Εμφανίζονται 1 - 20 Αποτελέσματα από 123 για την αναζήτηση '"генетическое консультирование"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The authors received no financial support for the research, authorship, and/or publication of this article., Исследование не имело спонсорской подержки.

    Πηγή: Medical Genetics; Том 24, № 9 (2025); 61-62 ; Медицинская генетика; Том 24, № 9 (2025); 61-62 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/3176/2036; Genetic: Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic V.3.2025 // National Comprehensive Cancer Network [Electronic resource]. 2025. https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf – Date of access: 06.03.2025.

  3. 3
  4. 4
    Academic Journal

    Πηγή: Medical Genetics; Том 23, № 10 (2024); 38-49 ; Медицинская генетика; Том 23, № 10 (2024); 38-49 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2561/1823; Palsson R., Indridason O.S., Edvardsson V.O., Oddsson A. Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis. 2019 Feb;47(1):11-21. doi:10.1007/s00240-018-1094-2.; Aune D., Mahamat-Saleh Y., Norat T., Riboli E. Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2018 Nov;33(11):1033-1047. doi:10.1007/s10654-018-0426-4.; Филиппова Т.В., Литвинова М.М., Руденко В.И. и др. Генетические факторы моногенных форм кальциевого уролитиаза. Урология. 2018;(4):154-160. DOI: https://dx.doi.org/10.18565/urology.2018.4.154-160; Filippova T.V., Khafizov К.F., Rudenko V.I., et al. Genetic factors of polygenic urolithiasis. Urologia Journal. 2020;87(2):57-64. https://doi.org/10.1177/0391560319898375; Litvinova M.M., Khafizov K., Korchagin V.I., et al. Association of CASR, CALCR, and ORAI1 Genes Polymorphisms With the Calcium Urolithiasis Development in Russian Population. Front. Genet. 2021;12:621049. doi:10.3389/fgene.2021.621049; Литвинова М.М., Филиппова Т.В., Светличная Д.В. и др. Молекулярно-генетические технологии в диагностике моногенных форм уролитиаза: клинические наблюдения. Урология. 2020;(3):81-86. DOI: https://dx.doi.org/10.18565/urology.2020.3.81-86; Lee B., Lee S.Y., Han D.H., Park H.D. Interpretation of SLC3A1 and SLC7A9 variants in cystinuria patients: The significance of the PM3 criterion and protein stability. Urolithiasis. 2023 Jul 13;51(1):94. doi:10.1007/s00240-023-01466-y.; Fakin A., Robson A.G., Fujinami K., et al. Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4668-78. doi:10.1167/iovs.16-19829.; Шеремет Н.Л., Грушкэ И.Г., Жоржоладзе Н.В. и др. Наследственные заболевания сетчатки при мутациях гена ABCA4. Вестник офтальмологии. 2018;(4):68-73. doi: 135. 10. 10.17116/oftalma201913504110.; Литвинова М.М., Хафизов К.Ф., Сперанская А.С. и др. Спектр мутаций гена CFTR у больных хроническим панкреатитом в России. Вопросы детской диетологии. 2020; 18(3):5-18. DOI:10.20953/1727-5784-2020-3-5-18.; Barbey F., Joly D., Rieu P., et al. Medical treatment of cystinuria: critical reappraisal of long-term results. J Urol. 2000 May;163(5):1419- 23. doi:10.1016/s0022-5347(05)67633-1.; Sadiq S., Cil O. Cystinuria: An Overview of Diagnosis and Medical Management. Turk Arch Pediatr. 2022 Jul;57(4):377-384. doi:10.5152/TurkArchPediatr.2022.22105.; Johansen K., Gammelgård P.A., Jørgensen F.S. Treatment of cystinuria with alpha-mercaptopropionylglycine. Scand J Urol Nephrol. 1980;14(2):189-92. doi:10.3109/00365598009179559.; Bhatt N.P., Deshpande A.V., Starkey M.R. Pharmacological interventions for the management of cystinuria: a systematic review. J Nephrol. 2024 Mar;37(2):293-308. doi:10.1007/s40620-023-01795-6.; Azer S.M., Goldfarb D.S. A Summary of Current Guidelines and Future Directions for Medical Management and Monitoring of Patients with Cystinuria. Healthcare (Basel). 2023 Feb 24;11(5):674. doi:10.3390/healthcare11050674.; Andreassen K.H., Pedersen K.V., Osther S.S., et al. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis. 2016 Feb;44(1):65-76. doi:10.1007/s00240-015-0841-x.; Dello Strologo L., Pras E., Pontesilli C., et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002 Oct;13(10):2547-53. doi:10.1097/01.asn.0000029586.17680.e5.; Sahota A., Tischfield J.A., Goldfarb D.S., et al. Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis. 2019 Feb;47(1):57-66. doi:10.1007/s00240-018-1101-7.; Eggermann T., Venghaus A., Zerres K. Cystinuria: an inborn cause of urolithiasis. Orphanet J Rare Dis. 2012 Apr 5;7:19. doi:10.1186/1750-1172-7-19.; Pereira D.J., Schoolwerth A.C., Pais V.M. Cystinuria: current concepts and future directions. Clin Nephrol. 2015 Mar;83(3):138-46. doi:10.5414.; Kelly S. Cystinuria genotypes predicted from excretion patterns. Am J Med Genet. 1978;2(2):175-90. doi:10.1002/ajmg.1320020209.; Литвинова М.М., Филиппова Т.В., Хафизов К.Ф. и др. Сложное клиническое наблюдение кальциевого уролитиаза при носительстве мутации в гене SLC7A9, ответственном за развитие цистинурии. Урология. 2020;(6):126-131. DOI:10.18565/urology.2020.6.126-130; Giugliani R., Ferrari I., Greene L.J. Heterozygous cystinuria and urinary lithiasis. Am J Med Genet. 1985 Dec;22(4):703-15. doi:10.1002/ajmg.1320220407.; Feliubadaló L., Font M., Purroy J., et al. International Cystinuria Consortium. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999 Sep;23(1):52- 7. doi:10.1038/12652.; Font-Llitjós M., Jiménez-Vidal M., Bisceglia L., et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet. 2005 Jan;42(1):58-68. doi:10.1136/jmg.2004.022244.; Audo I., Bujakowska K., Orhan E., et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012 Feb 10;90(2):321-30. doi:10.1016/j.ajhg.2011.12.007. Erratum in: Am J Hum Genet. 2012 Jul 13;91(1):209.; Thompson-Stone R., Ream M.A., Gelb M., et al. Consensus recommendations for the classification and long-term follow up of infants who screen positive for Krabbe Disease. Mol Genet Metab. 2021 Sep-Oct;134(1-2):53-59. doi:10.1016/j.ymgme.2021.03.016.; Martinelli I., Taioli E., Cetin I., et al. Mutations in coagulation factors in women with unexplained late fetal loss. N Engl J Med. 2000b; 343: 1015-8; Many A., Elad R., Yaron Y., et al. Third-trimester unexplained intrauterine fetal death is associated with inherited thrombophilia. Obstet Gynecol. 2002; 99: 684-7; Kupferminc M.J., Fait G., Many A., et al. Severe preeclampsia and high frequency of genetic thrombophilic mutations. Obstet Gynecol. 2000a; 96: 45-9; Facchinetti F., Marozio L., Grandone E., et al. Thrombophilic mutations are a main risk factor for placental abruption. Haematologica. 2003; 88: 785-8; Howley H.E., Walker M., Rodger M.A. A systematic review of the association between factor V Leiden or prothrombin gene variant and intrauterine growth restriction. Am J Obstet Gynecol. 2005; 192: 694-708; Benedetto C., Marozio L., Salton L., et al. Factor V Leiden and factor II G20210A in preeclampsia and HELLP syndrome. Acta Obstet Gynecol Scand. 2002; 81: 1095-100

  5. 5
    Academic Journal

    Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ для ФГБНУ МГНЦ.

    Πηγή: Medical Genetics; Том 23, № 7 (2024); 33-41 ; Медицинская генетика; Том 23, № 7 (2024); 33-41 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2507/1804; Castellani C., Duff A.J.A., Bell S.C., et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2018 Mar;17(2):153-178. doi:10.1016/j.jcf.2018.02.006.; Шерман В.Д., Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Оценка эффективности неонатального скрининга на муковисцидоз в Российской Федерации. Вопросы практической педиатрии. 2022; 17(3): 12–19. doi:10.20953/1817-7646-2022-3-12-19; Муковисцидоз. Издание 2-е., переработанное и дополненное (под ред. Каширской Н.Ю., Капранова Н.И. и Кондратьевой Е.И.). М.: ИД «МЕДПРАКТИКА-М», 2021. 680 с.; Письмо Министерства здравоохранения РФ от 15 февраля 2019 г. N 15-4/И/2-1217 О направлении клинических рекомендаций (протокола лечения) «Вспомогательные репродуктивные технологии и искусственная инсеминация» https://www.garant.ru/products/ipo/prime/doc/72113052/ (дата обращениия 12.04.2024); Баранов В.С., Иващенко Т.Э., Кащеева Т.К., Кузнецова Т.В. Пренатальная диагностика наследственных болезней. Состояние и перспективы, 2-е изд., перераб. и доп. Санкт-Петербург: Эко-Вектор, 2020, 503 c.; Курило Л.Ф. Развитие эмбриона человека и некоторые морально-этические проблемы методов вспомогательной репродукции. Проблемы репродукции. 1998; 3: 39-47.; Yaneva N., Baycheva M., Kostova P., et al. Preventable Hazards from in Vitro Fertilization – A Case Series of CF Patients from Bulgaria. Balkan J Med Genet. 2023;26(1):83-88. doi:10.2478/bjmg-2023-0001.; Breveglieri G., D’Aversa E., Finotti A., et al. Non-invasive Prenatal Testing Using Fetal DNA. Mol Diagn Ther. 2019;23(2):291-299. doi:10.1007/s40291-019-00385-2; Глотов А.С., Насыхова Ю.А., Двойнова Н.М. и др. Перспективы преконцепционного генетического скрининга на этапе планирования беременности. Журнал акушерства и женских болезней. 2023;72(6):173–192. doi: https://doi.org/10.17816/JOWD622752; Audibert F., Wilson R.D., Allen V., et al. Genetics Committee. Preimplantation genetic testing. J Obstet Gynaecol Can. 2009 Aug;31(8):761-75. doi:10.1016/s1701-2163(16)34284-0.; Lledo B., Morales R., Antonio Ortiz .J, et al. Noninvasive preimplantation genetic testing using the embryo spent culture medium: an update. Curr Opin Obstet Gynecol. 2023 Aug 1;35(4):294-299. doi:10.1097/GCO.0000000000000881.; Shah V.S., Ernst S., Tang X.X., et al. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5382-7. doi:10.1073/pnas.1604905113.; Miller A.C., Comellas A.P., Hornick D.B., et al. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1621-1627. doi:10.1073/pnas.1914912117.; Polgreen P.M., Comellas A.P. Clinical Phenotypes of Cystic Fibrosis Carriers. Annu Rev Med. 2022 Jan 27; 73:563-574. doi:10.1146/annurev-med-042120-020148.

  6. 6
    Academic Journal

    Συνεισφορές: The research was supported by a grant from the Russian Science Foundation (project No. 19-18-00422)., Исследование выполнено при финансовой поддержке Российского научного фонда, проект № 19-18-00422.

    Πηγή: Medical Genetics; Том 23, № 3 (2024); 12-20 ; Медицинская генетика; Том 23, № 3 (2024); 12-20 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2452/1776; Chitty L.S., Lo Y.M. Noninvasive prenatal screening for genetic diseases using mass parallel sequencing of maternal plasma DNA. Cold Spring Harb Perspect Med. 2015; 5(9): a023085. Doi:10.1101/cshperspect.a023085; Bianchi D.W., Chiu R.W.K. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379:464–73.; van Schendel R.W., van El C.G., Paikrt E., et al. Implementation of noninvasive prenatal testing for aneuploidy in the national health care system: global challenges and national solutions. BMC Health Serve 2017;17(1):670. Doi:10.1186/s12913-017-2618-0; Gadsbøll K., Petersen O.B., Gatinois V., et al. Current use of noninvasive prenatal testing in Europe, Australia and the USA: a graphical presentation. Acta Obstet Gynecol Scand. 2020;99:722–30.; Калашникова Е.А., Глотов А.С., Андреева Е.Н., и др. Современное значение неинвазивного пренатального исследования внеклеточной ДНК плода в крови матери и перспективы его применения в системе массового скрининга беременных в Российской Федерации. Журнал акушерства и женских болезней. 2021; 70(1): 19–50. DOI: https://doi.org/10.17816/JOWD56573; Капланова М.Т., Галактионова А.М., Сагайдак О.В., и др. Применение неинвазивного пренатального теста в Ямало-Ненецком автономном округе. Акушерство и гинекология. 2022; 7:104-112. Doi:10.18565/aig.2022.7.104-112; Baranova E.E., Sagaydak O.V., Galaktionova A.M. et al. Whole genome non-invasive prenatal testing in prenatal screening algorithm: clinical experience from 12,700 pregnancies. BMC Pregnancy Childbirth. 2022; 22: 633. Doi:10.1186/s12884-022-04966-8; van Schendel R.V., Kleinveld J.H., Dondorp W.J., Pajkrt E., et al. Attitudes of pregnant women and male partners towards non-invasive prenatal testing and widening the scope of prenatal screening. Eur J Hum Genet. 2014;22:1345–50.; Hill M., Johnson J.-A., Langlois S., et al. Preferences for prenatal tests for Down syndrome: an international comparison of the views of pregnant women and health professionals. Eur J Hum Genet. 2015;24:968–75.; Dondorp W., de Wert G., Bombard Y., et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015;23:1438–50.; Nuffield Council on Bioethics. Non-invasive prenatal testing: ethical issues. March 2017:1-169.; Потапов А.А., Капланова М.Т., Галактионова А.М., и др. Этические аспекты применения полногеномного неинвазивного пренатального тестирования. Медицинская генетика. 2023;22(11):3-12. Doi:10.25557/2073-7998.2023.11.3-12; Perrot A., Horn R. The ethical landscape(s) of non-invasive prenatal testing in England, France and Germany: findings from a comparative literature review. Eur J Hum Genet. 2022; 30: 676–681. Doi:10.1038/s41431-021-00970-2; Van Schendel R.V., Kleinveld J.H., Dondorp W.J., et al. Attitudes of pregnant women and male partners towards non-invasive prenatal testing and widening the scope of prenatal screening. Eur J Hum Genet. 2014;22:1345–50. doi:10.1038/ejhg.2014.32.; Horn R., Parker M. Opening Pandora’s box? Ethical issues in prenatal whole genome and exome sequencing. Prenat Diagn. 2018;38:20–5.; Brison N., Van den Bogaert K., Dehaspe L., et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Obstetrical Gynecol Surv. 2017;72:469–70. doi:10.1097/01.ogx.0000521918.86380.15.; Minear M.A., Alessi S., Allyse M., Michie M., Chandrasekharan S. Noninvasive prenatal genetic testing: current and emerging ethical, legal, and social issues. Annu Rev Genomics Hum Genet. 2015;16:369–98. doi:10.1146/annurev-genom-090314-050000.; Grace M.R., Hardisty E., Dotters-Katz S.K., Vora N.L., Kuller J.A. Cell-free DNA screening: complexities and challenges of clinical implementation. Obstet. Gynecol. Surv. 2016; 71: 477–487. doi:10.1097/OGX.0000000000000342; Bedei I., Wolter A., Weber A., Signore F., Axt-Fliedner R. Chances and challenges of new genetic screening technologies (NIPT) in prenatal medicine from a clinical perspective: a narrative review. Genes. 2021;12:1–14. doi:10.3390/genes12040501.; Deutscher Ethikrat. The future of genetic diagnosis—from research to clinical practice. 30/04/2013:1-191.; Hill M., Barrett A., Choolani M., Lewis C., Fisher J., Chitty L.S. Has noninvasive prenatal testing impacted termination of pregnancy and live birth rates of infants with Down syndrome? Prenat Diagn. 2017;37:1281–90. doi:10.1002/pd.5182.; Vanstone M., Cernat A., Majid U., Trivedi F., De Freitas C. Perspectives of pregnant people and clinicians on noninvasive prenatal testing: a systematic review and qualitative meta-synthesis. Ont Health Technol Assess Ser. 2019;19:1–38.; Cernat A., De Freitas C., Majid U., Trivedi F., Higgins C., Vanstone M. Facilitating informed choice about non-invasive prenatal testing (NIPT): a systematic review and qualitative meta-synthesis of women’s experiences. BMC Pregnancy Childbirth. 2019;19:27.; Kater-Kuipers A, de Beaufort ID, Galjaard R-JH, Bunnik EM. Ethics of routine: a critical analysis of the concept of ‘routinisation’ in prenatal screening. J Med Ethics. 2018;44:626–31.; Marteau TM, Dormandy E, Michie S. A measure of informed choice. Health Expect. 2001;4:99–108.; Lewis C., Hill M., Skirton H., Chitty L.S. Development and validation of a measure of informed choice for women undergoing non-invasive prenatal testing for aneuploidy. Eur J Hum Genet. 2016;24:809–16.; van Schendel R.V., Page-Christiaens G.C., Beulen L., et al. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part II-women’s perspectives. Prenat Diagn. 2016;36:1091–8.; van der Meij K.R.M., Njio A., Martin, L., et al. Routinization of prenatal screening with the non-invasive prenatal test: pregnant women’s perspectives. Eur J Hum Genet. 2022; 30: 661–668. Doi:10.1038/s41431-021-00940-8; van Bruggen M.J., Henneman L., Timmermans D.R.M. Women’s decision making regarding prenatal screening for fetal aneuploidy: a qualitative comparison between 2003 and 2016. Midwifery. 2018;64:93–100; Bakkeren I.M., Kater-Kuipers A., Bunnik E.M., et al. Implementing non-invasive prenatal testing (NIPT) in the Netherlands: an interview study exploring opinions about and experiences with societal pressure, reimbursement, and an expanding scope. J Genet Couns. 2020;29:112–21.; Ravitsky V., Birko S., Le Clerc-Blain J., et al. Noninvasive prenatal testing: views of Canadian pregnant women and their partners regarding pressure and societal concerns. AJOB Empir Bioeth. 2021;12:53–62.; Crombag N.M., Vellinga Y.E., Kluijfhout S.A., et al. Explaining variation in Down’s syndrome screening uptake: comparing the Netherlands with England and Denmark using documentary analysis and expert stakeholder interviews. BMC Health Serv Res. 2014;14:437.; Chitty L.S., Wright D., Hill M., et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down’s syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units. BMJ. 2016;354:i3426.; Gregg A.R., Skotko B.G., Benkendorf J.L., et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18(10):1056–1065. doi:10.1038/gim.2016.97; 33 11 Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379(5):464–473. doi:10.1056/NEJMra1705345; Sachs A., Blanchard L., Buchanan A., et al. Recommended pretest counseling points for noninvasive prenatal testing using cellfree DNA: a 2015 perspective. Prenat Diagn. 2015;35:968–971. doi:10.1002/pd.4666; Heinrichs B. Moral ambivalence. Commentary on noninvasive prenatal testing from an ethical perspective. 2021 DOI:10.1515/jpm2021-0194; de Jong A., Dondorp W., de Die-Smulders C. et al. Non-invasive prenatal testing: ethical issues explored. Eur J Hum Genet. 2010; 18: 272–277). doi:10.1038/ejhg.2009.203; Hartwig T.S., Ambye L., Sørensen S., Jørgensen F.S. Discordant non-invasive prenatal testing (NIPT) — a systematic review. Prenat. Diagn. 2017; 37(6): 527–539. doi:10.1002/pd.5049; Petersen O.B., Vogel I., Eklund C., et al. Potential diagnostic consequences of applying non-invasive prenatal testing: Population-based study from a country with existing first-trimester screening. Ultrasound Obstet Gynecol 2014;43(3):265–71; Moufarrej M.N., Bianchi D.W., Shaw G.M., Stevenson D.K., Quake S.R. Noninvasive Prenatal Testing Using Circulating DNA and RNA: Advances, Challenges, and Possibilities. Annu Rev Biomed Data Sci. 2023;6:397-418. doi:10.1146/annurev-biodatasci-020722-094144.; Баранова Е.Е., Беленикин М.С., Жученко Л.А., Ижевская В.Л. Неинвазивные пренатальные тесты: европейские и американские рекомендации по применению в клинической практике. Медицинская генетика. 2017;16(8):3-10.

  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    Πηγή: Cancer Urology; Том 18, № 2 (2022); 211-216 ; Онкоурология; Том 18, № 2 (2022); 211-216 ; 1996-1812 ; 1726-9776

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1550/1381; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1108; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1109; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1110; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1112; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1113; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–24. DOI:10.3322/caac.21492; Gaur S., Turkbey B., Choyke P. Hereditary renal tumor syndromes: update on diagnosis and management. Semin Ultrasound CT MR 2017;38(1):59–71. DOI:10.1053/j.sult.2016.10.002; Maher E.R. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J Urol 2018;36(12):1891–8. DOI:10.1007/s00345-018-2288-5; Carlo M.I., Hakimi A.A., Stewart G.D. et al. Familial kidney cancer: implications of new syndromes and molecular insights. Eur Urol 2019;76(6):754–64. DOI:10.1016/j.eururo.2019.06.015; Ball M.W., Ricketts C.J. Complexities in estimating the true risk of hereditary leiomyomatosis and renal cell carcinoma and the development of kidney cancer. Cancer 2020;126(16):3617–9. DOI:10.1002/cncr.32915; Forde C., Lim D.H.K., Alwan Y. et al. Hereditary leiomyomatosis and renal cell cancer: clinical, molecular, and screening features in a cohort of 185 affected individuals. Eur Urol Oncol 2020;3(6):764–72. DOI:10.1016/j.euo.2019.11.002; Hansen A.W., Chayed Z., Pallesen K. et al. Hereditary leiomyomatosis and renal cell cancer. Acta Derm Venereol 2020;100(1):adv00012. DOI:10.2340/00015555-3366; Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol 2020;61:158–66. DOI:10.1016/j.semcancer.2019.10.016; Martinez-Mir A., Glaser B., Chuang G.S. et al. Germline fumarate hydratase mutations in families with multiple cutaneous and uterine leiomyomata. J Invest Dermatol 2003;121(4):741–4. DOI:10.1046/j.1523-1747.2003.12499.x; Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. DOI:10.1002/humu.10212; Landrum M.J., Lee J.M., Benson M. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46(D1):D1062–7. DOI:10.1093/nar/gkx1153; Tate J.G., Bamford S., Jubb H.C. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019;47(D1):D941–7. DOI:10.1093/nar/gky1015; Zehir A., Benayed R., Shah R.H. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. DOI:10.1038/nm.4333; Motzer R.J., Jonasch E., Agarwal N. et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022;20(1):71–90. DOI:10.6004/jnccn.2022.0001; Seo J.Y., Ahn J.Y., Keam B. et al. Genotypic and phenotypic characteristics of hereditary leiomyomatosis and renal cell cancer syndrome in Korean patients. Ann Lab Med 2021;41(2):207–13. DOI:10.3343/alm.2021.41.2.207; Sanchez-Heras A.B., Castillejo A., Garcia-Diaz J.D. et al. Hereditary leiomyomatosis and renal cell cancer syndrome in Spain: clinical and genetic characterization. Cancers (Basel) 2020;12(11):3277. DOI:10.3390/cancers12113277; Furuya M., Iribe Y., Nagashima Y. et al. Clinicopathological and molecular features of hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinomas. J Clin Pathol 2020;73(12):819–25. DOI:10.1136/jclinpath-2020-206548; Iribe Y., Furuya M., Shibata Y. et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to nivolumab and ipilimumab combination immunotherapy by: a case report. Fam Cancer 2021;20(1):75–80. DOI:10.1007/s10689-020-00195-0; Feng D., Yang Y., Han P. et al. The preliminary outcome of the combination of immunotherapy and targeted therapy after recurrence and metastasis for hereditary leiomyomatosis and renal cell cancer – a case report. Transl Androl Urol 2020;9(2):789–93. DOI:10.21037/tau.2019.12.37; Yonese I., Ito M., Takemura K. et al. A case of metastatic hereditary leiomyomatosis and renal cell cancer syndromeassociated renal cell carcinoma treated with a sequence of axitinib and nivolumab following cytoreductive nephrectomy. J Kidney Cancer VHL 2020;7(2):6–10. DOI:10.15586/jkcvhl.2020.148; https://oncourology.abvpress.ru/oncur/article/view/1550

  10. 10
  11. 11
    Academic Journal

    Συνεισφορές: The article was prepared with financial support from the Russian Science Foundation (project “Communicative Outline of Biomedical Technologies (The Case of Genome Medicine)”, no. 18-78-10132)., Статья подготовлена при финансовой поддержке РНФ в рамках проекта «Коммуникативный контур биомедицинских технологий (на примере геномной медицины)» (№ 18-78-10132).

    Πηγή: Gorizonty gumanitarnogo znaniia; № 2 (2021): Горизонты теории и методологии биомедицинских и социогуманитарных исследований; 37–53 ; Горизонты гуманитарного знания; № 2 (2021): Горизонты теории и методологии биомедицинских и социогуманитарных исследований; 37–53 ; 2587-845X

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Συνεισφορές: The article was prepared with financial support from the Russian Science Foundation (project “Communicative Outline of Biomedical Technologies (The Case of Genome Medicine)”, no. 18-78-10132)., Статья подготовлена при финансовой поддержке РНФ в рамках проекта «Коммуникативный контур биомедицинских технологий (на примере геномной медицины)» (№ 18-78-10132).

    Πηγή: Gorizonty gumanitarnogo znaniia; № 2 (2021): Горизонты теории и методологии биомедицинских и социогуманитарных исследований; 18–36 ; Горизонты гуманитарного знания; № 2 (2021): Горизонты теории и методологии биомедицинских и социогуманитарных исследований; 18–36 ; 2587-845X

    Περιγραφή αρχείου: application/pdf

  13. 13
    Academic Journal

    Πηγή: Neonatology, Surgery and Perinatal Medicine; Vol. 11 No. 4(42) (2021): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 5-8 ; Неонатология, хирургия и перинатальная медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 5-8 ; Неонатологія, хірургія та перинатальна медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 5-8 ; 2413-4260 ; 2226-1230

    Περιγραφή αρχείου: application/pdf

  14. 14
    Academic Journal

    Πηγή: Medical Genetics; Том 20, № 2 (2021); 39-48 ; Медицинская генетика; Том 20, № 2 (2021); 39-48 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1877/1474; Gardner R.J.M., Amor D.J. Gardner and Sutherland’s chromosome abnormalities and genetic counseling. New York: Oxford University Press, 2018. 715 p.; Van Hemel J.O., Eussen H.J. Interchromosomal insertions. Identification of five cases and a review. Hum. Genet. 2000; 107(5): 415-432. doi:10.1007/s004390000398.; Kang S-H.L., Shaw C., Ou Z. et al. Insertional translocation detected using FISH confirmation of array comparative genomic hybridization (aCGH) results. Am. J. Med. Genet. 2010; 152A(5): 1111-1126. doi:10.1002/ajmg.a.33278.; Neill N.J., Ballif C.B., Lamb A.N. et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011; 21(4): 535-544. doi:10.1101/gr.114579.110.; Миньженкова М.Е., Маркова Ж.К., Дадали Е.Л., Шилова Н.В. Интерхромосомная и интрахромосомная инсерции с участием хромосомы 2. Медицинская генетика 2018; 17(2): 12-17. doi:10.25557/2073-7998.2018.02.12-17.; Bennett R.L., French K.S., Resta R.G., Doyle D.L. Standardized human pedigree nomenclature: update and assessment of the recommendations of the national society of genetic counselors. J. Genet. Counsel. 2008; 17(5): 424-433. doi:10.1007/s10897-008-9169-9.; Ramer J.C, Mowrey P.N., Robins D.B. et al. Five children with del (2)(q31q33) and one individual with dup (2)(q31q33) from a single family: review of brain, cardiac, and limb malformations. Am. J. Med. Genet. 1990; 37(3): 392-400. doi:10.1002/ajmg.1320370320.; Moiler M., Garcla-Cruz D., Rivera H. et al. Pure monosomy and trisomy 2q24.2→q3105 due to an inv ins(7;2)(q21.2;q3105q24.2) segregating in four generations. Hum. Genet. 1984; 68(1): 77-86. doi:10.1007/bf00293878.; Taysi K, Dengler D.R., Jones L.A., Heersma J.R. Interstitial deletion of the long arm of chromosome 2. Case report and review of literature. Ann. Genet. 1981; 24(4): 245-247.; Young R.S., Shapiro S.D., Hansen K.L. et al. Deletion 2q: two new cases with karyotypes 46,XY,del(2)(q31q33) and 46,XX,del(2)(q36). J. Med. Genet. 1983; 20(3): 199-202. doi:10.1136/jmg.20.3.199.; Buchanan P., Rhodes R.L., Stevenson C.E. Interstitial deletion 2q31-q33. Am. J. Med. Genet. 1983; 15(1): 121-126. doi:10.1136/jmg.26.2.127.; Franceschini P., Silengo M.C., Davi G. et al. Interstitial deletion of the long arm of chromosome 2(q31-q33) in a girl with multiple anomalies and mental retardation. Hum. Genet. 1983; 64(1), 98-98. doi:10.1007/bf00289489.; Al-Awadi S.A., Farag T.I., Naguib K. et al. Interstitial deletion of the long arm of chromosome 2: del(2)(q31q33). J. Med. Genet. 1983; 20(6): 464-465. doi:10.1136/jmg.20.6.464.; Benson K., Gordon M., Wassman E.R., Tsi C. Interstitial deletion of the long arm of chromosome 2 in a malformed infant with karyotype 46,XX,de1(2)(q3lq33). Am. J. Med. Genet. 1986; 25(3): 405-411. doi:10.1002/ajmg.1320250302.; Ramer J.C., Roger L., Ladda R.L. et al. A Review of phenotype-karyotype correlations in individuals with interstitial deletions of the long arm of chromosome 2. Am. J. Med. Genet. 1989; 32(3): 359-363. doi:10.1002/ajmg.1320320318.; Del Campo M., Jones M.C., Veraksa A.N. et al. Monodactylous limbs and abnormal genitalia are associated with hemizygosity for the human 2q31 region that includes the HOXD cluster. Am. J. Hum. Genet. 1999; 65(1): 104-110. doi:10.1086/302467.; Slavotinek A.C., Schwarz C., Getty J.F. et al. Two cases with interstitial deletions of chromosome 2 and sex reversal in one. Am. J. Med. Genet., 1999; 86(1): 75-81. doi:10.1002/(sici)1096-8628(19990903)86:13.0.co;2-j.; Goodman F.R., Majewski F., Collins A.L. et al. A 117-kb deletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly. Am. J. Hum. Genet. 2002; 70(2): 547-555. doi:10.1086/338921.; Van Buggenhout G., Van Ravenswaaij-Arts C., Maas N. M. et al. The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur. J. Med. Genet. 2005; 48(3): 276-289. doi:10.1016/j.ejmg.2005.05.005.; Mencarelli M.A., Caselli R., Pescucci C. et al. Clinical and molecular characterization of a patient with a 2q31.2-32.3 deletion identified by array-CGH. Am. J. Med. Genet., 2007; 143A(8): 858-865.doi:10.1002/ajmg.a.31602.; Mitter D., Delle Chiaie B, Lüdecke H.J. et al. Genotype-phenotype correlation in eight new patients with a deletion encompassing 2q31.1. Am. J. Med. Genet. 2010; 152A(5):1213-1224. https://doi.org/10.1002/ajmg.a.33344.; Chen C-P., Lin C-J., Chen Y-N. et al. Molecular genetic characterization of a prenatally detected de novo interstitial deletion of chromosome 2q (2q31.1-q32.1) encompassing HOXD13, ZNF385B and ZNF804A associated with syndactyly and increased first-trimester nuchal translucency. Taiw. J. Obstet. Gynecol. 2017; 56: 398-401. doi:10.1016/j.tjog.2017.04.026.; Umair M., Hayat A. Nonsyndromic split-hand/foot malformation: recent classification. Mol. Syndromol. 2019; 10(5): 243-254. doi:10.1159/000502784.; Barnicoat A.J., Abusaad I., Mackie C.M., Robards M.F. Two sibs with partial trisomy 2q. Am. J. Med. Genet. 1997; 70(2): 166-170. doi:10.1002/(sici)1096-8628(19970516)70:23.0.co;2-h.; Lim B.C., Min B.J., Park W-Y et al. A unique phenotype of 2q24.3-2q32.1 duplication: early infantile epileptic encephalopathy without mesomelic dysplasia. J. Child. Neurol. 2014; 29(2): 260-264. doi:10.1177/0883073813478659.; Ghoumid О., Andrieux J., Sablonnie B. et al. Duplication at chromosome 2q31.1-q31.2 in a family presenting syndactyly and nystagmus. Eur. J. Hum. Genet. 2011; 19(11): 1198-1201. doi:10.1038/ejhg.2011.95.; Cho T-J., Kim O-H., Choi I.H. et al. A dominant mesomelic dysplasia associated with a 1.0-Mb microduplication of HOXD gene cluster at 2q31.1. J. Med. Genet. 2010; 47(10): 638-639. doi:10.1136/jmg.2009.074690.; Gambrelli J., Till M., Lukus B. et al. Ocular anomalies associated with interstitial deletion of chromosome 2q31, case report and review. Ophthal. Genet. 2007; 28(2): 105-109. doi:10.1080/ 13816810701351305.; Bijlsma E.K., Knegt A.C., Bilardo C.M. et al. Case report. Increased nuchal translucency and split-hand/foot malformation in a fetus with an interstitial deletion of chromosome 2q that removes the SHFM5 locus. Prenat. Diagn. 2005; 25(1): 39-44. doi:10.1002/pd.1080.

  15. 15
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 17 (2021); 226-234 ; Медицинский Совет; № 17 (2021); 226-234 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6505/5895; Яхяева Г.Т., Намазова-Баранова Л.С., Маргиева Т.В., Чумакова О.В. Несовершенный остеогенез у детей в Российской Федерации: результаты аудита федерального регистра. Педиатрическая фармакология. 2016;13(1):44-48. https://doi.org/10.15690/pf.v13i1.1514.; Martin E., Shapiro J.R. Osteogenesis Imperfecta: Epidemiology and Pathophysiology. Curr Osteopor Reports. 2007;5(3):91-97. https://doi.org/10.1007/s11914-007-0023-z.; Van Dijk F.S., Sillence D.O. Osteogenesis Imperfecta: Clinical Diagnosis, Nomenclature and Severity Assessment. Am J Med Genet. 2014;164A(6):1470-1481. https://doi.org/10.1002/ajmg.a.36545.; Джонс К.Л. Наследственные синдромы по Дэвиду Смиту: атлассправочник. М.: Практика; 2011. 1022 с.; Kim H.K.W. Metabolic and endocrine bone diseases. In: Herring J.A. (ed.). Tachdjian’s Pediatric Orthopaedics: From the Texas Scottish Rite Hospital for Children. 5th ed. Saunders; 2014, pp. 582-642.; Щеплягина Л.А., Полякова Е.Ю., Белова НА. Несовершенный остеогенез: известные и неизвестные факты. Лечение и профилактика. 2017;(1):5-11. Режим доступа: https://www.lechprof.ru/catalog/article/original_research/osteogenesis_imperfecta_in_children_known_and_unknown_facts.; Land C., Rauch F., Montpetit K., Ruck-Gibis J., Glorieux F.H. Effect of Intravenous Pamidronate Therapy on Functional Abilities and Level of Ambulation in Children with Osteogenesis Imperfecta. J Pediatr. 2006;148(4):456-460. https://doi.org/10.1016/j.jpeds.2005.10.041.; Надыршина Д.Д., Хусаинова Р.И., Хуснутдинова Э.К. Молекулярногенетические основы несовершенного остеогенеза. Медицинская генетика. 2013;12(6):15-23. Режим доступа: https://www.medgen-journal.ru/jour/issue/viewIssue/6/6.; Palomo T., Glorieux F.H., Schoenau E., Rauch F. Body Composition in Children and Adolescents with Osteogenesis Imperfecta. J Pediatrics. 2016;169:232-237. https://doi.org/10.1016/j.jpeds.2015.10.058.; Marini J.C. Osteogenesis Imperfecta. In: Kliegman R.M., Stanton B.F., Geme J.W., Schor N., Behrman R.E. (eds.). Nelson Textbook of Pediatrics. 21st ed. Philadelphia: Elsevier Health Sciences; 2011. p. 2437-2440. Available at: https://www.us.elsevi-erhealth.com/nelson-textbook-of-pediatrics-2-volume-set-9780323529501.html.; Rauch F., Glorieux F.H. Osteogenesis Imperfecta. Lancet. 2004;363(9418): 1377-1385. https://doi.org/10.1016/S0140-6736(04)16051-0.; Кадашева А.Б., Черекаев В.А., Арутюнов Н.В., Галкин М.В. Редкое наблюдение гиперостотического поражения черепа при несовершенном остеогенезе. Вопросы нейрохирургии им. Н.Н. Бурденко. 2010;(2):24-29. Режим доступа: https://elibrary.ru/item.asp?id=15164216.; Поворознюк В.В., Гречанина Е.Я., Балацкая Н.И., Вайда В.М. Несовершенный остеогенез: патогенез, классификация, клиническая картина, лечение. Ортопедия, травматология и протезирование. 2009;(4):110-117. https://doi.org/10.15674/0030-598720094110-117.; Harrington J., Sochett E., Howard A. Update on the Evaluation and Treatment of Osteogenesis Imperfecta. Pediatr Clin North Amer. 2014;61(6):1243-1257. https://doi.org/10.1016/j.pcl.2014.08.010.; Шелестова М.Л., Стыгар А.М., Гус А.И., Холин А.М. Антенатальная ультразвуковая диагностика несовершенного остеогенеза II типа. Ультразвуковая и функциональная диагностика. 2013;(4):66-73. Режим доступа: http://vidar.ru/Article.asp?fid=USFD_2013_4_66.; Медведев М.В. Пренатальная эхография: дифференциальный диагноз и прогноз. 4-е изд. М.: Реал Тайм; 2016. 640 с.

  16. 16
    Academic Journal

    Πηγή: Neonatology, surgery and perinatal medicine; Vol. 11 No. 4(42) (2021): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 5-8
    Неонатология, хирургия и перинатальная медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 5-8
    Неонатологія, хірургія та перинатальна медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 5-8

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://neonatology.bsmu.edu.ua/article/view/247608

  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: Actual Problems of Pediatry, Obstetrics and Gynecology; No. 1 (2009) ; Актуальные вопросы педиатрии, акушерства и гинекологии; № 1 (2009) ; Актуальні питання педіатрії, акушерства та гінекології; № 1 (2009) ; 2415-301X ; 2411-4944 ; 10.11603/24116-4944.2009.1

    Περιγραφή αρχείου: application/pdf

  20. 20
    Academic Journal

    Συγγραφείς: Borodin S.S., Kryukova P.S.

    Συνεισφορές: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-29-14073., The study was carried out with the financial support of the Russian Federation for Basic Research within the framework of the scientific project № 18-29-14073.

    Πηγή: Юридический вестник Самарского университета; Vol 6, No 2 (2020); 43-48 ; Juridical Journal of Samara University; Vol 6, No 2 (2020); 43-48 ; 2542-047X

    Περιγραφή αρχείου: application/pdf