-
1Academic Journal
-
2Academic Journal
-
3Academic Journal
Source: Медицина в Кузбассе, Vol 24, Iss 1, Pp 36-43 (2025)
Subject Terms: дефицит пируваткиназы, гемолитическая анемия, экстрамедуллярный гемопоэз, вторичный гемохроматоз, спленэктомия, митапиват, Medicine
File Description: electronic resource
-
4Academic Journal
Source: Наука и здравоохранение. :161-170
Subject Terms: гемопоэтикалық жүйе, клональный гемопоэз с неопределенным потенциалом (КГНП), жаңа буынды секвенирлеу (NGS), жүректің ишемиялық ауруы, ишемическая болезнь сердца, clonal hematopoiesis of indeterminate potential (CHIP), белгісіз потенциалы бар клонды гемопоэздің (БПКГ), патология сердечно-сосудистой системы, 3. Good health, секвенирование нового поколения (NGS), pathology of the cardiovascular system, жүрек-тамыр жүйесінің патологиясы, атеросклероз, clonal hematopoiesis, клонды гемопоэз, клональный гемопоэз, hematopoietic system, coronary heart disease, atherosclerosis, 10. No inequality, next-generation sequencing (NGS)
-
5Academic Journal
Source: Медицина в Кузбассе, Vol 24, Iss 1, Pp 36-43 (2025)
-
6
-
7Academic Journal
Authors: Shevchenko V.E., Kushnir T.I., Gudkova M.V., Arnotskaya N.E.
Contributors: The work was carried out within the framework of the budget project on the topic “Development of a test system for the assessment and subsequent correction of the ferroptosis status in hematopoietic stem cells of the aging human body” (project No. 2025-5)., Работа выполнена в рамках бюджетного проекта по теме «Разработка тест-системы для оценки и последующей коррекции статуса ферроптоза в гемопоэтических стволовых клетках стареющего организма человека» (проект № 2025-5).
Source: Advances in Molecular Oncology; Vol 12, No 3 (2025); 26-35 ; Успехи молекулярной онкологии; Vol 12, No 3 (2025); 26-35 ; 2413-3787 ; 2313-805X
Subject Terms: clonal hematopoiesis of indeterminate potential, hematopoietic stem cell, progenitor cell, variant allele frequency, aging, somatic mutation, malignant neoplasm, клональный гемопоэз неопределенного потенциала, гемопоэтическая стволовая клетка, прогениторная клетка, частота вариантного аллеля, старение, соматическая мутация, злокачественное новообразование
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/813/399; https://umo.abvpress.ru/jour/article/view/813
-
8Academic Journal
Source: Medicine in Kuzbass; Том 24, № 1 (2025): март; 36-43 ; Медицина в Кузбассе; Том 24, № 1 (2025): март; 36-43 ; 2588-0411 ; 1819-0901
Subject Terms: pyruvate kinase deficiency, hemolytic anemia, extramedullary hematopoiesis, secondary hemochromatosis, splenectomy, mitapivat, дефицит пируваткиназы, гемолитическая анемия, экстрамедуллярный гемопоэз, вторичный гемохроматоз, спленэктомия, митапиват
File Description: text/html; application/pdf
Relation: http://mednauki.ru/index.php/MK/article/view/1146/2102; http://mednauki.ru/index.php/MK/article/view/1146/2088; http://mednauki.ru/index.php/MK/article/view/1146
Availability: http://mednauki.ru/index.php/MK/article/view/1146
-
9Academic Journal
Contributors: Исследование поддержано грантом Российского научного фонда № 22-25-00745.
Source: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 105-110 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 105-110 ; 2587-9537 ; 2306-1278
Subject Terms: Клональный гемопоэз с неопределенным потенциалом, Cellular heterogeneity, Somatic mutation, Clonal hematopoiesis with uncertain potential, Клеточная пластичность, Соматическая мутация
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1158/829; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1158/1106; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1158/1107; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1158/1108; Herrington W., Lacey B., Sherliker P., Armitage J., Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016;118:535–546. doi:10.1161/CIRCRESAHA.115.307611.; Ridker P.M., MacFadyen J.G., Everett B.M., Libby P., Thuren T., Glynn R.J. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391:319–328. doi:10.1016/S0140-6736(17)32814-3.; Tang D.G. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22:457–472. doi:10.1038/cr.2012.13.; Jaiswal S., Ebert B.L. Clonal hematopoiesis in human aging and disease. Science. 2019;366(6465). doi:10.1126/science.aan4673; Laurie C.C., Laurie C.A., Rice K., Doheny K.F., Zelnick L.R., McHugh C.P., Ling H., Hetrick K.N., et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–650. doi:10.1038/ng.2271.; Bick A.G., Weinstock J.S., Nandakumar S.K., Fulco C.P., Bao E.L., Zekavat S.M., Szeto M.D., Liao X., et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586:763–768. doi:10.1038/s41586-020-2819-2.; Jaiswal S., Natarajan P., Silver A.J., Gibson C.J., Bick A.G., Shvartz E., McConkey M., Gupta N., Gabriel S., Ardissino D., Baber U., Mehran R., Fuster V., Danesh J., Frossard P., Saleheen D., Melander O., Sukhova G.K., Neuberg D., Libby P., Kathiresan S., Ebert B.L. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017;377:111–121. doi:10.1056/NEJMoa1701719.; Zhang X., Sessa W.C., Fernández-Hernando C. Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front Cardiovasc Med. 2018;5:130. doi:10.3389/fcvm.2018.00130.; Borén J., Williams K.J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27:473–483. doi:10.1097/MOL.0000000000000330.; Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–533. doi:10.1038/s41586-021-03392-8.; Ahmad F., Mitchell R.D., Houben T., Palo A., Yadati T., Parnell A.J., Patel K., Shiri-Sverdlov R., Leake D.S. Cysteamine Decreases Low-Density Lipoprotein Oxidation, Causes Regression of Atherosclerosis, and Improves Liver and Muscle Function in Low-Density Lipoprotein Receptor-Deficient Mice. J Am Heart Assoc. 2021;10:e017524. doi:10.1161/JAHA.120.017524.; Gimbrone M.A.J., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118:620–636. doi:10.1161/CIRCRESAHA.115.306301.; Doran A.C., Meller N., McNamara C.A. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:812–819. doi:10.1161/ATVBAHA.107.159327.; Hao H., Gabbiani G., Bochaton-Piallat M.L. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003;23:1510–1520. doi:10.1161/01.ATV.0000090130.85752.ED.; Allahverdian S., Chaabane C., Boukais K., Francis G.A., Bochaton-Piallat M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res. 2018;114:540–550. doi:10.1093/cvr/cvy022.; Aherrahrou R., Guo L., Nagraj V.P., Aguhob A., Hinkle J., Chen L., Yuhl Soh J., Lue D., et al. Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circ Res. 2020;127:1552–1565. doi:10.1161/CIRCRESAHA.120.317415.; Basatemur G.L., Jørgensen H.F., Clarke M.C.H., Bennett M.R., Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16:727–744. doi:10.1038/s41569-019-0227-9.; Dobnikar L., Taylor A.L., Chappell J., Oldach P., Harman J.L., Oerton E., Dzierzak E., Bennett M.R., Spivakov M., Jørgensen H.F. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun. 2018;9:4567. doi:10.1038/s41467-018-06891-x.; El Agha E., Kramann R., Schneider R.K., Li X., Seeger W., Humphreys B.D., Bellusci S. Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell. 2017;21:166–177. doi:10.1016/j.stem.2017.07.011.; Chappell J., Harman J.L., Narasimhan V.M., Yu H., Foote K., Simons B.D., Bennett M.R., Jørgensen H.F. Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Circ Res. 2016;119:1313–1323. doi:10.1161/CIRCRESAHA.116.309799.; Newman A.A.C., Serbulea V., Baylis R.A., Shankman L.S., Bradley X., Alencar G.F., Owsiany K., Deaton R.A., Karnewar S., Shamsuzzaman S., Salamon A., Reddy M.S., Guo L., Finn A., Virmani R., Cherepanova O.A., Owens G.K. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab. 2021;3:166–181. doi:10.1038/s42255-020-00338-8.; Majesky M.W., Dong X.R., Hoglund V., Daum G., Mahoney W.M.J. The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs. 2012;195:73–81. doi:10.1159/000331413.; Hu Y., Zhang Z., Torsney E., Afzal A.R, Davison F., Metzler B., Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–1265. doi:10.1172/JCI19628.; Kramann R., Goettsch C., Wongboonsin J., Iwata H., Schneider R.K., Kuppe C., Kaesler N., Chang-Panesso M., Machado F.G., Gratwohl S., Madhurima K., Hutcheson J.D., Jain S., Aikawa E., Humphreys B.D. Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell. 2016;19:628–642. doi:10.1016/j.stem.2016.08.001.; Evrard S.M., Lecce L., Michelis K.C., Nomura-Kitabayashi A., Pandey G., Purushothaman K.R., d'Escamard V., Li J.R., Hadri L., Fujitani K., Moreno P.R., Benard L., Rimmele P., Cohain A., Mecham B., Randolph G.J., Nabel E.G., Hajjar R., Fuster V., Boehm M., Kovacic J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi:10.1038/ncomms11853.; Wilson H.M. Macrophages heterogeneity in atherosclerosis - implications for therapy. J Cell Mol Med. 2010;14:2055–2065. doi:10.1111/j.1582-4934.2010.01121.x.; Nagenborg J., Goossens P., Biessen E.A.L., Donners M.M.P.C. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur J Pharmacol. 2017;816:14–24. doi:10.1016/j.ejphar.2017.10.005.; Tse K., Tse H., Sidney J., Sette A., Ley K. T cells in atherosclerosis. Int Immunol. 2013;25:615–622. doi:10.1093/intimm/dxt043.; Cochain C., Vafadarnejad E., Arampatzi P., Pelisek J., Winkels H., Ley K., Wolf D., Saliba A.E., Zernecke A. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res. 2018;122:1661–1674. doi:10.1161/CIRCRESAHA.117.312509.; Depuydt M.A.C., Prange K.H.M., Slenders L., Örd T., Elbersen D., Boltjes A., de Jager S.C.A., Asselbergs F.W., de Borst G.J., Aavik E., Lönnberg T., Lutgens E., Glass C.K., den Ruijter H.M., Kaikkonen M.U., Bot I., Slütter B., van der Laan S.W., Yla-Herttuala S., Mokry M., Kuiper J., de Winther M.P.J., Pasterkamp G. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circ Res. 2020;127:1437–1455. doi:10.1161/CIRCRESAHA.120.316770.; Fernandez D.M., Rahman A.H., Fernandez N.F., Chudnovskiy A., Amir E.D., Amadori L., Khan N.S., Wong C.K., Shamailova R., Hill C.A., Wang Z., Remark R., Li J.R., Pina C., Faries C., Awad A.J., Moss N., Bjorkegren J.L.M., Kim-Schulze S., Gnjatic S., Ma'ayan A., Mocco J., Faries P., Merad M., Giannarelli C. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–1588. doi:10.1038/s41591-019-0590-4.; Abplanalp W.T., Tucker N., Dimmeler S. Single-cell technologies to decipher cardiovascular diseases. Eur Heart J. 2022. doi:10.1093/eurheartj/ehac095.; Sharma M., Schlegel M.P., Afonso M.S., Brown E.J., Rahman K., Weinstock A., Sansbury B.E., Corr E.M., van Solingen C., Koelwyn G.J., Shanley L.C., Beckett L., Peled D., Lafaille J.J., Spite M., Loke P., Fisher E.A., Moore K.J. Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circ Res. 2020;127:335–353. doi:10.1161/CIRCRESAHA.119.316461.; Marnell C.S., Bick A., Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol. 2021;161:98–105. doi:10.1016/j.yjmcc.2021.07.004.; Sano S., Oshima K., Wang Y., Katanasaka Y., Sano M., Walsh K. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circ Res. 2018;123:335–341. doi:10.1161/CIRCRESAHA.118.313225.; Fuster J.J., MacLauchlan S., Zuriaga M.A., Polackal M.N., Ostriker A.C., Chakraborty R., Wu C.L., Sano S., Muralidharan S., Rius C., Vuong J., Jacob S., Muralidhar V., Robertson A.A., Cooper M.A., Andrés V., Hirschi K.K., Martin K.A., Walsh K. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–847. doi:10.1126/science.aag1381.; Sano S., Oshima K., Wang Y., MacLauchlan S., Katanasaka Y., Sano M., Zuriaga M.A., Yoshiyama M., Goukassian D., Cooper M.A., Fuster J.J., Walsh K. Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome. J Am Coll Cardiol. 2018;71:875–886. doi:10.1016/j.jacc.2017.12.037.; Masamoto Y., Arai S., Sato T., Yoshimi A., Kubota N., Takamoto I., Iwakura Y., Yoshimura A., Kadowaki T., Kurokawa M. Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation. Immunity. 2016;44:1422–1433. doi:10.1016/j.immuni.2016.05.010.; Asada S., Kitamura T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci. 2021;112:3962–3971. doi:10.1111/cas.15094.; Dawoud A.A.Z., Tapper W.J., Cross NCP. Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia. 2020;34:2660–2672. doi:10.1038/s41375-020-0896-8.; Misawa K., Yasuda H., Araki M., Ochiai T., Morishita S., Shirane S., Edahiro Y., Gotoh A., Ohsaka A., Komatsu N. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Int J Hematol. 2018;107:673–680. doi:10.1007/s12185-018-2421-7.; Wang W., Liu W., Fidler T., Wang Y., Tang Y., Woods B., Welch C., Cai B., Silvestre-Roig C., Ai D., Yang Y.G., Hidalgo A., Soehnlein O., Tabas I., Levine R.L., Tall A.R., Wang N. Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2 V617F Mice. Circ Res. 2018;123:e35–e47. doi:10.1161/CIRCRESAHA.118.313283.; Papa V., Marracino L., Fortini F., Rizzo P., Campo G., Vaccarezza M., Vieceli Dalla Sega F. Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review. J Clin Med. 2020;9. doi:10.3390/jcm9082480.; Hsu J.I., Dayaram T., Tovy A., De Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T.P., Gera S., Kovacs J.J., Marszalek J.R., Bristow C., Yan Y., Garcia-Manero G., Kantarjian H., Vassiliou G., Futreal P.A., Donehower L.A., Takahashi K., Goodell M.A. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700–713.e6. doi:10.1016/j.stem.2018.10.004.; Calvillo-Argüelles O., Jaiswal S., Shlush L.I., Moslehi J.J., Schimmer A., Barac A., Thavendiranathan P. Connections Between Clonal Hematopoiesis, Cardiovascular Disease, and Cancer: A Review. JAMA Cardiol. 2019;4:380–387. doi:10.1001/jamacardio.2019.0302.; Zink F., Stacey S.N., Norddahl G.L., Frigge M.L., Magnusson O.T., Jonsdottir I., Thorgeirsson T.E., Sigurdsson A., Gudjonsson S.A., Gudmundsson J., Jonasson J.G., Tryggvadottir L., Jonsson T., Helgason A., Gylfason A., Sulem P., Rafnar T., Thorsteinsdottir U., Gudbjartsson D.F., Masson G., Kong A., Stefansson K. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–752. doi:10.1182/blood-2017-02-769869.; Nazarenko M.S., Sleptcov A.A., Lebedev I.N., Skryabin N.A., Markov A.V., Golubenko M.V., Koroleva I.A., Kazancev A.N., Barbarash O.L., Puzyrev V.P. Genomic structural variations for cardiovascular and metabolic comorbidity. Sci Rep. 2017 Jan 25;7:41268. doi:10.1038/srep41268.; Bonnefond A., Skrobek B., Lobbens S., Eury E., Thuillier D., Cauchi S., Lantieri O., Balkau B., Riboli E., Marre M., Charpentier G., Yengo L., Froguel P. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet. 2013;45:1040–1043. doi:10.1038/ng.2700.
-
10Academic Journal
Authors: A. D. Shirin, R. Ya. Vlasenko, N. Yu. Anisimova, K. I. Kirgizov, T. T. Valiev, N. G. Stepanyan, T. Z. Aliev, G. E. Morozevich, O. A. Odaryuk, D. V. Filonenko, N. E. Nifantiev, K. M. Novruzov, I. O. Chikileva, M. V. Kiselevskiy, А. Д. Ширин, Р. Я. Власенко, Н. Ю. Анисимова, К. И. Киргизов, Т. Т. Валиев, Н. Г. Степанян, Т. З. Алиев, Г. Е. Морозевич, О. А. Одарюк, Д. В. Филоненко, Н. Э. Нифантьев, К. М. Новрузов, И. О. Чикилева, М. В. Киселевский
Contributors: This work was supported by the Russian Foundation for Basic Research (RFBR-comfi grant: projects nos. 17-00-00494, 17-00-00495 and 17-00-00496), Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант РФФИ- комфи: проекты № 17-00-00494, 17-00-00495 и 17-00-00496)
Source: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 4 (2022); 64-74 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 4 (2022); 64-74 ; 2413-5496 ; 2311-1267
Subject Terms: экстренный гемопоэз, hematopoiesis, Toll-like receptor inductors, emergency hematopoiesis, гемопоэз, индукторы Toll-подобных рецепторов
File Description: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/884/781; Passweg J. R., Baldomero H., Bader P., Bonini C., Cesaro S., Dreger P., Duarte R. F., Dufour C., Kuball J., Farge-Bancel D., Gennery A., Kröger N., Lanza F., Nagler A., Sureda A., Mohty M. Hematopoietic stem cell transplantation in Europe 2014: More than 40 000 transplants annually. Bone Marrow Transplant. 2016; 51 (6): 786–92. doi:10.1038/bmt.2016.20.; Lee K. H., Lee J. H., Choi S. J. Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation–frequency and outcomes. Bone Marrow Transplant. 2004; 33 (7): 729–34. doi:10.1038/sj.bmt.1704428.; Lin Y., Hu X., Cheng H. Graft-versus-host disease causes broad suppression of hematopoietic primitive cells and blocks megakaryocyte diff erentiation in a murine model. Biol Blood Marrow Transplant. 2014; 20 (9): 1290–300. doi:10.1016/j.bbmt.2014.05.009.; Kuzmina Z., Eder S., Bohm A. Signifi cantly worse survival of patients with NIH-defi ned chronic graft-versus-host disease and thrombocytopenia or progressive onset type: Results of a prospective study. Leukemia. 2011; 26 (4): 746–56. doi:10.1038/leu.2011.257.; Müskens K. F., Lindemans C. A., Belderbos M. E. Hematopoietic Dysfunction during Graft-Versus-Host Disease: A Self-Destructive Process? Cells. 2021; 10 (8): 2051. doi:10.3390/cells10082051.; Ferrara J. L., Levine J. E., Reddy P., Holler E. Graft-versus-host disease. Lancet. 2009; 373 (9674): 1550–61. doi:10.1016/S0140-6736(09)60237-3.; Danziger-Isakov L., Baillie M. G. Hematologic complications of anti-CMV therapy in solid organ transplant recipients. Clin Transplant. 2009; 23 (3): 295–304. doi:10.1111/j.1399-0012.2008.00942.x.; Andersohn F., Konzen C., Garbe E. Systematic review: Agranulocytosis induced by nonchemotherapy drugs. Ann Intern Med. 2007; 146 (9): 657–65. doi:10.7326/0003-4819-146-9-200705010-00009.; Rizzo J. D., Somerfield M. R., Hagerty K. L., Seidenfeld J., Bohlius J., Bennett C. L., Cella D. F., Djulbegovic B., Goode M. J., Jakubowski A. A., Rarick M. U., Regan D. H., Lichtin A. E. Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Hematology / American Society of Clinical Oncology clinical practice guideline update. Blood. 2008; 111 (1): 25–41. doi:10.1182/blood-2007-08-109488.; Bokemeyer C., Aapro M. S., Courdi A., Foubert J., Link H., Osterborg A., Repetto L., Soubeyran P. European Organisation for Research and Treatment of Cancer (EORTC) Taskforce for the Elderly. EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update. Eur J Cancer. 2007; 43 (2): 258–70. doi:10.1016/j.ejca.2006.10.014.; Ivanov V., Faucher C., Mohty M., Bilger K., Ladaique P., Sainty D., Arnoulet C., Chabannon C., Vey N., Camerlo J., Bouabdallah R., Maraninchi D., Bardou V. J., Blaise D. Decreased RBCTs after reduced intensity conditioning allogeneic stem cell transplantation: predictive value of prior Hb level. Transfusion. 2004; 44 (4): 501–8. doi:10.1111/j.1537-2995.2004.03317.x.; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Myelodysplastic Syndromes Version 3.2022 – January 13, 2022. [Electronic resource]: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1446 (appeal date 02. 07. 2022).; Beguin Y., Baron F., Fillet G. Influence of marrow erythropoietic activity on serum erythropoietin levels after autologous hematopoietic stem cell transplantation. Haematologica. 1998; 83 (12): 1076–81. PMID: 9949624.; Pene R., Appelbaum F. R., Fisher L., Lilleby K., Nemunaitis J., Storb R., Buckner C. D. Use of granulocyte-macrophage colony-stimulating factor and erythropoietin in combination after autologous marrow transplantation. Bone Marrow Transplant. 1993; 11 (3): 219–22. PMID: 8467286.; Vannucchi A. M., Bosi A., Ieri A., Guidi S., Saccardi R., Lombardini L., Linari S., Laszlo D., Longo G., Rossi-Ferrini P. Combination therapy with G-CSF and erythropoietin after autologous bone marrow transplantation for lymphoid malignancies: A randomized trial. Bone Marrow Transplant. 1996; 17 (4): 527–31. PMID: 8722349.; Baron F., Frere P., Fillet G., Beguin Y. Recombinant human erythropoietin therapy is very effective after an autologous peripheral blood stem cell transplant when started soon after engraftment. Clin Cancer Res. 2003; 9 (15): 5566–72. PMID: 14654537.; Beguin Y., Maertens J., De Prijck B., Schots R., Seidel L., Bonnet C., Hafraoui K., Willems E., Vanstraelen G., Servais S., Jaspers A., Fillet G., Baron F. Darbepoetin-alfa and intravenous iron administration after autologous hematopoietic stem cell transplantation: A prospective multicenter randomized trial. Am J Hematol. 2013; 88 (12): 990–6. doi:10.1002/ajh.23552.; Bohlius J., Schmidlin K., Brillant C., Schwarzer G., Trelle S., Seidenfeld J., Zwahlen M., Clarke M., Weingart O., Kluge S., Piper M., Rades D., Steensma D. P., Djulbegovic B., Fey M. F., Ray-Coquard I., Machtay M., Moebus V., Thomas G., Untch M., Schumacher M., Egger M., Engert A. Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: A meta-analysis of randomised trials. Lancet. 2009; 373 (9674): 1532–42. doi:10.1016/s0140-6736(09)60502-x.; Bennett C. L., Silver S. M., Djulbegovic B., Samaras A. T., Blau C. A., Gleason K. J., Barnato S. E., Elverman K. M., Courtney D. M., McKoy J. M., Edwards B. J., Tigue C. C., Raisch D. W., Yarnold P. R., Dorr D. A., Kuzel T. M., Tallman M. S., Trifilio S. M., West D. P., Lai S. Y., Henke M. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008; 299 (8): 914–24. doi:10.1001/jama.299.8.914.; Demetri G. D., Kris M., Wade J., Degos L., Cella D. Quality-of-life benefit in chemotherapy patients treated with epoetin alfa is independent of disease response or tumor type: Results from a prospective community oncology study. Procrit Study Group. J Clin Oncol. 1998; 16 (10): 3412–25. doi:10.1200/jco.1998.16.10.3412.; Taher A. T., Musallam K. M., Cappellini M. D. β-Thalassemias. N Engl J Med. 2021; 384 (8): 727–43. doi:10.1056/NEJMra2021838.; Singbart G. Adverse events of erythropoietin in long-term and in acute / short-term treatment. Clin Investig. 1994; 72 (6 Suppl): S36–43. PMID: 7950171.; Снеговой А. В. Практические рекомендации по назначению колониестимулирующих факторов с целью профилактики развития фебрильной нейтропении у онкологических больных / А. В. Снеговой [и др.] // Злокачественные опухоли. – 2015. –4 (S): 342–9. URL: https://rosoncoweb.ru/standarts/RUSSCO/2016/35.pdf.; Ernst P., Bacigalupo A., Ringdén O., Ruutu T., Kolb H. J., Lawrinson S., Skacel T. A phase 3, randomized, placebo-controlled trial of filgrastim in patients with haematological malignancies undergoing matched-related allogeneic bone marrow transplantation. Arch Drug Inf. 2008; 1 (3): 89–96. doi:10.1111/j.1753-5174.2008.00013.x.; Bishop M. R., Tarantolo S. R., Geller R. B., Lynch J. C., Bierman P. J., Pavletic Z. S., Vose J. M., Kruse S., Dix S. P., Morris M. E., Armitage J. O., Kessinger A. A randomized, double-blind trial of fi lgrastim (granulocyte colony-stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood. 2000; 96 (1): 80–5. doi:10.1182/blood.v96.1.80.013k35_80_85.; Ringden O. T., Le Blanc K., Remberger M. Granulocyte and granulocyte-macrophage colony-stimulating factors in allografts: Uses, misuses, misconceptions, and future applications. Exp Hematol. 2005; 33 (5): 505–12. doi:10.1016/j.exphem.2005.01.009.; Update of recommendations for the use of hematopoietic colony-stimulating factors: Evidence-based clinical practice guidelines. American Society of Clinical Oncology J Clin Oncol. 1996; 14 (4): 1957–60. doi:10.1200/jco.1996.14.6.1957.; Khoury H. J., Loberiza F. R. Jr., Ringdén O., Barrett A. J., Bolwell B. J., Cahn J. Y., Champlin R. E., Gale R. P., Hale G. A., Urbano-Ispizua A., Martino R., McCarthy P. L., Tiberghien P., Verdonck L. F., Horowitz M. M. Impact of posttransplantation G-CSF on outcomes of allogeneic hematopoietic stem cell transplantation. Blood. 2006; 107 (4): 1712–6. doi:10.1182/blood-2005-07-2661.; Ringden O., Labopin M., Gorin N. C. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: A study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation J Clin Oncol. 2004; 22 (3): 416–23. doi:10.1200/jco.2004.06.102.; Morris E. S., MacDonald K. P., Kuns R. D., Morris H. M., Banovic T., Don A. L., Rowe V., Wilson Y. A., Raffelt N. C., Engwerda C. R., Burman A. C., Markey K. A., Godfrey D. I., Smyth M. J., Hill G. R. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation Nat Med. 2009; 15 (4): 436–41. doi:10.1038/nm.1948.; Kim S., Baek J., Min H. Effects of prophylactic hematopoietic colony stimulating factors on stem cell transplantations: meta-analysis. Arch Pharm Res. 2012; 35 (11): 2013–20. doi:10.1007/s12272-012-1119-2.; Ringden O., Hassan Z., Karlsson H., Olsson R., Omazic B., Mattsson J., Remberger M. Granulocyte colony-stimulating factor induced acute and chronic graft-versus-host disease. Transplantation. 2010; 90 (9): 1022–9. doi:10.1097/TP.0b013e3181f585c7.; Büchner T. Hematopoietic growth factors in cancer treatment. Stem Cells. 1994; 12 (3): 241–52. doi:10.1002/stem.5530120301.; Karagiannidis I., Salataj E., Said Abu Egal E., Beswick E. J. G-CSF in tumors: aggressiveness, tumor microenvironment and immune cell regulation. Cytokine. 2021; 142: 155479. doi:10.1016/j.cyto.2021.155479.; Rodeghiero F. A critical appraisal of the evidence for the role of splenectomy in adults and children with ITP. Br J Haematol. 2018; 181 (2): 183–95. doi:10.1111/bjh.15090.; Ghanima W., Godeau B., Cines D. B., Bussel J. B. How I treat immune thrombocytopenia: the choice between splenectomy or a medical therapy as a second-line treatment. Blood. 2012; 120 (5): 960–9. doi:10.1182/blood-2011-12-309153.; Will B., Kawahara M., Luciano J. P., Bruns I., Parekh S., Erickson-Miller C. L., Aivado M. A., Verma A., Steidl U. Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood. 2009; 114 (18): 3899–908. doi:10.1182/blood-2009-04-219493.; Di Buduo C. A., Currao M., Pecci A., Kaplan D. L., Balduini C. L., Balduini A. Revealing eltrombopag’s promotion of human megakaryopoiesis through AKT / ERK-dependent pathway activation. Haematologica. 2016; 101 (12): 1479–88. doi:10.3324/haematol.2016.146746.; Bussel J. B., Buchanan G. R., Nugent D. J. A randomized, double-blind study of romiplostim to determine its safety and effi cacy in children with immune thrombocytopenia. Blood. 2011; 118 (1): 28–36. doi:10.1182/blood-2010-10-313908.; Wang L., Gao Z., Chen X. P., Zhang H. Y., Yang N., Wang F. Y., Guan L. X., Gu Z. Y., Zhao S. S., Luo L., Wei H. P., Gao C. J. Efficacy and safety of thrombopoietin receptor agonists in patients with primary immune thrombocytopenia: A systematic review and meta-analysis. Sci Rep. 2016; 6: 39003. doi:10.1038/srep39003.; Kuzmina Z., Eder S., Böhm A., Pernicka E., Vormittag L., Kalhs P., Petkov V., Stary G., Nepp J., Knobler R., Just U., Krenn K., Worel N., Greinix H. T. Signifi cantly worse survival of patients with NIH-defi ned chronic graft-versus-host disease and thrombocytopenia or progressive onset type: Results of a prospective study. Leukemia. 2012; 26 (4): 746–56. doi:10.1038/leu.2011.257.; Kim D. H., Sohn S. K., Baek J. H., Kim J. G., Lee N. Y., Won D. I., Suh J. S., Lee K. B. Clinical signifi cance of platelet count at day +60 after allogeneic peripheral blood stem cell transplantation. J Korean Med Sci. 2006; 21 (1): 46–51. doi:10.3346/jkms.2006.21.1.46.; Diedrich B., Remberger M., Shanwell A., Svahn B. M., Ringdén O. A prospective randomized trial of a prophylactic platelet transfusion trigger of 10 × 109 per L versus 30 × 109 per L in allogeneic hematopoietic progenitor cell transplant recipients. Transfusion. 2005; 459 (7): 1064–72. doi:10.1111/j.1537-2995.2005.04157.x.; Liu X., Wu M., Peng Y., Chen X., Sun J., Huang F., Fan Z., Zhou H., Wu X., Yu G., Zhang X., Li Y., Xiao Y., Song C., Xiang A. P., Liu Q. Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: A pilot prospective study. Cell Transplant. 2014; 23 (9): 1087–98. doi:10.3727/096368912X661319.; Ahmed S., Bashir Q., Bassett R., Poon M. C., Valdez B., Konoplev S., Alousi A. M., Andersson B. S., Ciurea S., Hosing C., Jones R., Kebriaei P., Khouri I., Kim S., Nieto Y., Olson A., Oran B., Parmar S., Qazilbash M. H., Rezvani K., Shah N., Shpall E. J., Champlin R., Popat U. Eltrombopag for Post-Transplantation Thrombocytopenia: Results of Phase II Randomized, Double-Blind, Placebo-Controlled Trial. Transplant Cell Ther. 2021; 27 (5): 430.e1–430.e7. doi:10.1016/j.jtct.2021.02.004.; Kim T. O., Despotovic J., Lambert M. P. Eltrombopag for use in children with immune thrombocytopenia. Blood Adv. 2018; 2 (4): 454–61. doi:10.1182/bloodadvances.2017010660.; Gonzalez-Porras J. R., Bastida J. M. Eltrombopag in immune thrombocytopenia: Efficacy review and update on drug safety. Ther Adv Drug Saf. 2018; 9 (6): 263–85. doi:10.1177/2042098618769587.; McHutchison J. G., Dusheiko G., Shiffman M. L., Rodriguez-Torres M., Sigal S., Bourliere M., Berg T., Gordon S. C., Campbell F. M., Theodore D., Blackman N., Jenkins J., Afdhal N. H. TPL102357 Study Group. Eltrombopag for thrombocytopenia in patients with cirrhosis associated with hepatitis C. N Engl J Med. 2007; 357 (22): 2227–36. doi:10.1056/NEJMoa073255.; Marsh J. C. W., Mufti G. J. Eltrombopag: A stem cell cookie? Blood. 2014; 123 (12): 1774–5. doi:10.1182/blood-2014-02-553404.; Erickson-Miller C. L., Delorme E., Tian S. S., Hopson C. B., Landis A. J., Valoret E. I., Sellers T. S., Rosen J., Miller S. G., Luengo J. I., Duffy K. J., Jenkins J. M. Preclinical Activity of Eltrombopag (SB-497115), an Oral, Nonpeptide Thrombopoietin Receptor Agonist. Stem Cells. 2009; 27 (2): 424–30. doi:10.1634/stemcells.2008-0366.; Alvarado L. J., Huntsman H. D., Cheng H., Townsley D. M., Winkler T., Feng X., Dunbar C. E., Young N. S., Larochelle A. Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFNγ. Blood. 2019; 133 (19): 2043–55. doi:10.1182/blood-2018-11-884486.; Yaman Y., Elli M., Şahin Ş., Özdilli K., Bilgen H., Bayram N., Nepesov S., Anak S. Eltrombopag for treatment of thrombocytopenia after allogeneic hematopoietic cell transplantation in children: Single-centre experience. Pediatr Transplant. 2021; 25 (5): e13962. doi:10.1111/petr.13962.; Fu H., Zhang X., Han T., Mo X., Wang Y., Chen H., Han W., Wang J., Wang F., Yan C., Zhang Y., Sun Y., Liu K., Huang X., Xu L. Eltrombopag is an effective and safe therapy for refractory thrombocytopenia after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019; 54 (8): 1310–8. doi:10.1038/s41409-019-0435-2.; Bento L., Bastida J. M., García-Cadenas I., García-Torres E., Rivera D., Bosch-Vilaseca A., De Miguel C., Martínez-Muñoz M. E., Fernández-Avilés F., Roldán E., Chinea A., Yáñez L., Zudaire T., Vaz C. P., Espigado I., López J., Valcárcel D., Duarte R., Cabrera R., Herrera C., González-Porras J. R., Gutiérrez A., Solano C., Sampol A. Grupo Español de Trasplante Hematopoyético (GETH). Thrombopoietin Receptor Agonists for Severe Thrombocytopenia after Allogeneic Stem Cell Transplantation: Experience of the Spanish Group of Hematopoietic Stem Cell Transplant. Biol Blood Marrow Transplant. 2019; 25 (9): 1825–31. doi:10.1016/j.bbmt.2019.05.023.; Mittelman M., Platzbecker U., Afanasyev B., Grosicki S., Wong R. S. M., Anagnostopoulos A., Brenner B., Denzlinger C., Rossi G., Nagler A., Garcia-Delgado R., Portella M. S. O., Zhu Z., Selleslag D. Eltrombopag for advanced myelodysplastic syndromes or acute myeloid leukaemia and severe thrombocytopenia (ASPIRE): A randomised, placebo-controlled, phase 2 trial. Lancet Haematol. 2018; 5 (1): e34–e43. doi:10.1016/S2352-3026(17)30228-4.; Christakopoulos G. E., DeFor T. E., Hage S., Wagner J. E., Linden M. A., Brunstein C., Bejanyan N., Verneris M. R., Smith A. R. Phase I dose-finding, safety and tolerability trial of Romiplostim to Improve Platelet Recovery after UCB Transplantation. Transplant Cell Ther. 2021; 27 (6): 497.e1–497.e6. doi:10.1016/j.jtct.2021.02.033.; Calmettes C., Vigouroux S., Tabrizi R., Milpied N. Romiplostim (AMG531, Nplate) for secondary failure of platelet recovery after allo-SCT. Bone Marrow Transplant. 2011; 46 (12): 1587–9. doi:10.1038/bmt.2011.179.; Battipaglia G., Ruggeri A., Brissot E., Mamez A. C., Malard F., Belhocine R., Vekhoff A., Giannotti F., Ledraa T., Labopin M., Rubio M. T., Mohty M. Safety and feasibility of romiplostim treatment for patients with persistent thrombocytopenia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2015; 50 (12): 1574–7. doi:10.1038/bmt.2015.182.; Maximova N., Zanon D., Rovere F., Maestro A., Schillani G., Paparazzo R. Romiplostim for secondary thrombocytopenia following allogeneic stem cell transplantation in children. Int J Hematol. 2015; 102 (5): 626–32. doi:10.1007/s12185-015-1821-1.; Hartranft M. E., Clemmons A. B., Deremer D. L., Kota V. Evaluation of romiplostim for the treatment of secondary failure of platelet recovery among allogeneic hematopoietic stem cell transplant patients. J Oncol Pharm Pract. 2017; 23 (1): 10–7. doi:10.1177/1078155215612240.; Kantarjian H., Fenaux P., Sekeres M. A. Becker P. S., Boruchov A., Bowen D., Hellstrom-Lindberg E., Larson R. A., Lyons R. M., Muus P., Shammo J., Siegel R., Hu K., Franklin J., Berger D. P. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol. 2010; 28 (3): 437–44. doi:10.1200/JCO.2009.24.7999.; Sekeres M. A., Kantarjian H., Fenaux P., Becker P., Boruchov A., Guerci-Bresler A., Hu K., Franklin J., Wang Y. M., Berger D. Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower risk myelodysplastic syndromes. Cancer. 2011; 117 (5): 992–1000. doi:10.1002/cncr.25545.; Grainger J. D., Locatelli F., Chotsampancharoen T. Eltrombopag for children with chronic immune thrombocytopenia (PETIT2): a randomised, multicentre, placebo-controlled trial. Lancet. 2015; 386 (10004): 1649–58. doi:10.1016/s0140-6736(15)61107-2.; Cuker A., Chiang E. Y., Cines D. B. Safety of the thrombopoiesis-stimulating agents for the treatment of immune thrombocytopenia. Curr Drug Saf. 2010; 5 (2): 171–81. URL: https://pubmed.ncbi.nlm.nih.gov/19534637/.; Bento L., Canaro M., Bastida J. M., Sampol A. Thrombocytopenia and Therapeutic Strategies after Allogeneic Hematopoietic Stem Cell Transplantation. J Clin Med. 2022; 11 (5): 1364. doi:10.3390/jcm11051364.; Luo S. S., Ogata K., Yokose N., Kato T. Dan K. Effect of thrombopoietin on proliferation of blasts from patients with myelodysplastic syndromes. Stem Cells. 2000; 18 (2): 112–9. doi:10.1634/stemcells.18-2-112.; Hashimoto S., Toba K., Fuse I. Thrombopoietin activates the growth of megakaryoblasts in patients with chronic myeloproliferative disorders and myelodysplastic syndrome. Eur J Haematol. 2000; 64 (4): 225–30. doi:10.1034/j.1600-0609.2000.90001.x.; O’Driscoll D. N. Emergency myelopoiesis in critical illness: lessons from the COVID-19 pandemic. Ir J Med Sci. 2022; 16: 1–2. doi:10.1007/s11845-022-03068-w.; Mitroulis I., Kalafati L., Hajishengallis G., Chavakis T. Myelopoiesis in the Context of Innate Immunity. J Innate Immun. 2018; 10 (5–6): 365–72. doi:10.1159/000489406.; Trumpp A., Essers M., Wilson A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol. 2010; 10 (3): 201–9. doi:10.1038/nri2726.; Kuderer N. M., Dale D. C., Crawford J., Cosler L. E., Lyman G. H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006; 106 (10): 2258–66. doi:10.1002/cncr.21847.; Hérault A., Binnewies M., Leong S., Calero-Nieto F. J., Zhang S. Y., Kang Y. A., Wang X., Pietras E. M., Chu S. H., Barry-Holson K., Armstrong S., Göttgens B., Passegué E. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017; 544 (7648): 53–8. doi:10.1038/nature21693.; Nagai Y., Garrett K. P., Ohta S., Bahrun U., Kouro T., Akira S., Takatsu K., Kincade P. W. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006; 24 (6): 801–12. doi:10.1016/j.immuni.2006.04.008.; Boettcher S., Ziegler P., Schmid M. A., Takizawa H., van Rooijen N., Kopf M., Heikenwalder M., Manz M. G. Cutting Edge: LPS-Induced Emergency Myelopoiesis Depends on TLR4-Expressing Nonhematopoietic Cells. J Immunol. 2012; 188 (12): 5824–8. doi:10.4049/jimmunol.1103253.; Калюжин О. В. Мурамилпептиды в эксперименте и клинике / О. В. Калюжин // Журнал микробиологии эпидемиологии и иммунобиологии. – 1998. – 1: 104–8.; Львов В. Л. Применение композиции, состоящей из низкомолекулярных фрагментов пептидогликана грамотрицательных бактерий, для лечения и профилактики заболеваний человека / В. Л. Львов [и др.] // Патент РФ. – RU2441906C2. – 2012.; Маркова Т. П. Мурамилпептиды: механизмы действия, клиническая эффективность и перспективы применения в медицине / Т. П. Маркова [и др.] // РМЖ. Медицинское обозрение. – 2020. – 4 (1): 31–7. doi:10.32364/2587-6821-2020-4-1-31-37.; Ustyuzhanina N. E., Anisimova N. Y., Bilan M. I., Donenko F. V., Morozevich G. E., Yashunskiy D. V., Usov A. I., Siminyan N. G., Kirgisov K. I., Varfolomeeva S. R., Kiselevskiy M. V., Nifantiev N. E. Chondroitin Sulfate and Fucosylated Chondroitin Sulfate as Stimulators of Hematopoiesis in Cyclophosphamide-Induced Mice. Pharmaceuticals (Basel). 2021; 14 (11): 1074. doi:10.3390/ph14111074.; Киселевский М. В. Комбинация мурамилпептидов грамотрицательных бактерий корригирует нарушения гемопоэза и клеточного состава селезенки, вызванные циклофосфамидом, у мышей с меланомой B16 / М. В. Киселевский [и др.] // Бюллетень экспериментальной биологии и медицины. – 2020. –170 (12): 772–7. doi:10.47056/0365-9615-2020-170-12-772-777.; Hsu H. Y., Lin T. Y., Lu M. K., Leng P. J., Tsao S. M., Wu Y. C. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Sci Rep. 2017; 7: 44990. doi:10.1038/srep44990.; Frenette P. S., Weiss L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: Evidence for selectin-dependent and independent mechanisms. Blood. 2000; 96 (7): 2460–8. doi:10.1182/blood.v96.7.2460.h8002460_2460_2468.; Kubonishi S., Kikuchi T., Yamaguchi S., Tamamura H., Fujii N., Watanabe T., Arenzana-Seisdedos F., Ikeda K., Matsui T., Tanimoto M., Katayama Y. Rapid hematopoietic progenitor mobilization by sulfated colominic acid. Biochem Biophys Res Commun. 2007; 355 (4): 970–5. doi:10.1016/j.bbrc.2007.02.069.; Anisimova N. Y., Ustyuzhanina N. E., Bilan M. I., Donenko F. V., Ushakova N. A., Usov A. I., Kiselevskiy M. V., Nifantiev N. E. Infl uence of modified fucoidan and related sulfated oligosaccharides on hematopoiesis in cyclophosphamide-induced mice. Mar Drugs. 2018; 16 (9): 333. doi:10.3390/md16090333.; Yan H., Baldridge M. T., King K. Y. Hematopoiesis and the bacterial microbiome. Blood. 2018; 132 (6): 559–64. doi:10.1182/blood-2018-02-832519.; Iwamura C., Bouladoux N., Belkaid Y., Sher A., Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017; 129 (2): 171–6. doi:10.1182/blood-2016-06-723742.; Staffas A., Burgos da Silva M., Slingerland A. E., Lazrak A., Bare C. J., Holman C. D., Docampo M. D., Shono Y., Durham B., Pickard A. J., Cross J. R., Stein-Thoeringer C., Velardi E., Tsai J. J., Jahn L., Jay H., Lieberman S., Smith O. M., Pamer E. G., Peled J. U., Cohen D. E., Jenq R. R., van den Brink M. R. M. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host Microbe. 2018; 23 (4): 447–57.e4. doi:10.1016/j.chom.2018.03.002.; Peled J. U., Devlin S. M., Staffas A., Lumish M., Khanin R., Littmann E. R., Ling L., Kosuri S., Maloy M., Slingerland J. B., Ahr K. F., Porosnicu Rodriguez K. A., Shono Y., Slingerland A. E., Docampo M. D., Sung A. D., Weber D, Alousi A. M., Gyurkocza B., Ponce D. M., Barker J. N., Perales M. A., Giralt S. A., Taur Y., Pamer E. G., Jenq R. R., van den Brink M. R. M. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017; 35 (15): 1650–9. doi:10.1200/JCO.2016.70.3348.; Shang Q., Shan X., Cai C. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 2016; 7 (7): 3224–32. doi:10.1039/c6fo00309e.; Cumashi A., Ushakova N. A., Preobrazhenskaya M. E., D'Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G. E., Berman A. E., Bilan M. I., Usov A. I., Ustyuzhanina N. E., Grachev A. A., Sanderson C. J., Kelly M., Rabinovich G. A., Iacobelli S., Nifantiev N. E. Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy. Comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 2007; 17 (5): 541–52. doi:10.1093/glycob/cwm014.; Pomin V. H. Holothurian fucosylated chondroitin sulfates. Mar Drugs. 2014; 12 (1): 232–54. doi:10.3390/md12010232.; Ustyuzhanina N. E., Ushakova N. A., Zyuzina K. A., Bilan M. I., Elizarova A. L., Somonova O. V., Madzhuga A. V., Krylov V. B., Preobrazhenskaya M. E., Usov A. I., Kiselevskiy M. V., Nifantiev N. E. Influence of fucoidans on hemostatic system. Mar Drugs. 2013; 11 (7): 2444–58. doi:10.3390/md11072444.; https://journal.nodgo.org/jour/article/view/884
-
11Academic Journal
Source: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 3, Pp 114-119 (2022)
Subject Terms: костный мозг, гемопоэз, гипокоагуляция, гиперкоагуляция, экспериментальные животные, роды, bone marrow, hemopoiesis, hypercoagulation, experimental animals, childbirth, Economics as a science, HB71-74
File Description: electronic resource
-
12Academic Journal
Source: Лабораторная диагностика. Восточная Европа. :324-335
Subject Terms: lymphocytes, проколлаген-III-пептид, коллаген IV, absolute number of neutrophils, hypercoagulation, лимфоцитов и их соотношение, 0302 clinical medicine, hyaluronic acid, collagen IV, connective tissue, membrane pathology, С-реактивный белок, гиперкоагуляция, проантиоксидантный баланс, 3. Good health, абсолютное количество нейтрофилов, procollagen-III-peptide, сурфактант, эндотоксикоз, procalcitonin, highly sensitive troponin I, surfactant, D-dimers, скорость оседания эритроцитов, липиды, C-reactive protein, lipids, 03 medical and health sciences, высокочувствительный тропонин I, повреждение миокарда, fibrin / fibrinogen degradation products, мембранная патология, IL-6, pro-antioxidant balance, цитокины, systemic inflammatory process, продукты деградации фибрина/фибриногена, COVID-19, cytokines, hematopoiesis, прокальцитонин, соединительная ткань, D-димеры, гемопоэз, системный воспалительный процесс, гиалуроновая кислота, myocardium damage, and their ratio, erythrocyte sedimentation rate, endotoxicosis
-
13
-
14Academic Journal
Authors: Dresvyankina, A. D., Samusenko, E. S., Sorokina, K. N., Дресвянкина, А. Д., Самусенко, Е. С., Сорокина, К. Н.
Source: Сборник статей
Subject Terms: BLUEBERRY MUFFIN, EXTRAMEDULLARY HEMATOPOIESIS, NEWBORN CHILD, NEONATAL PERIOD, ЧЕРНИЧНЫЙ МАФФИН, ЭКСТРАМЕДУЛЛЯРНЫЙ ГЕМОПОЭЗ, НОВОРОЖДЕННЫЙ РЕБЕНОК, НЕОНАТАЛЬНЫЙ ПЕРИОД
File Description: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/13835
Availability: http://elib.usma.ru/handle/usma/13835
-
15Academic Journal
Source: Clinical anatomy and operative surgery; Vol. 18 No. 4 (2019); 6-10
Клиническая анатомия и оперативная хирургия; Том 18 № 4 (2019); 6-10
Клінічна анатомія та оперативна хірургія; Том 18 № 4 (2019); 6-10Subject Terms: 2. Zero hunger, 0301 basic medicine, 0303 health sciences, костный мозг, bone marrow, гематотоксических эффект, hemopoiesis, nitrates, гемопоез, гематотоксичний ефект, 6. Clean water, 3. Good health, 03 medical and health sciences, hematoxic effect, гемопоэз, нітрати, нитраты, кістковий мозок
File Description: application/pdf
-
16Academic Journal
Source: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :56-64
Subject Terms: 0301 basic medicine, 0303 health sciences, hemopoiesis, эритробластические островки, hypoplastic anemia, erythroblastic islets, 3. Good health, 03 medical and health sciences, benzene, total RNA, суммарная РНК, гемопоэз, бензол, гипопластическая анемия
-
17Academic Journal
Authors: I. A. Orlovskaya, L. B. Toporkova, M. A. Knyazheva, I. V. Savkin, E. V. Serenko, E. V. Goiman, Yu. A. Shevchenko, E. V. Markova, И. А. Орловская, Л. Б. Топоркова, М. А. Княжева, И. В. Савкин, Е. В. Серенко, Е. В. Гойман, Ю. А. Шевченко, Е. В. Маркова
Source: Medical Immunology (Russia); Том 24, № 5 (2022); 1057-1064 ; Медицинская иммунология; Том 24, № 5 (2022); 1057-1064 ; 2313-741X ; 1563-0625
Subject Terms: клетки периферической крови, mice, M2 macrophages, hematopoiesis, bone marrow, peripheral blood cells, мыши, М2-макрофаги, гемопоэз, костный мозг
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2516/1588; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9487; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9488; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9489; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9490; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9491; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9492; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9493; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9494; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9495; Маркова Е.В. Иммунокомпетентные клетки и регуляция поведенческих реакций в норме и патологии. Красноярск: Научно-инновационный центр, 2021. 184 с.; Маркова Е.В., Шевела Е.Я., Княжева М.А., Савкин И.В., Серенко Е.В., Ращупкин И.М., Амстиславская Т.Г., Останин А.А., Черных Е.Р. Влияние растворимых факторов макрофагов М2-фенотипа на поведенческий паттерн и продукцию цитокинов в головном мозге депрессивноподобных мышей // Бюллетень экспериментальной биологии и медицины, 2021. Т. 172, № 9. С. 334-338.; Derecki N.C., Quinnies K.M., Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain. Behav. Immun., 2011, Vol. 25, no. 3, pp. 379-385.; Idova G.V., Markova E.V., Gevorgyan M.M., Alperina E.L., Zhanaeva S.Y., Cytokine production by splenic cells in C57Bl/6J mice with depression-like behaviour depends on the duration of social stress. Bull. Exp. Biol. Med., 2018, Vol. 164, no. 5, pp. 645-649.; Kudryavtseva N.N., Smagin D.A., Kovalenko I.L., Vishnivetskaya G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc., 2014, Vol. 9, no. 11, pp. 2705-2717.; Markova E., Shevela K., Knyazheva M., Savkin I., Amstislavskaya T., Ostanin А., Chernykh E. Human type 2 macrophages biologically active soluble products in the editing of stress-induced depressive-like behavior. Eur. Psych., 2021, Vol. 64, no. S 1, 764. doi:10.1192/j.eurpsy.2021.2023.; Markova E.V., Knyazheva M.A. Immune cells as a potential therapeutic agent in the treatment of depression. Medical Immunology (Russia), 2021, Vol. 23, no. 4, pp. 699-704. doi:10.15789/1563-0625-ica-2277.; McKim D.B., Yin W., Wang Y., Cole S.W., Godbout J.P., Sheridan J.F. Social stress mobilizes hematopoietic stem cells to establish persistent splenic myelopoiesis. Cell Rep., 2018, Vol. 25, no. 9, pp. 2552-2562. doi:10.1016/j.celrep.2018.10.102; Orlovskaya I.A., Toporkova L.B., Lvova M.N., Sorokina I.V., Katokhin A.V., Vishnivetskaya G.B., Goiman E.V., Kashina E.V., Tolstikova T.G., Mordvinov V.A., Avgustinovich D.F. Social defeat stress exacerbates the blood abnormalities in Opisthorchis felineus-infected mice. Exp. Parasitol., 2018, Vol. 193, pp. 33-44.; Quinn M.E., Stanton C.H., Slavich G.M., Joormann J. Executive control, cytokine reactivity to social stress, and depressive symptoms: testing the social signal transduction theory of depression. Stress, 2020, Vol. 23, no. 1, pp. 60-68.; Reader B.F., Jarrett B.L., McKim D.B., Wohleb E.S., Godbout J.P., Sheridan J.F. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience, 2015, Vol. 289, pp. 429-442.; Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand. J. Immunol., 2016, Vol. 83, no. 2, pp. 151-159.; Torres-Platas S.G., Cruceanu C., Chen G.G., Turecki G., Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun., 2014, Vol. 42, pp. 50-59.; Winkler I.G., Sims N.A., Pettit A.R., Barbier V., Nowlan B., Helwani F., Poulton I.J., van Rooijen N., Alexander K.A., Raggatt L.J., Lévesque J.P. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, Vol. 116, no. 23, pp. 4815-4828.; Wohleb E.S., McKim D.B., Sheridan J.F., Godbout J.P. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci., 2015, Vol. 8, 447. doi:10.3389/fnins.2014.00447.; https://www.mimmun.ru/mimmun/article/view/2516
-
18Academic Journal
Subject Terms: тестостерон, гемопоез, червоний кістковий мозок, моноцитарний ряд, гемопоэз, красный костный мозг, моноцитарный ряд, testosterone, haematopoiesis, red bone marrow, monocytopoesis, 616.83:615.27-071
File Description: application/pdf
Relation: Мартиненко Р. В. Вплив центральної депривації тестостерону на структурну організацію моноцитарного клону червоного кісткового мозку в ранні терміни експерименту / Р. В. Мартиненко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. ‒ 2021. ‒ Т. 21, вип. 2 (74). ‒ С. 142–146.; https://repository.pdmu.edu.ua/handle/123456789/16262
-
19Academic Journal
Authors: Ufimtseva, M. A., Bochkarev, Yu. M., Sabitov, A. U., Nikolaeva, K. I., Shubina, A. S., Komarov, A. A., Antonova, S. B., Sorokina, K. N., Уфимцева, М. А., Бочкарев, Ю. М., Сабитов, А. У., Николаева, К. И., Шубина, А. С., Комаров, А. А., Антонова, С. Б., Сорокина, К. Н.
Subject Terms: NEONATAL PERIOD, BLUEBERRY MUFFIN, INTRAUTERINE INFECTION OF THE FETUS, TORCH INFECTIONS, EXTRAMEDULLARY HEMATOPOIESIS, НЕОНАТАЛЬНЫЙ ПЕРИОД, ЧЕРНИЧНЫЙ КЕКС, ВНУТРИУТРОБНОЕ ИНФИЦИРОВАНИЕ ПЛОДА, TORCH-КОМПЛЕКС, ЭКСТРАМЕДУЛЛЯРНЫЙ ГЕМОПОЭЗ
File Description: application/pdf
Relation: Scopus; Уфимцева М.А., Бочкарев Ю.М., Сабитов А.У., Николаева К.И., Шубина А.С., Комаров А.А., Антонова С.Б., Сорокина К.Н. Синдром «черничного маффина» у новорожденного. Вопросы практической педиатрии. 2020; 15(4): 100–104.; http://elib.usma.ru/handle/usma/7176
Availability: http://elib.usma.ru/handle/usma/7176
-
20Academic Journal
Authors: Usenko, T. V., Shulyak, V. G., Prodanchuk, M. G.
Source: Medical and Clinical Chemistry; No. 3 (2018); 33-42 ; Медицинская и клиническая химия; № 3 (2018); 33-42 ; Медична та клінічна хімія; № 3 (2018); 33-42 ; 2414-9934 ; 2410-681X ; 10.11603/mcch.2410-681X.2018.v0.i3
Subject Terms: гематотоксичність, hemopoiesis, myelogram, splenogram, extramedular erythropoiesis, tebuconazole, hematotoxicity, гемопоэз, миелограмма, спленограма, экстрамедуллярный эритропоэз, тебуконазол, гематотоксичность, гемопоез, мієлограма, екстрамедулярний еритропоез
File Description: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/MCC/article/view/9563/9245; https://ojs.tdmu.edu.ua/index.php/MCC/article/view/9563