Εμφανίζονται 1 - 12 Αποτελέσματα από 12 για την αναζήτηση '"гематоретинальный барьер"', χρόνος αναζήτησης: 0,57δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The research was funded by Russian Science Foundation, project number 21-15-00047., Работа выполнена при финансовой поддержке Российского научного фонда (проект №21-15- 00047). Эксперименты проведены с соблюдением этических норм работы с животными, установленных в Директивой 2010/63/ЕС Европейского парламента и Совета европейского союза от 22 сентября 2010 г., и одобрены Комиссией по биоэтике института цитологии и генетики Российской академии наук (Протокол №85/1 от 18.06.2021).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 205-212 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 205-212 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1262/634; Fields M.A., Del Priore L.V., Adelman R.A., Rizzolo L.J. Interactions of the choroid, Bruch’s membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog. Retin. Eye Res. 2020;76:100803.; Campbell M., Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv. Exp. Med. Biol. 2012;763:70–84.; Naylor A., Hopkins A., Hudson N., Campbell M. Tight junctions of the outer blood retina barrier. Int. J. Mol. Sci. 2019;21(1):211.; Díaz-Coránguez M., Ramos C., Antonetti D.A. The inner blood-retinal barrier: сellular basis and development. Vision Res. 2017;139:123–137.; Vermette D., Hu P., Canarie M.F., Funaro M., Glover J., Pierce R.W. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med. Exp. 2018;6(1):37.; O’Leary F., Campbell M. The blood-retina barrier in health and disease. FEBS J. 2023;290(4):878–891.; Фурсова А.Ж., Дербенева А.С., Васильева М.А., Никулич И.Ф., Тарасов М.С., Гамза Ю.А., Чубарь Н.В., Гусаревич О.Г., Дмитриева Е.И., Кожевникова О.С., Колосова Н.Г., Елизарова А.А. Новые данные о патогенетических механизмах развития возрастной макулярной дегенерации. Вестн. офтальмол. 2022;138(2):120–130.; Kozhevnikova O.S., Fursova A.Z., Derbeneva A.S., Nikulich I.F., Tarasov M.S., Devyatkin V.A., Rumyantseva Y.V., Telegina D.V., Kolosova N.G. Association between polymorphisms in CFH, ARMS2, CFI, and C3 Genes and response to anti-VEGF treatment in neovascular age-related macular degeneration. Biomedicines. 2022;10(7):1658.; Kozhevnikova O.S., Telegina D.V., Tyumentsev M.A., Kolosova N.G. Disruptions of Autophagy in the rat retina with age during the development of age-related-maculardegeneration-like Retinopathy. Int. J. Mol. Sci. 2019;20(19):4804.; Kozhevnikova O.S., Telegina D.V., Devyatkin V.A., Kolosova N.G. Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats. Biogerontology. 2018;19(3):223–235.; Telegina D.V., Kozhevnikova O.S., Bayborodin S.I., Kolosova N.G. Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats. Sci. Rep. 2017;7(1):41533.; Kolosova N.G., Kozhevnikova O.S., Muraleva N.A., Rudnitskaya E.A., Rumyantseva Y.V., Stefanova N.A., Telegina D.V., Tyumentsev M.A., Fursova A.Zh. SkQ1 as a Tool for controlling accelerated senescence program: experiments with OXYS rats. Biochemistry (Mosc.). 2022;87(12):1552–1562.; Kelley K.A. Transport of mouse lines by shipment of live embryos. Methods enzymology. Guide to techniques in mouse development, part A: Mice, embryos, and cells, 2nd edition, vol. 476. Eds. P.M. Wassarman and P.M. Soriano. Academic Press; 2010:25–36.; Goldim M.P. de S., Della Giustina A., Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr. Protoc. Immunol. 2019;126(1):e83.; Kim Y., Lee S., Zhang H., Lee S., Kim H., Kim Y., Won M.H., Kim Y.M., Kwon Y.G. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J. Neuroinflammation. 2020;17(1):48.; Perfusion of Mouse – Bridges Lab Protocols [Электронный ресурс]. URL: http://bridgeslab.sph.umich.edu/protocols/index.php?title=Perfusion_of_Mouse&mobileaction=toggle_view_mobile (дата обращения: 17.01.2023).; Wang H.L., Lai T.W. Optimization of Evans blue quantitation in limited rat tissue samples. Sci. Rep. 2014;4(1):6588.; Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745–1761.; Telegina D.V., Korbolina E.E., Ershov N.I., Kolosova N.G., Kozhevnikova O.S. Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy. Cell Cycle. 2015;14(22):3544–3556.; Cunha-Vaz J. The blood-retinal barrier in the management of retinal disease: EURETINA award lecture. Ophthalmologica. 2017;237(1):1–10.; Ivanova E., Alam N.M., Prusky G.T., Sagdullaev B.T. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight. 2019;4(8):e126747.; Shu D.Y., Butcher E., Saint-Geniez M. EMT and EndMT: Emerging roles in age-related macular degeneration. Int. J. Mol. Sci. 2020;21(12):4271.; Telegina D.V., Kozhevnikova O.S., Fursova A.Z., Kolosova N.G. Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1. Biochemistry (Mosc.). 2020;85(12):1640–1649.; Rizzolo L.J. Development and role of tight junctions in the retinal pigment epithelium. Int. Rev. Cytol. 2007;258:195–234.; Rizzolo L.J., Peng S., Luo Y., Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog. Retin. Eye Res. 2011;30(5):296–323.; Markovets A.M., Saprunova V.B., Zhdankina A.A., Fursova A.Zh., Bakeeva L.E., Kolosova N.G. Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany N.Y.). 2010;3(1):44–54.; Xu Q., Qaum T., Adamis A.P. Sensitive bloodretinal barrier breakdown quantitation using Evans blue. Invest. Ophthalmol. Vis. Sci. 2001;42(3):789–794.; Kozhevnikova O.S., Fursova A.Z., Markovets A.M., Telegina D.V., Muraleva N.A., Kolosova N.G. VEGF and PEDF levels in the rat retina: effects of aging and AMD-like retinopathy. Adv. Gerontol. 2018;31(3):339–344. 29. Barber A.J., Antonetti D.A., Gardner T.W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Sci. 2000;41(11):3561–3568.; Liu X., Dreffs A., Díaz-Coránguez M., Runkle E.A., Gardner T.W., Chiodo V.A., Hauswirth W.W., Antonetti D.A. Occludin S490 phosphorylation regulates vascular endothelial growth factor-induced retinal neovascularization. Am. J. Pathol. 2016;186(9):2486–2499.; Edwards M.M., McLeod D.S., Bhutto I.A., Grebe R., Duffy M., Lutty G.A. Subretinal glial membranes in eyes with geographic atrophy. Invest. Ophthalmol. Vis. Sci. 2017;58(3):1352–1367.; Cho C., Wang Y., Smallwood P. M., Williams J., Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. eLife. 2019;8:e45542.; Zhang S., Li X., Liu W., Zhang X., Huang L., Li S., Yang M., Zhao P., Yang J., Fei P., Zhu X., Yang Z. Wholeexome sequencing identified DLG1 as a candidate gene for familial exudative vitreoretinopathy. Genet. Test Mol. Biomarkers. 2021;25(5):309–316.

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 6, № 2 (2007); 42-46 ; Бюллетень сибирской медицины; Том 6, № 2 (2007); 42-46 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2017-16-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/3249/2029; Амиров А.Н. Гигиенические и офтальмологические аспекты коррекции профессионально значимых зрительных нарушений у пользователей видеодисплейных терминалов: Автореф. дис. . канд. мед. наук. Казань, 2001. 27 с.; Антипов В.В., Федоров В.П., Ушаков И.Б., Давыдов Б.И. Проблемы космической биологии. Л.: Наука, 1989. Т. 66. 328 с.; Бредбери М. Концепция гематоэнцефалического барьера. М.: Медицина, 1983. 480 с.; Василенко И.Я. Радиобиологические проблемы малых доз радиации // Воен.-мед. журн. 1993. № 4. С. 28-32.; Гусова Б.А., Асланукова Л.А. Повышение устойчивости зрительной системы у пользователей зрительных видеотерминалов // Материалы 55-й региональной конференции по фармации, фармакологии и подготовке кадров. Пятигорск, 2000. С. 183.; Котелянская К.Е., Обуховский Г.А. Ангиопатии органа зрения у жителей радиационно пораженных территорий Ровенской области // Офтальм. журн. 2000. № 5. С. 43-45.; Aydemir O., Celebi S., Yilmaz T. et al. Protective Effects of Vitamin E Forms (Alpha-tocopherol, Gamma-tocopherol and d-alpha-tocopherol Polyethylene Glycol 1000 Succinate) on Retinal Edema During Ischemia-reperfusion Injury in the Guinea Pig Retina // Int. Ophthalmol. 2004. V. 25. № 5-6. P. 283-289.; Cahill G.M., Besharse J.C. Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina // Vis. Neurosci. 1992. V. 8. № 5. P. 487-490.; Demirchoglian G.G. On the effect of ionizing radiation upon the retina in man and animals // Annu. Rev. Biophys. Biomol. Struct. 2002. V. 31. P. 443-484.; Kozaki J., Takeuchi M., Takehashi K. et al. Light-induced retinal damage in pigmented rabbit-2. Effect of alpha-tocopherol // Jpn. J. Ophthalmol. 1992. V. 36. № 3. P. 315-322.; Organisciak D.T., Li M., Darrow R.M., Farber D.B. Photoreceptor cell damage by light in young Royal College of Surgeons rats // Curr. Eye Res. 1999. № 19. Р. 188-196.; Peyman G.A., Kazi A.A., Unal M. et al. Problems with and pitfalls of photodynamic therapy // Ophthalmology. 2000. V. 107. № 1. Р. 29 -35.; Wenzel A., Reme C.E., Williams T.P. et al. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration // J. Neurosci. 2001. V. 21. № 1. Р. 53-58.; Winkler B.S., Boulton M.E., Gottsch J.D., Sternberg P. Oxidative damage and age-related macular degeneration // Molecular Vision. 1999. № 5. Р. 32.; https://bulletin.tomsk.ru/jour/article/view/3249

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12