, Alzheimer’s disease, gene therapy, cell therapy, RNA therapy, стоимость лекарственных препаратов, ценность лекарственных препаратов, пайплайн, болезнь Альцгеймера, генная терапия, клеточная терапия
Περιγραφή αρχείου: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/579/1301; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/579/497; Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: future trends and technologies from the European Medicines Agency’s horizon scanning collaborations. Front Med (Lausanne). 2022;9:1064003. https://doi.org/10.3389/fmed.2022.1064003; Adedeji WA. The treasure called antibiotics. Ann Ib Postgrad Med. 2016;14(2):56–7. PMID: 28337088; Buxbaum JD, Chernew ME, Fendrick AM, Cutler DM. Contributions of public health, pharmaceuticals, and other medical care to US life expectancy changes, 1990–2015. Health Aff (Millwood). 2020;39(9):1546–56. https://doi.org/10.1377/hlthaff.2020.00284; Lichtenberg FR. The effect of pharmaceutical innovation on longevity: evidence from the U.S. and 26 high-income countries. Econ Hum Biol. 2022;46:101124. https://doi.org/10.1016/j.ehb.2022.101124; Lichtenberg FR. The impact of new (orphan) drug approvals on premature mortality from rare diseases in the United States and France, 1999–2007. Eur J Health Econ. 2013;14(1):41–56. https://doi.org/10.1007/s10198-011-0349-4; MacEwan JP, Dennen S, Kee R, Ali F, Shafrin J, Batt K. Changes in mortality associated with cancer drug approvals in the United States from 2000 to 2016. J Med Econ. 2020;23(12):1558–69. https://doi.org/10.1080/13696998.2020.1834403; Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nat Rev Gastroenterol Hepatol. 2022;19(8):533–50. https://doi.org/10.1038/s41575-022-00608-8; Campollo O, Amaya G, McCormick PA. Milestones in the discovery of hepatitis C. World J Gastroenterol. 2022;28(37):5395–402. https://doi.org/10.3748/wjg.v28.i37.5395; Krupa D, Czech M, Chudzyńska E, Koń B, Kostera-Pruszczyk A. Real world evidence on the effectiveness of nusinersen within the national program to treat spinal muscular atrophy in Poland. Healthcare. 2023;11(10):1515. https://doi.org/10.3390/healthcare11101515; Berglund A, Berkö S, Lampa E, Sejersen T. Survival in patients diagnosed with SMA at less than 24 months of age in a population-based setting before, during and after introduction of nusinersen therapy. Experience from Sweden. Eur J Paediatr Neurol. 2022;40:57–60. https://doi.org/10.1016/j.ejpn.2022.07.005; Beakes-Read G, Neisser M, Frey P, Guarducci M. Analysis of FDA’s accelerated approval program performance December 1992 — December 2021. Ther Innov Regul Sci. 2022;56(5):698–703. https://doi.org/10.1007/s43441-022-00430-z; Lakdawalla DN, Doshi JA, Garrison LP Jr, Phelps CE, Basu A, Danzon PM. Defining elements of value in health care — A health economics approach: An ISPOR Special Task Force Report. Value Health. 2018;21(2):131–9. https://doi.org/10.1016/j.jval.2017.12.007; Franken M, Stolk E, Scharringhausen T, de Boer A, Koopmanschap M. A comparative study of the role of disease severity in drug reimbursement decision making in four European countries. Health Policy. 2015;119(2):195–202. https://doi.org/10.1016/j.healthpol.2014.10.007; Khunti K, Seidu S, Kunutsor S, Davies M. Association between adherence to pharmacotherapy and outcomes in type 2 diabetes: a meta-analysis. Diabetes Care. 2017;40(11):1588–96. https://doi.org/10.2337/dc16-1925; van Boven JF, Chavannes NH, van der Molen T, Rutten-van Mölken MP, Postma MJ, Vegter S. Clinical and economic impact of non-adherence in COPD: a systematic review. Respir Med. 2014;108(1):103–13. https://doi.org/10.1016/j.rmed.2013.08.044; Abegaz TM, Shehab A, Gebreyohannes EA, Bhagavathula AS, Elnour AA. Nonadherence to antihypertensive drugs: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(4):e5641. https://doi.org/10.1097/md.0000000000005641; Ruppar TM, Cooper PS, Mehr DR, Delgado JM, Dunbar-Jacob JM. Medication adherence interventions improve heart failure mortality and readmission rates: systematic review and meta-analysis of controlled trials. J Am Heart Assoc. 2016;5(6):e002606. https://doi.org/10.1161/jaha.115.002606; Du L, Cheng Z, Zhang Y, Li Y, Mei D. The impact of medication adherence on clinical outcomes of coronary artery disease: a meta-analysis. Eur J Prev Cardiol. 2017;24(9):962–70. https://doi.org/10.1177/2047487317695628; Lai H, Li R, Li Z, Zhang B, Li C, Song C, et al. Modelling the impact of treatment adherence on the transmission of HIV drug resistance. J Antimicrob Chemother. 2023;78(8):1934–43. https://doi.org/10.1093/jac/dkad186; Zozaya N, Alcalá B, Galindo J. The offset effect of pharmaceutical innovation: a review study. Glob Reg Health Technol Assess. 2019;2019(5):228424031987510. https://doi.org/10.1177/2284240319875108; Тихомирова АВ, Ягудина РИ. Фармакоэкономический анализ прямых медицинских затрат при лечении метастатического колоректального рака режимами XELOX или FOLFOX4 в сочетании с бевацизумабом или без него в качестве терапии первой линии. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2010;3(2):22–7. EDN: MUDQUX; Ягудина РИ, Куликов АЮ, Комаров ИА. Анализ «затраты–эффективность» лечения пациентов, которым за последние 6 месяцев был поставлен диагноз хронический миелолейкоз в хронической фазе, лекарственными средствами группы ингибиторов тирозинкиназы–нилотиниба в сравнении с иматинибом. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2013;6(2):42–7. EDN: RNKORX; Куликов АЮ, Нгуен T. Фармакоэкономический анализ одногодичной адъювантной терапии трастузумабом при НЕR2-положительном раке молочной железы ранней стадии. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2010;3(4):28–34. EDN: NXZQIJ; Серпик ВГ. Фармакоэкономическая оценка терапии редких заболеваний на примере лечения первичного миелофиброза препаратом руксолитиниб. Фармакоэкономика: теория и практика. 2015;3(2):20–3. https://doi.org/10.30809/phe.2.2015.10; DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012; Schlander M, Hernandez-Villafuerte K, Cheng CY, Mestre-Fernandiz J, Baumann M. How much does it cost to research and develop a new drug? A systematic review and assessment. Pharmacoeconomics. 2021;39(11):1243–69. https://doi.org/10.1007/s40273-021-01065-y; Moon S, Mariat S, Kamae I, Pedersen HB. Defining the concept of fair pricing for medicines. BMJ. 2020;368:l4726 https://doi.org/10.1136/bmj.l4726; Angelis A, Polyakov R, Wouters OJ, Torreele E, McKee M. High drug prices are not justified by industry’s spending on research and development. BMJ. 2023;380:e071710. https://doi.org/10.1136/bmj-2022-071710; Chan K, Sepassi A, Saunders IM, Goodman A, Watanabe JH. Effects of financial toxicity on prescription drug use and mental well-being in cancer patients. Explor Res Clin Soc Pharm. 2022;6:100136. https://doi.org/10.1016/j.rcsop.2022.100136; Hussaini SMQ, Gupta A, Dusetzina SB. Financial toxicity of cancer treatment. JAMA Oncol. 2022;8(5):788. https://doi.org/10.1001/jamaoncol.2021.7987; Jung YL, Hwang J, Yoo HS. Disease burden metrics and the innovations of leading pharmaceutical companies: a global and regional comparative study. Global Health. 2020;16:80. https://doi.org/10.1186/s12992-020-00610-2; The Lancet Respiratory Medicine. Where are the innovations in tuberculosis drug discovery? Lancet Respir Med. 2017;5(11):835. https://doi.org/10.1016/S2213-2600(17)30376-4; Abdelsayed M, Kort EJ, Jovinge S, Mercola M. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat Rev Cardiol. 2022;19(11):751–64. https://doi.org/10.1038/s41569-022-00717-6; Van Norman GA. Overcoming the declining trends in innovation and investment in cardiovascular therapeutics: beyond EROOM’s law. JACC Basic Transl Sci. 2017;2(5):613–25. https://doi.org/10.1016/j.jacbts.2017.09.002; Klug DM, Idiris FIM, Blaskovich MAT, von Delft F, Dowson CG, Kirchhelle C, et al. There is no market for new antibiotics: this allows an open approach to research and development. Wellcome Open Res. 2021;6:146. https://doi.org/10.12688/wellcomeopenres.16847.1; Miller KL, Fermaglich LJ, Maynard J. Using four decades of FDA orphan drug designations to describe trends in rare disease drug development: substantial growth seen in development of drugs for rare oncologic, neurologic, and pediatric-onset diseases. Orphanet J Rare Dis. 2021;16(1):265. https://doi.org/10.1186/s13023-021-01901-6; Wellman-Labadie O, Zhou Y. The US Orphan Drug Act: rare disease research stimulator or commercial opportunity? Health Policy. 2010;95(2–3):216–28. https://doi.org/10.1016/j.healthpol.2009.12.001; Årdal C, Lacotte Y, Ploy MC. Financing pull mechanisms for antibiotic-related innovation: opportunities for Europe. Clin Infect Dis. 2020;71(8):1994–9. https://doi.org/10.1093/cid/ciaa153; Проценко МВ, Серпик ВГ. Обзор международной классификации редких заболеваний. Фармакоэкономика: теория и практика. 2021;9(2):18–20. https://doi.org/10.30809/phe.2.2021.3; Ding C, Wu Y, Chen X, Chen Y, Wu Z, Lin Z, et al. Global, regional, and national burden and attributable risk factors of neurological disorders: the Global Burden of Disease study 1990–2019. Front Public Health. 2022;10:952161. https://doi.org/10.3389/fpubh.2022.952161; Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (NY). 2023;9(2):e12385. Erratum: Alzheimers Dement (NY). 2023;9(2):e12407. https://doi.org/10.1002/trc2.12385; Бачурин СО. Препараты для лечения болезни Альцгеймера по данным клинических испытаний и основные тенденции в подходах к поиску новых лекарственных средств. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(8):77–87. https://doi.org/10.17116/jnevro20161168177-87; Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in genetics and epigenetic alterations in Alzheimer’s disease: a notion for therapeutic treatment. Genes (Basel). 2021;12(12):1959. https://doi.org/10.3390/genes12121959; Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The progress and promise of RNA medicine — an arsenal of targeted treatments. J Med Chem. 2022;65(10):6975–7015. https://doi.org/10.1021/acs.jmedchem.2c00024; Yu AM, Choi YH, Tu MJ. RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol Rev. 2020;72(4):862–98. https://doi.org/10.1124/pr.120.019554; Boada C, Sukhovershin R, Pettigrew R, Cooke JP. RNA therapeutics for cardiovascular disease. Curr Opin Cardiol. 2021;36(3):256–63. https://doi.org/10.1097/hco.0000000000000850; Biernacki MA, Brault M, Bleakley M. T-cell receptor-based immunotherapy for hematologic malignancies. Cancer J. 2019;25(3):179–90. https://doi.org/10.1097/ppo.0000000000000378; Helsen CW, Hammill JA, Lau VWC, Mwawasi KA, Afsahi A, Bezverbnaya K, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun. 2018;9(1):3049. https://doi.org/10.1038/s41467-018-05395-y; Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, et al. CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother. 2021;139:111605. https://doi.org/10.1016/j.biopha.2021.111605; Wrona E, Borowiec M, Potemski P. CAR-NK cells in the treatment of solid tumors. Int J Mol Sci. 2021;22(11):5899. https://doi.org/10.3390/ijms22115899; https://www.vedomostincesmp.ru/jour/article/view/579
-
19Academic Journal
Πηγή: ВЕСТНИК ОБРАЗОВАНИЯ И РАЗВИТИЯ НАУКИ РОССИЙСКОЙ АКАДЕМИИ ЕСТЕСТВЕННЫХ НАУК. :119-131
Θεματικοί όροι: генные маркеры предрасположенности, полиморфизм, генная терапия, циклотимия, алкоголизм, опиатная зависимость, 3. Good health, депрессия, популяционная фармакология
-
20Conference
Συγγραφείς: Лимонова, М. И., Ярмолич, Н. Д., Limonova, M. I., Yarmolich, N. D.
Θεματικοί όροι: генетические исследования, геном, генная инженерия, генная терапия, уголовное право, genetic research, genome, genetic engineering, gene therapy, criminal law
Περιγραφή αρχείου: application/pdf
Relation: Law Afterknown: право за гранью обыденного : материалы IV Международного молодежного юридического форума. — Тюмень, 2025
Διαθεσιμότητα: https://elib.utmn.ru/jspui/handle/ru-tsu/37717