-
1Academic Journal
Authors: N. I. Kurysheva, V. Yu. Kim, V. E. Kim, A. B. Laver, Н. И. Курышева, В. Ю. Ким, В. Е. Ким, А. Б. Лавер
Source: National Journal glaucoma; Том 22, № 3 (2023); 15-25 ; Национальный журнал Глаукома; Том 22, № 3 (2023); 15-25 ; 2311-6862 ; 2078-4104
Subject Terms: перипапиллярная атрофия хориоидеи, optical coherence tomography, OCT angiography, lamina cribrosa, choriocapillaris drop out, peripapillary atrophy of the choroid, оптическая когерентная томография, ОКТ-ангиография, решетчатая мембрана, выпадение хориокапилляров
File Description: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/421/420; https://www.glaucomajournal.ru/jour/article/downloadSuppFile/421/116; https://www.glaucomajournal.ru/jour/article/downloadSuppFile/421/117; Downs J.C., Girkin C.A. Lamina cribrosa in glaucoma. Current opinion in ophthalmology 2017; 28(2):113-119. https://doi.org/10.1097/ICU.0000000000000354; Куренков В.В., Клюганов В.С., Кузнецова Н.В., Чиненова К.В., Коновалов М.Е., Пожарицкий М.Д. Визуализация решетчатой пластинки склеры с помощью оптической когерентной томографии. Возможности и перспективы диагностики. Обзор. Офтальмология 2019; 16(2):159-162. https://doi.org/10.18008/1816-5095-2019-2-159-162; Tan N.Y., Koh V., Girard M.J., Cheng C.Y. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clinical & experimental ophthalmology 2018; 46(2):177-188. https://doi.org/10.1111/ceo.13126; Strickland R.G., Garner M.A., Gross A.K., Girkin C.A. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. International journal of molecular sciences 2022; 23(15):8068. https://doi.org/10.3390/ijms23158068; Li L., Song F. Biomechanical research into lamina cribrosa in glaucoma. National science review 2020; 7(8):1277-1279. https://doi.org/10.1093/nsr/nwaa063; Арутюнян Л.Л., Анисимова С.Ю., Морозова Ю.С., Анисимов С.И. Биометрические и морфометрические параметры решетчатой пластинки у пациентов с разными стадиями первичной открытоугольной глаукомы. Национальный журнал глаукома 2021; 20(3):11-19. https://doi.org/10.25700/2078-4104-2021-20-3-11-19; Курышева Н.И, Ким В.Ю. Исследование решетчатой мембраны склеры при глаукоме. Точка зрения. Восток – Запад 2022; 2:60-69. https://doi.org/10.25276/2410-1257-2022-2-60-66; Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of ophthalmology 1981; 99(4):635-649. https://doi.org/10.1001/archopht.1981.03930010635009; Luo H., Yang H., Gardiner S.K., Hardin C., et al. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Investigative ophthalmology & visual science 2018; 59(6):2357-2370. https://doi.org/10.1167/iovs.17-23456; Волков В.В. Трехкомпонентная классификация открытоугольной глаукомы (на основе представлений о ее патогенезе). Глаукома 2004; 1:57-67.; Kim M., Bojikian K.D., Slabaugh M.A., Ding L., et al. Lamina depth and thickness correlate with glaucoma severity. Indian Journal of Ophthalmology 2016; 64(5):358-363. https://doi.org/10.4103/0301-4738.185594; Naz A.S., Qamar A., Haque S.U., Zaman Y., et al. Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open-angle glaucoma. Pakistan journal of medical sciences 2020; 36(3):521-525. https://doi.org/10.12669/pjms.36.3.1553; Lee E.J., Kim T.W., Kim M., Kim H. Influence of lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology 2014; 122(4)721-729. https://doi.org/10.1016/j.ophtha.2014.10.007; Li L., Bian A., Cheng G., Zhou Q. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta ophthalmologica 2016; 94(6):e492-e500. https://doi.org/10.1111/aos.13012; Lee S.H., Kim T.W., Lee E.J., Girard M.J., et al. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Investigative ophthalmology & visual science 2017; 58(2):755-762. https://doi.org/10.1167/iovs.16-20802; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Relationship between lamina cribrosa curvature and the microvasculature in treatmentnaïve eyes. The British journal of ophthalmology 2020; 104(3):398403. https://doi.org/10.1136/bjophthalmol-2019-313996; Lee E.J., Kim T.W., Kim J.A., Kim, G.N., et al. Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma. Investigative ophthalmology & visual science 2019; 60(10):3343-3351. https://doi.org/10.1167/iovs.18-26519; Lee S.H., Kim T.W., Lee E.J., Girard M.J.A., et al. Lamina Cribrosa Curvature in Healthy Korean Eyes. Scientific Reports 2019; 9:1756. https://doi.org/10.1038/s41598-018-38331-7; Курышева Н.И., Бояринцева М.А., Фомин А.В. Хориоидея при первичной закрытоугольной глаукоме: результаты исследования методом оптической когерентной томографии. Офтальмология 2013; 10(4):26-31. https://doi.org/10.18008/1816-5095-2013-4-26-31; Kurysheva, N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016; 7(5):651-662.; Kurysheva, N.I., Shatalova E.O. Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. Journal of Ophthalmology and Research 2022; 5:150-166.; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and NormalTension Glaucoma. Investigative ophthalmology & visual science 2020; 61(4):4. https://doi.org/10.1167/iovs.61.4.4; Kim J.A., Kim T.W., Weinreb R.N., Lee E.J., et al. Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss In Eyes with Suspected Glaucoma. Scientific reports 2018; 8(1):738. https://doi.org/10.1038/s41598-017-17843-8; Lee E.J., Kim T.W., Kim J.A., Lee S.H., et al. Predictive Modeling of Long-Term Glaucoma Progression Based on Initial Ophthalmic Data and Optic Nerve Head Characteristics. Translational vision science & technology 2022; 11(10):24. https://doi.org/10.1167/tvst.11.10.24; Куренков В.В., Клюганов В.С, Кузнецова Н.В., Чиненова. К.В., Коновалов М.Е., Пожарицкий М.Д. Визуализация решетчатой пластинки склеры с помощью оптической когерентной томографии. Возможности и перспективы диагностики. Обзор. Офтальмология 2019; 16(2):159-162. https://doi.org/10.18008/1816-5095-2019-2-159-162; Lee P., Chandel N.S., Simon M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature reviews. Molecular cell biology 2020; 21(5):268-283. https://doi.org/10.1038/s41580-020-0227-y; Lee S.H., Kim T.W., Lee E.J., Girard, M.J.A., et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Scientific reports 2020; 10:6761. https://doi.org/10.1038/s41598-020-63681-6; Anderson D.R., Braverman S. Reevaluation of the optic disk vasculature. American journal of ophthalmology 1976; 82(2):165-174. https://doi.org/10.1016/0002-9394(76)90414-1; Lieberman M.F., Maumenee A.E., Green W.R. Histologic studies of the vasculature of the anterior optic nerve. American journal of ophthalmology 1976; 82(3):405-423. https://doi.org/10.1016/0002-9394(76)90489-x; Onda E., Cioffi G.A., Bacon D.R., Van Buskirk E.M. Microvasculature of the human optic nerve. American journal of ophthalmology 1995; 120(1):92-102. https://doi.org/10.1016/s0002-9394(14)73763-8; Lee E.J., Kim J.A., Kim T.W. Influence of Choroidal Microvasculature Dropout on the Rate of Glaucomatous Progression: A Prospective Study. Ophthalmology. Glaucoma 2020; 3(1):25-31. https://doi.org/10.1016/j.ogla.2019.10.001; Downs J.C., Roberts M.D., Burgoyne C.F. Mechanical environment of the optic nerve head in glaucoma. Optometry and vision science: official publication of the American Academy of Optometry 2008; 85(6):425-435. https://doi.org/10.1097/OPX.0b013e31817841cb; Murphy C.G., Yun A.J., Newsome D.A., Alvarado J.A. Localization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. American journal of ophthalmology 1987; 104(1):33-43. https://doi.org/10.1016/0002-9394(87)90290-x; Arend O., Plange N., Sponsel W.E., Remky A. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open-angle glaucoma. Brain research bulletin 2004; 62(6):517-524. https://doi.org/10.1016/j.brainresbull.2003.07.008; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. Investigative ophthalmology & visual science 2018; 59(11):4614-4621. https://doi.org/10.1167/iovs.18-25038; Kurysheva N.I. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost. Taiwan Journal of Ophthalmology 2019; 9(2):93-100. https://doi.org/10.4103/tjo.tjo_108_17; Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., et al. OCT angiography and color doppler imaging in glaucoma diagnostics. Journal of Pharmaceutical Sciences and Research 2017; 9(5): 527-536.; Burgoyne C.F., Downs J.C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. Journal of glaucoma 2008; 17(4):318328. https://doi.org/10.1097/IJG.0b013e31815a343b; Burgoyne C.F. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Experimental eye research 2011; 93(2):120-132. https://doi.org/10.1016/j.exer.2010.09.005; https://www.glaucomajournal.ru/jour/article/view/421
Availability: https://www.glaucomajournal.ru/jour/article/view/421