-
1Academic Journal
Source: Клиническая онкогематология, Vol 18, Iss 2 (2025)
-
2
-
3
-
4Academic Journal
Authors: Abdurakhmonova, K.B., Rakhimbaeva, G.S.
Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 160-171 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 160-171 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 160-171 ; 2181-287X
Subject Terms: инсулинорезистентность, ишемический инсульт, нейровоспаление, оксидантный стресс, атеросклероз, гематоэнцефалический барьер, метаболический синдром, insulin resistance, ischemic stroke, neuroinflammation, oxidative stress, atherosclerosis, blood–brain barrier, metabolic syndrome, insulin qarshiligi, ishemik insult, neyroyallig'lanish, oksidlovchi stress, ateroskleroz, qon-miya to'sig'i, metabolik sindrom
File Description: application/pdf
Availability: https://in-academy.uz/index.php/EJMNS/article/view/62145
-
5Academic Journal
Authors: CROITORU, Dan, ANDRONACHI, Victor, PAVLOVSCHI , Ecaterina, VISNEVSCHI, Sergiu, DUMITRASHCO, Ana-Maria
Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 79 No. 2 (2024): Medical Sciences; 233-236 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 79 Nr. 2 (2024): Ştiinţe medicale; 233-236 ; Вестник Академии Наук Молдовы. Медицина; Том 79 № 2 (2024): Медицина; 233-236 ; 1857-0011
Subject Terms: антибиотерапия, инфекция, гематоэнцефалический барьер, нейрохирургия, antibioterapie, infecție, bariera hemato-encefalică, neurochirurgie, Antibiotherapy, infection, blood-brain barrier, neurosurgery
File Description: application/pdf
Relation: https://bulmed.md/bulmed/article/view/3700/3691; https://bulmed.md/bulmed/article/view/3700
-
6Academic Journal
Authors: Leonov, G.E., Vakhrushev, I.V., Novikova, V.D., Saryglar, R.Y., Baskaev, K.K., Lupatov, A.Y., Kholodenko, I.V., Yarygin, K.N.
Source: Biomedical Chemistry: Research and Methods; Vol. 7 No. 4 (2024); e00238 ; Biomedical Chemistry: Research and Methods; Том 7 № 4 (2024); e00238 ; 2618-7531
Subject Terms: blood-brain barrier, endothelial cells, astrocytes, pericytes, cell co-cultivation, гематоэнцефалический барьер, эндотелиоциты, астроциты, перициты, сокультивирование клеток
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/238/592; http://www.bmc-rm.org/index.php/BMCRM/article/view/238/614; http://www.bmc-rm.org/index.php/BMCRM/article/view/238/615
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/238
-
7Academic Journal
Authors: V. N. Salkov, В. Н. Сальков
Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 161-168 ; 2587-9596 ; 2541-9420
Subject Terms: генетические мутации, substantia nigra, iron accumulation, heavy metals, blood-brain barrier, iron-containing proteins, genetic mutations, чёрное вещество, накопление железа, тяжёлые металлы, гематоэнцефалический барьер, железосодержащие белки
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/5227/2972; Hayes MT. Parkinson’s disease and parkinsonism. Am J Med. 2019; 132(7): 802-807. doi:10.1016/j.amjmed.2019.03.001; Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016; 139(1): 318-324. doi:10.1111/jnc.13691; Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-mediated Parkinson’s disease. Cells. 2024; 13(4): 296. doi:10.3390/cells13040296; Thomas GEC, Zarkali A, Ryten M, Shmueli K, Gil-Martinez AL, Leyland LA, et al. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease. Brain. 2021; 144(6): 1787-1798. doi:10.1093/brain/awab084; Hare DJ, Double KL. Iron and dopamine: A toxic couple. Brain. 2016; 139: 1026-1035. doi:10.1093/brain/aww022; Zeng W, Cai J, Zhang L, Peng Q. Iron deposition in Parkinson’s disease: A mini-review. Cell Mol Neurobiol. 2024; 44(1): 26. doi:10.1007/s10571-024-01459-4; Knörle R. Neuromelanin in Parkinson’s disease: From Fenton reaction to calcium signaling. Neurotox Res. 2018; 33(2): 515-522. doi:10.1007/s12640-017-9804-z; David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signal. 2022; 37: 150-170. doi:10.1089/ars.2021.0218; Roe K. An alternative explanation for Alzheimer’s disease and Parkinson’s disease initiation from specific antibiotics, gut microbiota dysbiosis and neurotoxins. Neurochem Res. 2022; 47(3): 517-530. doi:10.1007/s11064-021-03467-y; Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005; 57(2): 176-179. doi:10.1002/ana.20369; Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014; 13(10): 1045-1060. doi:10.1016/s1474-4422(14)70117-6; Guerreiro RJ, Bras JM, Santana I, Januario C, Santiago B, Morgadinho AS, et al. Association of HFE common mutations with Parkinson’s disease, Alzheimer’s disease and mild cognitive impairment in a Portuguese cohort. BMC Neurol. 2006; 6: 24. doi:10.1186/1471-2377-6-24; Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, et al. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front Mol Neurosci. 2017; 10: 339. doi:10.3389/fnmol.2017.00339; Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna). 2022; 129(5-6): 505-520. doi:10.1007/s00702-022-02505-5; Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E. Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem. 1994; 62(3): 1097-1101. doi:10.1046/j.1471-4159.1994.62031097.x; Biesemeier A, Eibl O, Eswara S, Audinot JN, Wirtz T, Pezzoli G, et al. Elemental mapping of neuromelanin organelles of human substantia nigra: Correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nanosecondary ion mass spectrometry. J Neurochem. 2016; 138(2): 339-353. doi:10.1111/jnc.13648; Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip Toxicol. 2019; 12(2): 45-70. doi:10.2478/intox-2019-0007; Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol. 2023; 14: 1173779. doi:10.3389/fneur.2023.1173779; Schäffer E, Piel J. Das Exposom im Fokus prlventiver Maznahmen für die Alzheimer- und Parkinson-Erkrankung [The exposome in the context of preventive measures for Alzheimer’s and Parkinson’s diseases]. Nervenarzt. 2023; 94(10): 892-903. (In German). doi:10.1007/s00115-023-01538-9; Gunnarsson LG, Bodin L. Occupational exposures and neurodegenerative diseases – A systematic literature review and meta-analyses. Int J Environ Res Public Health. 2019; 16(3): 337. doi:10.3390/ijerph16030337; Garza-Lombу C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress. Antioxid Redox Signal. 2018; 28(18): 1669-1703. doi:10.1089/ars.2017.7272; Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019; 74: 230-241. doi:10.1016/j.neuro.2019.07.007; Schofield K. The metal neurotoxins: An important role in current human neural epidemics? Int J Environ Res Public Health. 2017; 14(12): 1511. doi:10.3390/ijerph14121511; Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, et al. Consequences of disturbing manganese homeostasis. Int J Mol Sci. 2023; 24(19): 14959. doi:10.3390/ijms241914959; Gуrska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, et al. Distribution of iron, copper, zinc and cadmium in glia, their influence on glial cells and relationship with neurodegenerative diseases. Brain Sci. 2023; 13(6): 911. doi:10.3390/brainsci13060911; Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, et al. Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimers Dis. 2020; 76(4): 1215-1242. doi:10.3233/JAD-200282; Hémadi M, Miquel G, Kahn PH, El Hage Chahine JM. Aluminum exchange between citrate and human serum transferrin and interaction with transferrin receptor 1. Biochemistry. 2003; 42(10): 3120-3130. doi:10.1021/bi020627p; Guo M, Ji X, Liu J. Hypoxia and alpha-synuclein: Inextricable link underlying the pathologic progression of Parkinson’s disease. Front Aging Neurosci. 2022; 14: 919343. doi:10.3389/fnagi.2022.919343; Carboni E, Lingor P. Insights on the interaction of alphasynuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015; 7: 395-404. doi:10.1039/c4mt00339j; Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk O, et al. Decreased blood-brain barrier Pglycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna). 2008; 115(7): 1001-1009. doi:10.1007/s00702-008-0030-y; Benarroch EE. The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology. 2009; 73(20): 1699-1704. doi:10.1212/WNL.0b013e3181c2937c; Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: signals from the “barrier”. Front Neurosci. 2023; 17: 1047778. doi:10.3389/fnins.2023.1047778; Baksi S, Tripathi AK, Singh N. Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrinbound iron: Implications for visual manifestations of Parkinson’s disease. Free Radic Biol Med. 2016; 97: 292-306. doi:10.1016/j.freeradbiomed.2016.06.025; Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019; 18(6). 00:e13031. doi:10.1111/acel.13031; Wang J, Bi M, Liu H, Song N, Xie J. The protective effect of lactoferrin on ventral mesencephalon neurons against MPP+ is not connected with its iron binding ability. Sci Rep. 2015; 5: 10729. doi:10.1038/srep10729; Koziorowski D, Friedman A, Arosio P, Santambrogio P, Dziewulska D. ELISA reveals a difference in the structure of substantia nigra ferritin in Parkinson’s disease and incidental Lewy body compared to control. Parkinsonism Relat Disord. 2007; 13(4): 214–218. doi:10.1016/j.parkreldis.2006.10.002; James SA, Roberts BR, Hare DJ, de Jonge MD, Birchall IE, Jenkins NL, et al. Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans. Chem Sci. 2015; 6(5): 2952-2962. doi:10.1039/c5sc00233h; Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A. 2008; 105(47): 18578-18583. doi:10.1073/pnas.0804373105; Hirsch EC. Iron transport in Parkinson’s disease. Parkinsonism Relat Disord. 2009; 15(3): 209-211. doi:10.1016/S1353-8020(09)70816-8; Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 2013; 5: 34. doi:10.3389/fnagi.2013.00034; Sian-Hulsmann J, Riederer P. The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. J Neural Transm (Vienna). 2020; 127(5): 749-754. doi:10.1007/s00702-020-02192-0; Abdeen AH, Trist BG, Double KL. Empirical evidence for biometal dysregulation in Parkinson’s disease from a systematic review and Bradford Hill analysis. NPJ Parkinsons Dis. 2022; 8(1): 83. doi:10.1038/s41531-022-00345-4; Ayton S, Lei P, Hare DJ, Duce JA, George JL, Adlard PA, et al. Parkinson’s disease iron deposition caused by nitric oxide-induced loss of β-amyloid precursor protein. J Neurosci. 2015; 35(8): 3591- 3597. doi:10.1523/JNEUROSCI.3439-14.2015; Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One. 2014; 9(12): e114174. doi:10.1371/journal.pone.0114174; Wang W, Zhang X, Gao Q, Xu H. TRPML1: An ion channel in the lysosome. Handb Exp Pharmacol. 2014; 222: 631-645. doi:10.1007/978-3-642-54215-2_24; Mills E, Dong XP, Wang F, Xu H. Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Med Chem. 2010; 2(1): 51-64. doi:10.4155/fmc.09.140; Fonseca Ó, Ramos AS, Gomes LTS, Gomes MS, Moreira AC. New perspectives on circulating ferritin: Its role in health and disease. Molecules. 2023; 28(23): 7707. doi:10.3390/molecules28237707; Kawabata H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol. 2018; 107(1): 31-43. doi:10.1007/s12185-017-2365-3; Rhodes SL, Buchanan DD, Ahmed I, Taylor KD, Loriot MA, Sinsheimer JS, et al. Pooled analysis of iron-related genes in Parkinson’s disease: Association with transferrin. Neurobiol Dis. 2014; 62: 172-178. doi:10.1016/j.nbd.2013.09.019; Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis. 2009; 34(3): 417-431. doi:10.1016/j.nbd.2009.02.009; Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H. Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology. 2003; 60(11): 1761-1766. doi:10.1212/01.wnl.0000068021.13945.7f; Pichler I, Del Greco MF, Gögele M, Lill CM, Bertram L, Do CB, et al. Serum iron levels and the risk of Parkinson disease: A Mendelian randomization study. PLoS Med. 2013; 10(6): e1001462. doi:10.1371/journal.pmed.1001462; Cheng P, Yu J, Huang W, Bai S, Zhu X, Qi Z, et al. Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: A metaanalysis. Neurol Sci. 2015; 36(12): 2269-2275. doi:10.1007/s10072-015-2349-0; Muñoz Y, Carrasco CM, Campos JD, Aguirre P, Núñez MT. Parkinson’s disease: The mitochondria-iron link. Parkinsons Dis. 2016; 2016: 7049108. doi:10.1155/2016/7049108 55. Ramalingam M, Kim SJ. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm (Vienna). 2012; 119(8): 891-910. doi:10.1007/s00702-011-0758-7; Мезенцев Ю.А., Осипова О.А. Обзор современной информации о влиянии оксидативного стресса на преждевременное старение. Современные проблемы здравоохранения и медицинской статистики. 2022; 5: 249-269. doi:10.24412/2312-2935-2022-5-249-269; Bir A, Sen O, Anand S, Khemka VK, Banerjee P, Cappai R, et al. α-synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: Implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014; 131(6): 868-877. doi:10.1111/jnc.12966; https://www.actabiomedica.ru/jour/article/view/5227
-
8Academic Journal
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 79 (2) 233-236
Subject Terms: Antibiotherapy, infecţie, гематоэнцефалический барьер, инфекция, bariera hemato-encefalică, neurochirurgie, антибиотерапия, antibioterapie, neurosurgery, blood-brain barrier, infection, нейрохирургия
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/218023
-
9Academic Journal
Source: История науки и техники.
Subject Terms: STERN, BLOOD-BRAIN BARRIER, ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР, MICROVESSELS, МИКРОСОСУДЫ, ГЭБ, BBB, ШТЕРН
-
10Academic Journal
Authors: Zadorozhna, B.V., Saiko, O.V.
Source: EMERGENCY MEDICINE; № 4.91 (2018); 86-93
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 4.91 (2018); 86-93
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 4.91 (2018); 86-93Subject Terms: cerebral stroke, post-stroke survival rate, blood-brain barrier, vascular endothelium, inflammatory immune response, biochemical markers, церебральный инсульт, постинсультная выживаемость, гематоэнцефалический барьер, сосудистый эндотелий, воспалительный иммунный ответ, биохимические маркеры, 03 medical and health sciences, 0302 clinical medicine, церебральний інсульт, післяінсультна виживаність, гематоенцефалічний бар'єр, судинний ендотелій, запальна імунна відповідь, біохімічні маркери, 3. Good health
File Description: application/pdf
-
11Academic Journal
Authors: V. N. Nikolenko, M. V. Oganesyan, N. A. Rizaeva, A. T. Nikitina, M. P. Pavliv, А. V. Polyakova, E. A. Sozonova, M. N. Khabibov, В. Н. Николенко, М. В. Оганесян, Н. А. Ризаева, А. Т. Никитина, М. П. Павлив, А. В. Полякова, Е. А. Созонова, М. Н. Хабибов
Contributors: The investigation has not been sponsored, Исследование не имело спонсорской поддержки
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 15, No 6 (2023); 115-121 ; Неврология, нейропсихиатрия, психосоматика; Vol 15, No 6 (2023); 115-121 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-6
Subject Terms: гематоэнцефалический барьер, glymphatic system, COVID-19, olfactory epithelium, blood-brain barrier, глимфатическая система, обонятельный эпителий
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/2147/1614; Jackowski C, Bolliger S, Thali MJ. Common and unexpected findings in mummies from ancient Egypt and South America as revealed by CT. Radiographics. 2008 SepOct;28(5):1477-92. doi:10.1148/rg.285075112; Viale GL, Deseri S, Gennaro S, Sehrbundt E. A craniocerebral infectious disease: case report on the traces of Hippocrates. Neurosurgery. 2002 Jun;50(6):1376-8; discussion 1378-9. doi:10.1097/00006123-200206000-00034; Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015 Nov;227(5):702-3. doi:10.1111/joa.12381. Epub 2015 Sep 18.; Schwalbe G. Der Arachnoidalraum, ein Lymphraum und sein Zusammenhang mit dem Perichoroidalraum. Zentralblatt für medizinische Wissenschaft. 1869;7:465-7.; Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl). 1987;175(3):289-301. doi:10.1007/BF00309843; Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992 Dec;13(12):507-12. doi:10.1016/01675699(92)90027-5; Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993 Dec;19(6):480-8. doi:10.1111/j.1365-2990.1993.tb00476.x; Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015 Jun 29;212(7):991-9. doi:10.1084/jem.20142290. Epub 2015 Jun 15.; Semyachkina-Glushkovskaya O, Postnov D, Kurths J. Blood{Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne's Thread in Labyrinths of Hypotheses. Int J Mol Sci. 2018 Nov 30;19(12):3818. doi:10.3390/ijms19123818; Engelhardt B, Carare RO, Bechmann I, et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016 Sep;132(3):317-38. doi:10.1007/s00401-016-1606-5. Epub 2016 Aug 13.; Van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015 Jan;235(2):277-87. doi:10.1002/path.4461; Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol. 2005 Apr;11(2):129-37. doi:10.1080/13550280590922793; Vaira LA, Hopkins C, Petrocelli M, et al. Do olfactory and gustatory psychophysical scores have prognostic value in COVID-19 patients? A prospective study of 106 patients. J Otolaryngol Head Neck Surg. 2020 Aug 6;49(1):56. doi:10.1186/s40463-020-00449-y; Vasvari G, Reisch R, Patonay L. Surgical anatomy of the cribriform plate and adjacent areas. Minim Invasive Neurosurg. 2005 Feb;48(1):25-33. doi:10.1055/s-2004-830180; Kawahara G, Matsuda M, Sugiyama K, et al. [Studies on the Japanese lamina cribrosa – statistical observation on its shape, number of pores and area]. Zasshi Tokyo Ika Daigaku. 1968 Mar;26(1):185-94 (In Jap.).; Williams PL, Bannister LH, Berry MM, et аl. Gray's Anatomy. 38th ed. Edinburgh: Churchill Livingston; 1995.; Kainz J, Stammberger H. The Roof of the Anterior Ethmoid: A Place of Least Resistance in the Skull Base. Am J Rhinol. 1989 Sep 1;3(4):191-9.; Stieda L. Über den Sulcus ethmoidalis der Lamina cribrosa des Siebbeins. Anat Anz. 1891;8:232-7.; Mihalkovics G. Anatomie und Entwicklungsgeschickte der Nase und ihrer Nebenhöhlen. In: Handbuch der Laryngologie und Rhinologie. Wien; 1896.; Wolfgruber H. Über die Lamina cribrosa des Ethmoids. Z Laryngol Rhinol Otol Ihre Grenzgeb. 1968;47:522-9.; Lauralee S. Human Physiology from Cells to Systems. 8th ed. Scarborough, Canada: Nelson Education; 2015.; Nikolenko VN, Oganesyan MV, Vovkogon AD, et al. Current Understanding of Central Nervous System Drainage Systems: Implications in the Context of Neurodegenerative Diseases. Curr Neuropharmacol. 2020;18(11):1054-63. doi:10.2174/1570159X17666191113103850; Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res. 2016 Dec;366(3):667-77. doi:10.1007/s00441-016-2493-8. Epub 2016 Sep 6.; Бурдей ГД. Об изменчивости сосцевидных выпускников и яремных отверстий. В сб.: Труды Кафедры нормальной анатомии Саратовского государственного медицинского института. Вып. 1. Вопросы изменчивости костной и сосудистой систем человека. Саратов; 1955. С. 23-36.; Должиков АА, Бобынцев ИИ, Белых АЕ и др. Патогенез нейродегенеративной патологии и новые концепции транспортно-метаболических систем головного мозга и глаза. Курский научно-практический вестник «Человек и его здоровье». 2020;(1):43-57. doi:10.21626/vestnik/2020-1/06; Лобзин ВЮ, Колмакова КА, Емелин АЮ, Лапина АВ. Глимфатическая система мозга и ее роль в патогенезе болезни Альцгеймера. Вестник Российской военно-медицинской академии. 2019;1(65):230-6.; Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012 Aug 15;4(147):147ra111. doi:10.1126/scitranslmed.3003748; Николенко ВН, Оганесян МВ, Яхно НН и др. Глимфатическая система головного мозга: функциональная анатомия и клинические перспективы. Неврология, нейропсихиатрия, психосоматика. 2018;10(4):94-100. doi:10.14412/2074-2711-2018-4-94-100; Bedussi B, van der Wel NN, de Vos J, et al. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways. J Cereb Blood Flow Metab. 2017 Apr;37(4):1374-85. doi:10.1177/0271678X16655550. Epub 2016 Jan 1.; Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi:10.1007/978-1-4939-2438-7_1; Allen AM et al. Neuronal angiotensin. In: Squire LR, ed. Encyclopedia of Neuroscience. New York: Academic Press; 2009. P. 697-702.; Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci. 2020 Jun;41(6):1329-37. doi:10.1007/s10072-020-04469-4. Epub 2020 May 18.; Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci. 2020 Jul;77:8-12. doi:10.1016/j.jocn.2020.05.017. Epub 2020 May 6.; Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 Jun;92(6):552-5. doi:10.1002/jmv.25728. Epub 2020 Mar 11.; Chen BP, Lane TE. Lack of nitric oxide synthase type 2 (NOS2) results in reduced neuronal apoptosis and mortality following mouse hepatitis virus infection of the central nervous system. J Neurovirol. 2002 Feb;8(1):58-63. doi:10.1080/135502802317247820; Berger JR. COVID-19 and the nervous system. J Neurovirol. 2020 Apr;26(2):143-8. doi:10.1007/s13365-020-00840-5. Epub 2020 May 23.; Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015 Apr;11:44-54. doi:10.1016/j.coviro.2014.12.009. Epub 2015 Feb 12.; Tyler KL. Acute Viral Encephalitis. N Engl J Med. 2018 Aug 9;379(6):557-66. doi:10.1056/NEJMra1708714; Forrester JV, McMenamin PG, Dando SJ. CNS infection and immune privilege. Nat Rev Neurosci. 2018 Nov;19(11):655-71. doi:10.1038/s41583-018-0070-8; McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol. 2011 May;11(5):318-29. doi:10.1038/nri2971; Grass GD, Toole BP. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep. 2015 Nov 24;36(1):e00283. doi:10.1042/BSR20150256; Kanyenda LJ, Verdile G, Boulos S, et al. The dynamics of CD147 in Alzheimer's disease development and pathology. J Alzheimers Dis. 2011;26(4):593-605. doi:10.3233/JAD-2011110584; Murphy C, Doty RL, Duncan HJ. Clinical disorders of olfaction. In: Handbook of Olfaction and Gustation. New York; Basel: Dekker; 2003. P. 461-78.; Вознесенская АЕ, Ключникова МА, Родионова ЕИ, Вознесенская ВВ. Расстройства обоняния и их связь с нейродегенеративными заболеваниями. Сенсорные системы. 2011;25(1):17-31.; Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr Drug Targets. 2017;18(11):1301-13. doi:10.2174/1389450117666160727142401; Barrios AW, Nunez G, Sanchez Quinteiro P, Salazar I. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat. 2014 Jul 14;8:63. doi:10.3389/fnana.2014.00063; Chigr F, Merzouki M, Najimi M. Comment on “The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020 Jul;92(7):703-4. doi:10.1002/jmv.25960. Epub 2020 May 22.; Patterson CE, Lawrence DM, Echols LA, Rall GF. Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol. 2002 May;76(9):4497506. doi:10.1128/jvi.76.9.4497-4506.2002; Tishon A, Lewicki H, Andaya A, et. al. CD4 T cell control primary measles virus infection of the CNS: Regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective. J Virol. 2006 Mar; 30;347(1):234-45. doi:10.1016/j.virol.2006.01.050; Liu T, Khanna KM, Carriere BN, Hendricks RL. Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol. 2001 Nov;75(22):11178-84. doi:10.1128/JVI.75.22.11178-11184.2001; Cantin EM, Hinton DR, Chen J, Openshaw H. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol. 1995 Aug;69(8):4898-905. doi:10.1128/JVI.69.8.4898-4905.1995; Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001;19:65-91. doi:10.1146/annurev.immunol.19.1.65; Gilles PN, Fey G, Chisari FV. Tumor necrosis factor alpha negatively regulates hepatitis B virus gene expression in transgenic mice. J Virol. 1992 Jun;66(6):3955-60. doi:10.1128/JVI.66.6.3955-3960.1992; Lauterbach H, Zuniga EI, Truong P, et al. Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med. 2006 Aug 7;203(8):196375. doi:10.1084/jem.20060039. Epub 2006 Jul 17.; Stevens JC, Dadarwala AD. Variability of olfactory threshold and its role in assessment of aging. Percept Psychophys. 1993 Sep;54(3):296-302. doi:10.3758/bf03205264. Erratum in: Percept Psychophys. 1993 Oct;54(4):562.; Doty RL. Olfaction. Annu Rev Psychol. 2001;52:423-52. doi:10.1146/annurev.psych.52.1.423; Kalmey JK, Thewissen JG, Dluzen DE. Age-related size reduction of foramina in the cribriform plate. Anat Rec. 1998 Jul;251(3):326-9. doi:10.1002/(SICI)10970185(199807)251:33.0.CO;2-T
-
12Academic Journal
Authors: P. Yu. Mylnikov, A. V. Shchulkin, I. V. Chernykh, E. N. Yakusheva, П. Ю. Мыльников, А. В. Щулькин, И. В. Черных, Е. Н. Якушева
Source: Pharmacokinetics and Pharmacodynamics; № 2 (2021); 25-30 ; Фармакокинетика и Фармакодинамика; № 2 (2021); 25-30 ; 2686-8830 ; 2587-7836
Subject Terms: гипоксия, blood-brain barrier, ethylmethylhydroxypyridine succinate, hypoxia, гематоэнцефалический барьер, этилметилгидроксипиридина сукцинат
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/284/272; Воронина Т.А. Мексидол: спектр фармакологических эффектов. Журнал неврологии и психиатрии. 2012;112(12):86–90.; Якушева Е.Н., Щулькин А.В., Попова Н.М., Черных И.В., Титов Д.С. Структура, функции гликопротеина-Р и его значение для рациональной фармакотерапии. Обзоры по клинической фармакологии и лекарственной терапии. 2014;12(2):3–11.; Якушева Е.Н., Щулькин А.В., Черных И.В. Оценка принадлежности мексидола к субстратам, ингибиторам или индукторам гликопротеина-Р. Экспериментальная и клиническая фармакология. 2015;78(5):19–23. DOI:10.30906/0869-2092-2015-78-5-19-23.; Бобков Ю.Г., Иванова И.А. Методологические подходы к поиску фармакологических средств, эффективных при гипоксии и ишемии мозга. Пат. физиол. и эксперим. терапия. 1987;(6):13–19.; Каркищенко Н.Н., Хоронько В.В., Сергеева С.А., Каркищенко В.Н. Фармакокинетика. – Ростов-на-Дону: Феникс; 2001.; Ferry DR, Russell MA, Cullen MH. P-glycoprotein possesses a 1,4- dihydropyridine selective drug acceptor site which is allosterically coupled to a vinca alkaloid selective binding site. Biochem Biophys Res Commun. 1992;188(1):440–445. DOI:10.1016/0006-291x(92)92404-l.; Witt KA, Mark KS, Hom S, Davis TP. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285(6):H2820-31. DOI:10.1152/ajpheart.00589.2003; https://www.pharmacokinetica.ru/jour/article/view/284
-
13Academic Journal
Authors: S. N. Yanishevskiy, L. S. Onishchenko, E. N. Gnevyshev, O. N. Gaikova, E. V. Yakovlev, A. A. Smirnov, С. Н. Янишевский, Л. С. Онищенко, Е. Н. Гневышев, О. Н. Гайкова, Е. В. Яковлев, А. А. Смирнов
Source: Meditsinskiy sovet = Medical Council; № 2 (2022); 8-14 ; Медицинский Совет; № 2 (2022); 8-14 ; 2658-5790 ; 2079-701X
Subject Terms: резидентные макрофаги, stroke, type 2 diabetes mellitus, blood-brain barrier, microglia, monocytic macrophages, resident macrophages, инсульт, сахарный диабет 2-го типа, гематоэнцефалический барьер, микроглия, моноцитарные макрофаги
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6722/6066; Lichanska A.M., Hume D.A. Origins and functions of phagocytes in the embryo. Exp Hematol. 2000;28(6):601–611. https://doi.org/10.1016/s0301-472x(00)00157-0.; Sieweke M.H., Allen J.E. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342(6161):1242974. https://doi.org/10.1126/science.1242974.; Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. https://doi.org/10.1038/nri3671.; Ginhoux F., Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016;44(3):439–449. https://doi.org/10.1016/j.immuni.2016.02.024.; Ajami B., Bennett J.L., Krieger C., McNagny K.M., Rossi F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. https://doi.org/10.1038/nn.2887.; Lawson L.J, Perry V.H., Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48(2):405–415. https://doi.org/10.1016/0306-4522(92)90500-2.; Askew K., Li K., Olmos-Alonso A., Garcia-Moreno F., Liang Y., Richardson P. et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep. 2017;18(2):391–405. https://doi.org/10.1016/j.celrep.2016.12.041.; Tay T.L., Mai D., Dautzenberg J., Fernández-Klett F., Lin G., Sagar et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci. 2017;20(6):793–803. https://doi.org/10.1038/nn.4547.; Guilliams M., Scott C.L. Does niche competition determine the origin of tissue-resident macrophages?. Nat Rev Immunol. 2017;17(7):451–460. https://doi.org/10.1038/nri.2017.42.; Böttcher C., Schlickeiser S., Sneeboer M.A.M., Kunkel D., Knop A., Paza E. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci. 2019;22(1):78–90. https://doi.org/10.1038/s41593-018-0290-2.; Prinz M., Erny D., Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol. 2017;18(4):385–392. https://doi.org/10.1038/ni.3703.; Mrdjen D., Pavlovic A., Hartmann F.J., Schreiner B., Utz S.G., Leung B.P. et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity. 2018;48(2):380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011.; Van Hove H., Martens L., Scheyltjens I., De Vlaminck K., Pombo Antunes A.R., De Prijck S. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22(6):1021–1035. https://doi.org/10.1038/s41593-019-0393-4.; Ajami B., Samusik N., Wieghofer P., Ho P.P., Crotti A., Bjornson Z. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci. 2018;21(4):541–551. https://doi.org/10.1038/s41593-018-0100-x.; Locatelli G., Theodorou D., Kendirli A., Jordão M.J.C., Staszewski O., Phulphagar K. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci. 2018;21(9):1196–1208. https://doi.org/10.1038/s41593-018-0212-3.; Yamasaki R., Lu H., Butovsky O., Ohno N., Rietsch A.M., Cialic R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533-–549. https://doi.org/10.1084/jem.20132477.; Меркулов Г.А. Курс патологогистологической техники. 5-е изд., испр. и доп. Л.: Медицина. Ленингр. отд-ние; 1969. 423 с.; Клочков Н.Д., Онищенко Л.С., Гайкова О.Н. Возможности использования электронной микроскопии для исследования ткани нервной системы на секционном материале. Труды Санкт-Петербургской ассоциации патологоанатомов. 2003;(36/44):36–37.; Бисага Г.Н., Гайкова О.Н., Онищенко Л.С., Чикуров А.А., Поздняков А.В. Рассеянный склероз: от морфологии к патогенезу. СПб.; 2015. 104 с.; Stonesifer C., Corey S., Ghanekar S., Diamandis Z., Acosta S.A., Borlongan C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131. https://doi:10.1016/j.pneurobio.2017.07.004.; Schwartz G.G., Steg P.G., Szarek M., Bhatt D.L., Bittner V.A., Diaz R. et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097–2107. https://doi.org/10.1056/NEJMoa1801174.; Jukema J.W., Zijlstra L.E., Bhatt D.L., Bittner V.A., Diaz R., Drexel H. et al. Effect of Alirocumab on Stroke in ODYSSEY OUTCOMES. Circulation. 2019;140(25): 2054–2062. https://doi.org/10.1161/CIRCULATIONAHA.119.043826.; Giugliano R.P., Pedersen T.R., Saver J.L., Sever P.S., Keech A.C., Bohula E.A. et al. Stroke Prevention With the PCSK9 (Proprotein Convertase SubtilisinKexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients With Stable Atherosclerosis. Stroke. 2020;51(5):1546–1554. https://doi.org/10.1161/STROKEAHA.119.027759.
-
14Academic Journal
Authors: A. A. Orlova, E. A. Kondrat'eva, Ya. A. Dubrovskii, N. V. Dryagina, E. V. Verbitskaya, S. A. Kondratev, A. A. Kostareva, A. N. Kondratev, А. А. Орлова, Е. А. Кондратьева, Я. А. Дубровский, Н. В. Дрягина, Е. В. Вербицкая, С. А. Кондратьев, А. А. Костарева, А. Н. Кондратьев
Contributors: The study was supported by the Russian Foundation for Basic Research under Scientific Project No. 19-29-01066, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-29-01066
Source: General Reanimatology; Том 18, № 2 (2022); 22-36 ; Общая реаниматология; Том 18, № 2 (2022); 22-36 ; 2411-7110 ; 1813-9779
Subject Terms: мультидисциплинарный подход, vegetative state, unresponsive wakefulness syndrome, minimal consciousness state, metabolomics, metabolomic profile, blood-brain barrier, circadian rhythm, glymphatic system, prediction of consciousness recovery, multidisciplinary approach, вегетативное состояние, синдром ареактивного бодрствования, состояние минимального сознания, метаболомика, метаболомный профиль, гематоэнцефалический барьер, циркадианный ритм, глимфатическая система, прогнозирование восстановления сознания
File Description: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2210/1600; https://www.reanimatology.com/rmt/article/view/2210/1609; Пирадов М. А. Российская рабочая группа по проблемам хронических нарушений сознания. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания / М. А. Пирадов [и др.] // Анналы клинической и экспериментальной неврологии. – 2020. – 14 (1): 5–16. DOI:10.25692/ACEN.2020.1.1.; Giacino J. T. The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. NeuroRehabilitation. 2004; 19 (4): 293–298. PMID: 15671583.; Giacino J. T., Katz D. I., Schiff N. D., Whyte J., Ashman E. J., Ashwal S., Barbano R., Hammond F. M., Laureys S., Ling G. S. F., Nakase-Richardson R., Seel R. T., Yablon S., Getchius T. S. D., Gronseth G. S., Armstrong M. J. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018; 91 (10): 450–460. DOI:10.1212/WNL.0000000000005926. PMID: 30089618; PMCID: PMC6139814.; Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., Laureys S., Naccache L., Ozturk S., Rohaut B., Sitt J. D., Stender J., Tiainen M., Rossetti A. O., Gosseries O., Chatelle C. EAN panel on coma, disorders of consciousness. european academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020 May; 27 (5): 741–756. DOI:10.1111/ene.14151. PMID: 32090418.; Luppi A. I., Cain J., Spindler L. R. B., Górska U. J., Toker D., Hudson A. E., Brown E. N., Diringer M. N., Stevens R. D., Massimini M., Monti M. M., Stamatakis E. A., Boly M. & Curing Coma Campaign and Its Contributing Collaborators. Mechanisms underlying disorders of consciousness: bridging gaps to move toward an integrated translational science. Neurocrit Care. 2021; 35 (Suppl 1): 37–54. DOI:10.1007/s12028-021-01281-6. PMID: 34236622; PMCID: PMC8266690.; Iliff J. J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G. A., Benveniste H., Vates G. E., Deane .R, Goldman S. A., Nagelhus E. A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012; 4 (147): 147ra111. DOI:10.1126/scitranslmed.3003748.; Кондратьев А. Н. Глимфатическая система мозга: строение и практическая значимость / А. Н. Кондратьев, Л. М. Ценципер // Анестезиология и реаниматология. – 2019. – 6: 72–80. DOI:10.17116/anaesthesiology201906172.; Lundgaard I., Lu M. L., Yang E., Peng W., Mestre H., Hitomi E., Deane R., Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism. 2017; 37 (6): 2112–2124. DOI:10.1177/0271678X16661202. PMID: 27481936 PMCID: PMC5464705.; Lundgaard I., Li B., Xie L., Kang H., Sanggaard S., Haswell J. D. R., Sun W., Goldman S., Blekot S., Nielsen M., Takano T., Deane R., Nedergaard M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 2015; 6: 7807. DOI:10.1038/ncomms7807.; Hayton S., Maker G. L., Mullaney I., Trengove R. D. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74 (24): 4421–4441. DOI:10.1007/s00018-017-2582-1. PMID: 28669031.; Fukuda A. M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012; 9: 279. DOI:10.1186/1742-2094-9-279 PMCID: PMC3552817. PMID: 23270503.; Gonzalez-Riano, C., Saiz, J., Barbas, C., Bergareche A., Huerta J. M., Ardanaz E., Konjevod M., Mondragon E., Erro M. E., Chirlaque M. D., Abilleira E., Goñi-Irigoyen F., Amiano P. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. npj Parkinsons Dis. 2021; 7 (1): 73 (2021). DOI:10.1038/s41531-021-00216-4. PMID: 34400650. PMCID: PMC8368017.; Qureshi M. I., Vorkas P. A., Coupland A. P., Jenkins I. H., Holmes E., Davies A. H. Lessons from metabonomics on the neurobiology of stroke. Neuroscientist. 2017; 23 (4): 374–382. DOI:10.1177/1073858416673327. PMID: 28345376.; Zheng F., Zhou Y. T, Li P. F., Hu E., Li T., Tang T., Luo J. K., Zhang W., Ding C. S., Wang Y. Metabolomics analysis of hippocampus and cortex in a rat model of traumatic brain injury in the subacute phase. Front Neurosci. 2020; 14: 876. DOI:10.3389/fnins.2020.00876. PMID: 33013291. PMCID: PMC7499474.; Bernard C., Ktorza A., Gautier J. F., Ferré P., Bourron O., Foufelle F. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 2018; 61 (2): 399–412. DOI:10.1007/s00125-017-4462-5. PMID: 28988346.; Eberlin L. S., Gabay M., Fan A. C., Gouw A. M., Tibshirani R. J., Felsher D. W., Zare R. N. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci USA. 2014; 111 (29): 10450–10455. DOI:10.1073/pnas.1409778111. PMCID: PMC4115527. PMID: 24994904.; Chen M., Zhang J., Sampieri K., Clohessy J. G., Mendez L., Gonzalez-Billalabeitia E., Liu X. S., Lee Y. R., Fung J., Katon J. M., Menon A. V., Webster K. A., Ng C., Palumbieri M. D., Diolombi M. S., Breitkopf S. B., Teruya-Feldstein J., Signoretti S., Bronson R. T., Asara J. M., Castillo-Martin M., Cordon-Cardo C., Pandolfi P. P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet. 2018; 50 (2): 206–218. DOI:10.1038/s41588-017-0027-2. PMID: 29335545. PMCID: PMC6714980.; Xiong N., Gao X., Zhao H., Cai F., Zhang F. C., Yuan Y., Liu W., He F., Zacharias L. G., Lin H., Vu H. S., Xing C., Yao D. X., Chen F., Luo B., Sun W., De Berardinis R. J., Xu H., Ge W. P. Using arterial-venous analysis to characterize cancer metabolic consumption in patients. Nat Commun. 2020; 11 (1): 3169. DOI:10.1038/s41467-020-16810-8. PMID: 32576825. PMCID: PMC7311411.; Chong J., Wishart D. S., Xia J. Using Metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics. 2019; 68 (1): e86. DOI:10.1002/cpbi.86. PMID: 31756036.; Xia J., Wishart D. S. Metabolomic data processing, analysis, and interpretation using metaboanalyst. Current Protocols in Bioinformatics. 2011; 34 (1): 14.10.1–14.10.48. DOI:10.1002/0471250953.bi1410s34.; Yu J., Meng F., He F., Chen F., Bao W., Yu Y., Zhou J., Gao J., Li J., Yao Y., Ge W. P., Luo B. Metabolic abnormalities in patients with chronic disorders of consciousness. Aging and disease. 2021; 12 (2): 386–403. DOI:10.14336/AD.2020.0812.; Proitsi P., Kim M., Whiley L., Simmons A., Sattlecker M., Velayudhan L., Lupton M. K., Soininen H., Kloszewska I., Mecocci P., Tsolaki M., Vellas B., Lovestone S., Powell J. F., Dobson R. J. B., Legido-Quigley C. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement, 2017; 13 (2): 140–151. DOI:10.1016/j.jalz.2016.08.003. PMID: 27693183.; Chitturi J., Li Y., Santhakumar V., Kannurpatti S. S. Early behavioral and metabolomic change after mild to moderate traumatic brain injury in the developing brain. Neurochem Int. 2018; 120: 75–86. DOI:10.1016/j.neuint.2018.08.003. PMID: 30098378. PMCID: PMC6257993.; Zheng F., Xia Z. A., Zeng Y. F., Luo J. K., Sun P., Cui H. J., Wang Y., Tang T., Zhou Y. T. Plasma metabolomics profiles in rats with acute traumatic brain injury. PLoS One. 2017; 12 (8), e0182025. DOI:10.1371/journal.pone.0182025. PMID: 28771528. PMCID: PMC5542452.; Dawiskiba, T., Wojtowicz, W., Qasem, B., Tukaszewski M., Mielko K. A., Dawiskiba A., Banasik M., Skóra J.P., Janczak D., Młynarz P. Braindead and coma patients exhibit different serum metabolic profiles: preliminary investigation of a novel diagnostic approach in neurocritical care. Sci Rep. 2021; 11 (1): 15519. DOI:10.1038/s41598-021-94625-3. PMID: 34330941. PMCID: PMC8324823.; Tsai I. L., Kuo T. C., Ho T. J., Harn Y. C., Wang S. Y., Fu W. M., Kuo C. H., Tseng Y. J. Metabolomic dynamic analysis of hypoxia in MDA-MB-231 and the comparison with inferred metabolites from transcriptomics data. Cancers (Basel). 2013; 5 (2): 491–510. DOI:10.3390/cancers5020491. PMCID: PMC3730319. PMID: 24216987.; Solberg R., Kuligowski J., Pankratov L., Escobar J., Quintás G., Lliso I., Sánchez-Illana A., Saugstad O. D., Vento M. Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr Res. 2016; 80 (2): 284–292. DOI:10.1038/pr.2016.66. PMID: 27055187.; Baranovicova E., Grendar M., Kalenska D., Tomascova A., Cierny D., Lehotsky J. NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J. Physiol. Biochem. 2018; 74 (3): 417–429. DOI:10.1007/s13105-018-0632-2. PMID: 29752707.; Liu P., Li .R, Antonov A. A., Wang L., Li W., Hua Y., Guo H., Wang L., Liu P., Chen L., Tian Y., Xu F., Zhang Z., Zhu Y., Huang Y. Discovery of metabolite biomarkers for acute ischemic stroke progression. J. Proteome Res. 2017; 16 (2): 773–779. DOI:10.1021/acs.jproteome.6b00779. PMID: 28092160.; Wang D., Kong J., Wu J., Wang X., Lai M. GC–MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 2017; 642: 7–13. DOI:10.1016/j.neulet.2017.01.039 PMID: 28111353.; Wang Y., Wang Y. G., Ma T. F., Li M., Gu S. L. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H NMR-based metabolomics contributes to potential biomarkers. Int. J. Clin. Exp. Pathol. 2014; 7 (7): 4067–4075. PMID: 25120785. PMCID: PMC4129020.; Fiehn O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 2002; 48 (1–2): 155–171. DOI:10.1023/A:1013713905833. PMID: 11860207.; Wishart, D. S., Feunang Y. D., Marcu A., Guo A. C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., Sayeeda Z., Lo E., Assempour N., Berjanskii M., Singhal S., Arndt D., Liang Y., Badran H., Grant J., Serra-Cayuela A., Liu Y., Mandal R., Neveu V., Pon A., Knox C., Wilson M., Manach C., Scalbert A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018; 46 (D1)D608–D617. DOI:10.1093/nar/gkx1089. PMID: 29140435. PMCID: PMC5753273.; Дрягина Н. В. Метаболом головного мозга / Н. В. Дрягина и [др.] // Российский неврологический журнал. – 2020. – 25 (1): 4–12. DOI 10.30629/2658-7947-2020-25-1-4-12.; Лохов П. Г. Метаболомный анализ крови: назначение, реализация, интерпретация данных / П. Г. Лохов, А. В. Лисица, А. И. Арчаков // Биомедицинская химия. – 2017. – 63 (3): 232–240. DOI:10.18097/PBMC20176303232. PubMed: 28781256.; Черневская Е. А. Микробиота кишечника при критических состояниях (обзор) / Е. А. Черневская, Н. В. Белобородова. – Общая реаниматология. – 2018. – 14 (5): 96–119. DOI:10.15360/1813-9779-2018-5-96-119.; Nicholson J. K., Lindon J. C. & Holmes E. «Metabonomics»: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999; 29 (11): 1181–1189. DOI:10.1080/004982599238047. PMID: 10598751.; Nicholson J. K., Holmes E., Kinross J. M., Darzi A. W., Takats Z., Lindon J. C. Metabolic phenotyping in clinical and surgical environments. Nature. 2012; 491 (7424): 384–392. DOI:10.1038/nature11708. PMID: 23151581.; Trifonova O. P., Maslov D. L., Balashova E. E., Lokhov P. G. Mass spectrometry-based metabolomics diagnostics — myth or reality? Expert Review of Proteomics. 2021; 18: 7–12. DOI:10.1080/14789450.2021.1893695.; https://www.reanimatology.com/rmt/article/view/2210
-
15Academic Journal
Authors: Leonov, G.E., Vakhrushev, I.V., Novikova, V.D., Saryglar, R.Y., Baskaev, K.K., Lupatov, A.Y., Kholodenko, I.V., Yarygin, K.N.
Source: Biomedical Chemistry: Research and Methods; Vol. 7 No. 4 (2024); e00238
Biomedical Chemistry: Research and Methods; Том 7 № 4 (2024); e00238Subject Terms: гематоэнцефалический барьер, эндотелиоциты, астроциты, перициты, сокультивирование клеток, blood-brain barrier, endothelial cells, astrocytes, pericytes, cell co-cultivation
File Description: application/pdf; text/html
-
16Academic Journal
Source: Nauchno-prakticheskii zhurnal «Patogenez». :30-36
-
17Academic Journal
Source: Российские биомедицинские исследования, Vol 6, Iss 2 (2021)
Subject Terms: гематоэнцефалический барьер, регуляторные пептиды, транспортные системы, Medicine (General), R5-920
File Description: electronic resource
-
18Academic Journal
Authors: A. I. Volkov, M. V. Melnikov, A. N. Boyko, А. И. Волков, М. В. Мельников, А. Н. Бойко
Contributors: The research was carried out within the state assignment № АААА-А19-119042590021-0., Работа выполнена в рамках государственного задания № АААА-А19-119042590021-0.
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 4-9 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 4-9 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-1S
Subject Terms: рассеянный склероз, blood-brain barrier, glymphatic system, multiple sclerosis, гематоэнцефалический барьер, глимфатическая система
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/1640/1289; De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol. 2018 Mar 1;77(3):178-92. doi:10.1093/jnen/nlx114; Мельников МВ, Пащенков МВ, Бойко АН. Дендритные клетки при рассеянном склерозе. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;117(2):22-3.; Kivisäkk P, Mahad DJ, Callahan MK, et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8389-94. doi:10.1073/pnas.1433000100. Epub 2003 Jun 26.; Provencio JJ, Kivisäkk P, Tucky BH, et al. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. J Neuroimmunol. 2005 Jun;163(1-2):179-84. doi:10.1016/j.jneuroim.2005.03.003. Epub 2005 Apr 22.; Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012 Sep;12(9):623-35. doi:10.1038/nri3265. Epub 2012 Aug 20.; De Graaf MT, Smitt PA, Luitwieler RL, et al. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom. 2011 Jan;80(1):43-50. doi:10.1002/cyto.b.20542; Sallusto F, Impellizzieri D, Basso C, et al. T-cell trafficking in the central nervous system. Immunol Rev. 2012 Jul;248(1):216-27. doi:10.1111/j.1600-065X.2012.01140.x; Steinbach K, Vincenti I, Kreutzfeldt M, et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J Exp Med. 2016 Jul 25;213(8):1571-87. doi:10.1084/jem.20151916. Epub 2016 Jul 4.; Ghersi-Egea JF, Strazielle N, Catala M, et al. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018 Mar;135(3):337-61. doi:10.1007/s00401-018-1807-1. Epub 2018 Jan 24.; Baruch K, Ron-Harel N, Gal H, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2264-9. doi:10.1073/pnas.1211270110. Epub 2013 Jan 18.; Kunis G, Baruch K, Rosenzweig N, et al. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain. 2013 Nov;136(Pt 11):3427-40. doi:10.1093/brain/awt259. Epub 2013 Oct 1.; Hochmeister S, Zeitelhofer M, Bauer J, et al. After injection into the striatum, in vitrodifferentiated microglia- and bone marrowderived dendritic cells can leave the central nervous system via the blood stream. Am J Pathol. 2008 Dec;173(6):1669-81. doi:10.2353/ajpath.2008.080234. Epub 2008 Oct 30.; Mohammad MG, Tsai VW, Ruitenberg MJ, et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest. 2014 Mar;124(3):1228-41. doi:10.1172/JCI71544. Epub 2014 Feb 24.; Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annu Rev Pathol. 2018 Jan 24;13:379-94. doi:10.1146/annurev-pathol-051217-111018; Abbott NJ, Pizzo ME, Preston JE, et al. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol. 2018 Mar;135(3):387-407. doi:10.1007/s00401-018-1812-4. Epub 2018 Feb 10.; Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019 Feb 27;5(2):eaav5447. doi:10.1126/sciadv.aav5447. eCollection 2019 Feb.; Albargothy NJ, Johnston DA, MacGregor-Sharp M, et al. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018 Jul;136(1):139-52. doi:10.1007/s00401-018-1862-7. Epub 2018 May 12.; Papadopoulos Z, Herz J, Kipnis J. Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. J Immunol. 2020 Jan 15;204(2):286-93. doi:10.4049/jimmunol.1900838; Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med. 2018 Jun;24(6):542-59. doi:10.1016/j.molmed.2018.04.003. Epub 2018 May 3.; Sandrone S, Moreno-Zambrano D, Kipnis J, van Gijn J. A (delayed) history of the brain lymphatic system. Nat Med. 2019 Apr;25(4):538-40. doi:10.1038/s41591-019-0417-3; Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016 Feb 18;530(7590):349-53. doi:10.1038/nature16939. Epub 2016 Feb 10.; Hatfield JK, Brown MA. Group 3 innate lymphoid cells accumulate and exhibit diseaseinduced activation in the meninges in EAE. Cell Immunol. 2015 Oct;297(2):69-79. doi:10.1016/j.cellimm.2015.06.006. Epub 2015 Jul 2.; Pekny M, Pekna M, Messing A, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016 Mar;131(3):323-45. doi:10.1007/s00401-015-1513-1. Epub 2015 Dec 15.; Brambilla R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 2019 May;137(5):757-83. doi:10.1007/s00401-019-01980-7. Epub 2019 Mar 7.; Sims NR, Yew WP. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int. 2017 Jul;107:88-103. doi:10.1016/j.neuint.2016.12.016. Epub 2017 Jan 3.; Guerrero BL, Sicotte NL. Microglia in Multiple Sclerosis: Friend or Foe? Front Immunol. 2020 Mar 20;11:374. doi:10.3389/fimmu.2020.00374. eCollection 2020.; Gharagozloo M, Gris KV, Mahvelati T, et al. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front Immunol. 2018 Jan 18;8:2012. doi:10.3389/fimmu.2017.02012. eCollection 2017.; Melnikov M, Sviridova A, Rogovskii V, et al. Serotoninergic system targeting in multiple sclerosis: the prospective for pathogenetic therapy. Mult Scler Relat Disord. 2021 Mar 10;51:102888. doi:10.1016/j.msard.2021.102888. Epub ahead of print.; Yogev N, Frommer F, Lukas D, et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity. 2012 Aug 24;37(2):264-75. doi:10.1016/j.immuni.2012.05.025. Epub 2012 Aug 16.; Кожиева МХ, Мельников МВ, Роговский ВС и др. Кишечная микробиота человека и рассеянный склероз. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017;117(10-2):11-9. doi:10.17116/jnevro201711710211-19; Malinova TS, Dijkstra CD, de Vries HE. Serotonin: A mediator of the gut-brain axis in multiple sclerosis. Mult Scler. 2018 Aug;24(9):1144-50. doi:10.1177/1352458517739975. Epub 2017 Nov 9.; Castillo-Alvarez F, Marzo-Sola ME. Role of intestinal microbiota in the development of multiple sclerosis. Neurologia. 2017 Apr;32(3):175-84. doi:10.1016/j.nrl.2015.07.005. Epub 2015 Sep 14.; Feige J, Moser T, Bieler L, et al. Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats. Nutrients. 2020 Mar 16;12(3):783. doi:10.3390/nu12030783; Morris G, Reiche EMV, Murru A, et al. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol. 2018 Aug;55(8):6282-306. doi:10.1007/s12035-017-0843-5. Epub 2018 Jan 2.; Libbey JE, Cusick MF, Fujinami RS. Role of pathogens in multiple sclerosis. Int Rev Immunol. Jul-Aug 2014;33(4):266-83. doi:10.3109/08830185.2013.823422. Epub 2013 Nov 22.; Bar-Or A, Pender MP, Khanna R, et al. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med. 2020 Mar;26(3):296-310.; Gabibov AG, Belogurov AA Jr, Lomakin YaA, et al. Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen. FASEB J. 2011 Dec;25(12):4211-21. doi:10.1096/fj.11-190769. Epub 2011 Aug 22.; Patel J, Balabanov R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci. 2012;13(8):10647-59. doi:10.3390/ijms130810647. Epub 2012 Aug 23.; Melnikov M, Sharanova S, Sviridova A, et al. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One. 2020 Oct 30;15(10):e0240305. doi:10.1371/journal.pone.0240305. eCollection 2020.; Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006 Sep;116(9):2385-92. doi:10.1172/JCI28330; Pöllinger B, Krishnamoorthy G, Berer K, et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. 2009 Jun 8;206(6):1303-16. doi:10.1084/jem.20090299. Epub 2009 Jun 1.; Titus HE, Chen Y, Podojil JR, et al. Pre-clinical and Clinical Implications of «Inside-Out» vs. «Outside-In» Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci. 2020 Oct 27;14:599717. doi:10.3389/fncel.2020.599717. eCollection 2020.; Li R, Rezk A, Miyazaki Y, et al. Canadian B cells in MS Team. Proinflammatory GMCSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015 Oct 21;7(310):310ra166. doi:10.1126/scitranslmed.aab4176; Cepok S, Zhou D, Vogel F, et al. The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol. 2003 Jun;60(6):849-55. doi:10.1001/archneur.60.6.849; Rupprecht TA, Plate A, Adam M, et al. The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation. 2009 Dec 30;6:42. doi:10.1186/1742-2094-6-42; DiSano KD, Gilli F, Pachner AR. Intrathecally produced CXCL13: A predictive biomarker in multiple sclerosis. Mult Scler J Exp Transl Clin. 2020 Dec 16;6(4):2055217320981396. doi:10.1177/2055217320981396. eCollection Oct-Dec 2020.
-
19Academic Journal
Authors: Ya. Gorina V., Yu. Komleva K., E. Osipova D., A. Morgun V., N. Malinovskaya A., O. Lopatina L., A. Salmina B., Я. Горина В., Е. Осипова Д., А. Моргун В., Н. Малиновская А., Ю. Комлева К., О. Лопатина Л., А. Салмина Б.
Contributors: This work was supported by a grant from the President of the Russian Federation for state support of leading scientific schools of the Russian Federation (No. SSh-6240.2018.7)., Работа выполнена при поддержке гранта Президента РФ для государственной поддержки ведущих научных школ РФ (№ НШ-6240.2018.7).
Source: Bulletin of Siberian Medicine; Том 19, № 4 (2020); 46-52 ; Бюллетень сибирской медицины; Том 19, № 4 (2020); 46-52 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-4
Subject Terms: angiogenesis, blood-brain barrier, CD31, Alzheimer’s disease, ангиогенез, гематоэнцефалический барьер, болезнь Альцгеймера
File Description: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4149/2869; https://bulletin.tomsk.ru/jour/article/view/4149/2900; Kumfor F., Piguet O. Emotion recognition in the dementias: brain correlates and patient implications. Neurodegener Dis. Manag. 2013; 3 (3): 277–288. DOI:10.2217/nmt.13.16.; Chui H.C., Ramirez-Gomez L. Clinical and imaging features of mixed Alzheimer and vascular pathologies. Alzheimers Res. Ther. 2015; 7 (1): 21. DOI:10.1186/s13195-015-0104-7.; Kalaria R.N. Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis. 2002; 13 (2): 48–52. DOI:10.1159/000049150.; Goos J.D.C., Kester M.I., Barkhof F., Klein M., Blankenstein M.A., Scheltens P. van der Flier W.M. Patients with Alzheimer disease with multiple microbleeds. Stroke. 2009; 40 (11): 3455–3460. DOI:10.1161/STROKEAHA.109.558197.; Garcia-Alloza M., Gregory J., Kuchibhotla K.V., Fine S., Wei Y., Ayata C., Frosch M.P., Greenberg S.M., Bacskai B.J. Cerebrovascular lesions induce transient β-amyloid deposition. Brain. 2011; 134 (12): 3694–3704. DOI:10.1093/brain/awr300.; Uryu K., Laurer H., McIntosh T., Praticò D., Martinez D., Leight S., Lee V.M., Trojanowski J.Q. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of alzheimer amyloidosis. J. Neurosci. 2002; 22 (2): 446–454. DOI:10.1523/JNEUROSCI.22-02-00446.2002.; Sengillo J.D., Winkler E.A., Walker C.T., Sullivan J.S., Johnson M., Zlokovic B.V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013; 23 (3): 303–310. DOI:10.1111/bpa.12004.; Montagne A., Barnes S.R., Sweeney M.D., Halliday M.R., Sagare A.P., Zhao Z., Toga A.W., Jacobs R.E., Liu C.Y., Amezcua L., Harrington M.G., Chui H.C., Law M., Zlokovic B.V. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015; 85 (2): 296–302. DOI:10.1016/j.neuron.2014.12.032.; Manaenko A., Chen H., Kammer J., Zhang J. H., Tang J. Comparison Evans blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J. Neurosci. Methods. 2011; 195 (2): 206–210. DOI:10.1016/j.jneumeth.2010.12.013.; Encinas J.M., Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 2008; 85: 243–272. DOI:10.1016/S0091-679X(08)85011-X.; Kalaria R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016; 131 (5): 659–685. DOI:10.1007/s00401-016-1571-z.; Grammas P., Moore P., Weigel P.H. Microvessels from Alzheimer’sdisease brains kill neurons in vitro. Am. J. Pathol. 1999; 154 (2): 337–342. DOI:10.1016/S0002-9440(10)65280-7.; Biron K.E., Dickstein D.L., Gopaul R., Jefferies W.A. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011; 6 (8): e23789. DOI:10.1371/journal.pone.0023789.; Burgmans S., van de Haar H.J., Verhey F.R.J., Backes W.H. Amyloid-β interacts with blood-brain barrier function in dementia: a systematic review. J. Alzheimers Dis. 2013; 35 (4): 859–873. DOI:10.3233/JAD-122155.; Marco S., Skaper S.D. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci. Lett. 2006; 401 (3): 219–224. DOI:10.1016/j.neulet.2006.03.047.; Jais A., Brüning J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 2017; 127 (1): 24–32. DOI:10.1172/JCI88878.; Davidson T.L., Monnot A., Neal A.U., Martin A.A., Horton J.J., Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol. Behav. 2012; 107 (1): 26–33. DOI:10.1016/j.physbeh.2012.05.015.; https://bulletin.tomsk.ru/jour/article/view/4149
-
20Academic Journal
Source: Российские биомедицинские исследования, Vol 6, Iss 2 (2021)
Subject Terms: гематоэнцефалический барьер, регуляторные пептиды, транспортные системы, Medicine (General), R5-920