Showing 1 - 20 results of 673 for search '"вторичное сырье"', query time: 0.80s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий

    File Description: application/pdf

    Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий : материалы XVI Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/13620

  7. 7
  8. 8
    Academic Journal

    Contributors: The research was carried out on the topic FGUS-2022-0003 of the state assignment of the V. M. Gorbatov Federal Research Center for Food Systems of RAS., Статья подготовлена в рамках выполнения исследований по государственному заданию FGUS-2022-0003 ФГБНУ «ФНЦ пищевых систем им. В. М. Горбатова» РАН.

    Source: Food systems; Vol 7, No 4 (2024); 515-522 ; Пищевые системы; Vol 7, No 4 (2024); 515-522 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-4

    File Description: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/622/352; Scarano, P., Sciarrillo, R., Tartaglia, M., Zuzolo, D., Guarino, C. (2022). Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends in Food Science and Technology, 122, 157–170. https://doi.org/10.1016/j.tifs.2022.02.003; Socaciu, C. (2014). Bioeconomy and green economy: European strategies, action plans and impact on life quality. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 71(1), 1–10. https://doi.org/10.15835/buasvmcn-fst:10121; Ramasamy, R., Subramanian, P. (2022). Bioconversion of food waste to wealth — circular bioeconomy approach. Chapter in a book: Biotechnology for Zero Waste: Emerging Waste Management Techniques, WILEY-VCH GmbH, 2022. https://doi.org/10.1002/9783527832064.ch28; Kircher, M. (2022). Bioeconomy of microorganisms. Chapter in a book: The Bioeconomy System, Springer, Berlin, Heidelberg, 2022. https://doi.org/10.1007/978-3-662-64415-7_6; Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K. et al. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30(4), 8526–8539. https://doi.org/10.1007/s11356-022-20669-1; Zaman, N., Safi, S. Z., Ali, S., Mustafa, G., Mahmood, R. T., Ahmad, D. et al. (2023). Circular Bioeconomy of Animal Wastes. Chapter in a book: Climate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste. Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26224-1_11; Panda, J., Mishra, A. K., Mohanta, Y. K., Patowary, K., Rauta, P. R., Mishra, B. (2024). Exploring biopolymer for food and pharmaceuticals application in the circular bioeconomy: An agro-food waste-to-wealth approach. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02452-0; Palaniraj, A., Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035; Roine, E., Wei, W., Yuan, J., Nurmiaho-Lassila, E.-L., Kalkkinen, N., Romantschuk, M. et al. (1997). Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences, 94(7), 3459–3464. https://doi.org/10.1073/pnas.94.7.3459; García-Ochoa, F., Santos, V. E., Casas, J. A., Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1; Harding, N. E., Raffo, S., Raimondi, A., Cleary, J. M., Ielpi, L. (1993). Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. Journal of General Microbiology, 139(3), 447–457. https://doi.org/10.1099/00221287-139-3-447; Dzionek, A., Wojcieszyńska, D., Guzik, U. (2022). Use of xanthan gum for whole cell immobilization and its impact in bioremediation — a review. Bioresource Technology, 351, Article 126918. https://doi.org/10.1016/j.biortech.2022.126918; Viebke, C. (2006). Order-disorder conformational transition of xanthan gum. ChemInform, 37(9), 459–474. https://doi.org/10.1002/chin.200609264; Abbaszadeh, A., Lad, M., Janin, M., Morris, G. A., MacNaughtan, W., Sworn, G. et al. (2015). A novel approach to the determination of the pyruvate and acetate distribution in xanthan. Food Hydrocolloids, 44, 162–171. https://doi.org/10.1016/j.foodhyd.2014.08.014; Brunchi, C. E., Bercea, M., Morariu, S., Dascalu, M. (2016). Some properties of xanthan gum in aqueous solutions: Effect of temperature and pH. Journal of Polymer Research, 23(7), Article 123. https://doi.org/10.1007/s10965-016-1015-4; Xu, L., Xu, G., Liu, T., Chen, Y., Gong, H. (2013). The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydrate Polymers, 92(1), 516–522. https://doi.org/10.1016/j.carbpol.2012.09.082; Ben Salah, R., Chaari, K., Besbes, S., Ktari, N., Blecker, C., Deroanne, C. et al. (2010). Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry, 121(2), 627–633. https://doi.org/10.1016/j.foodchem.2009.12.077; Khosravi-Darani, K., Reyhani, F. S., Nasernejad, B., Farhadi, G. B. N. (2011). Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. African Journal of Biotechnology, 10(62), 13520–13527. https://doi.org/10.5897/ajb11.018; Krishna Leela, J., Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23(6), 687–689. https://doi.org/10.1007/s004499900054; Stredansky, M., Conti, E. (1999). Xanthan production by solid state fermentation. Process Biochemistry, 34(6–7), 581–587. https://doi.org/10.1016/S0032-9592(98)00131-9; Salah, R. B., Chaari, K., Besbes, S., Blecker, C., Attia, H. (2011). Production of xanthan gum from Xanthomonas campestris NRRL B1459 by fermentation of date juice palm by-products (Phoenix dactylifera L.). Journal of Food Process Engineering, 34(2), 457–474. https://doi.org/10.1111/j.1745-4530.2009.00369.x; Kurbanoglu, E. B., Kurbanoglu, N. I. (2007). Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK4 isolate. Process Biochemistry, 42(7), 1146–1149. https://doi.org/10.1016/J.PROCBIO.2007.04.010; Rončević, Z., Grahovac, J., Dodić, S., Vučurović, D., Dodić, J. (2019). Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimisation. Food and Bioproducts Processing, 117, 113–125. https://doi.org/10.1016/j.fbp.2019.06.019; Papi, R. M., Ekateriniadou, L. V., Beletsiotis, E., Typas, M. A., Kyriakidis, D. A. (1999). Xanthan gum and ethanol production by Xanthomonas campestris and Zymomonas mobilis from peach pulp. Biotechnology Letters, 21(1), 39–43. https://doi.org/10.1023/A:1005450529032; Moravej, R., Alavi, S. M., Azin, M., Salmanian, A. H. (2020). Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of xanthomonas citri subsp. citri. Ukrainian Biochemical Journal, 92(1), 92–102. https://doi.org/10.15407/ubj92.01.092; Crugeira, P. J. L., Almeida, H. H. S., Marcet, I., Rendueles, M., Pires, M. G., Rafael, H. M. et al. (2023). Biosynthesis of antioxidant xanthan gum by Xanthomonas campestris using substrates added with moist olive pomace. Food and Bioproducts Processing, 141, 210–218. https://doi.org/10.1016/j.fbp.2023.08.008; Niknezhad, S. V., Asadollahi, M. A., Zamani, A., Biria, D., Doostmohammadi, M. (2015). Optimization of xanthan gum production using cheese whey and response surface methodology. Food Science and Biotechnology, 24(2), 453–460. https://doi.org/10.1007/s10068-015-0060-9; Gilani, S. L., Heydarzadeh, H. D., Mokhtarian, N., Alemian, A., Kolaei, M. (2011). Effect of preparation conditions on xanthan gum production and rheological behavior using cheese whey by Xanthomonas campestris. Australian Journal of Basic and Applied Sciences, 5(10), 855–859.; Ozdal, M., Kurbanoglu, E. B. (2018). Valorisation of chicken feathers for xanthan gum production using Xanthomonas campestris MO03. Journal of Genetic Engineering and Biotechnology, 16(2), 259–263. https://doi.org/10.1016/j.jgeb.2018.07.005; Li, P., Li, T., Zeng, Y., Li, X., Jiang, X., Wang, Y. et al. (2016). Biosynthesis of xanthan gum by Xanthomonas campestris LRELP1 using kitchen waste as the sole substrate. Carbohydrate Polymers, 151, 684–691. https://doi.org/10.1016/j.carbpol.2016.06.017; Amenaghawon, A. N., Igemhokhai, S., Eshiemogie, S. A., Ugbodu, F., Evbarunegbe, N. I. (2024). Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process. Heliyon, 10(3), Article e25432. https://doi.org/10.1016/j.heliyon.2024.E25432; Bhat, I. M., Wani, S. M., Mir, S. A., Masoodi, F. A. (2022). Advances in xanthan gum production, modifications and its applications. Biocatalysis and Agricultural Biotechnology, 42, Article 102328. https://doi.org/10.1016/j.bcab.2022.102328; Wang, Z., Wu, J., Zhu, L., Zhan, X. (2016). Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresource Technology, 211, 390– 397. https://doi.org/10.1016/j.biortech.2016.03.096; Gunasekar, V., Reshma, K. R., Treesa, G., Gowdhaman, D., Ponnusami, V. (2014). Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation. Carbohydrate Polymers, 102(1), 669–673. https://doi.org/10.1016/j.carbpol.2013.11.006; Chetia, R., Bharadwaj, B., Dey, R., Chatterji, B. P. (2023). The production of xanthan from brewer’s spent grain. Microbiology and Biotechnology Letters, 51(4), 449–456. https://doi.org/10.48022/mbl.2309.09007; Cancella, M. J., Cerqueira, A. F. L. W., Teodoro, L. da C., Pereira, J. R., Ludwig, Z. M. da C., Anjos, V. de C. et al. (2024). Xanthan gum produced from milk permeate and deproteinized cheese whey: A comparative analysis with commercial xanthan gums. Biocatalysis and Agricultural Biotechnology, 56, Article 103053. https://doi.org/10.1016/j.bcab.2024.103053; Infee Sherley, K., Priyadharshini, R. D. (2015). Review on production of Xanthan gum in batch and continuous reactors. International Journal of ChemTech Research, 8(2), 711–717.; Lopes Lessa, V., Aurélio Da Silva Carvalho, M., Gustavo Lacerda, L. (2015). Xanthan gum: Properties, production conditions, quality and economic perspective. Journal of Food and Nutrition Research, 54(3), 185–194.; Esgalhado, M. E., Roseiro, J. C., Collaço, M. T. A. (1995). Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochemistry, 30(7), 667–671. https://doi.org/10.1016/0032-9592(94)00044-1; Bradshaw, I. J., Nisbet, B. A., Kerr, M. H., Sutherland, I. W. (1983). Modified xanthan–its preparation and viscosity. Carbohydrate Polymers, 3(1), 23–38. https://doi.org/10.1016/0144-8617(83)90010-3; Tako, M., Nakamura, S. (1984). Rheological properties of deacetylated xanthan in aqueous media. Agricultural and Biological Chemistry, 48(12), 2987–2993. https://doi.org/10.1080/00021369.1984.10866637; Sujithra, M., Rajkumar, P.V.N., Poorani, J.H.V. (2019). Occurrence of nesting whitefly Paraleyrodes minei Iaccarino (Hemiptera: Aleyrodidae) in India. Indian Journal of Entomology, 81(3), 507–510. https://doi.org/10.5958/0974-8172.2019.00109.3; García-Ochoa, F., Santos, V. E., Alcón, A. (1996). Simulation of xanthan gum production by a chemically structured kinetic model. Mathematics and Computers in Simulation, 42(2–3), 187–195. https://doi.org/10.1016/0378-4754(95)00113-1; Seviour, R. J., McNeil, B., Fazenda, M. L., Harvey, L. M. (2010). Operating bioreactors for microbial exopolysaccharide production. Critical Reviews in Biotechnology, 31(2), 170–185. https://doi.org/10.3109/07388551.2010.505909; Becker, A., Katzen, F., Pühler, A., Ielpi, L. (1998). Xanthan gum biosynthesis and application: A biochemical /genetic perspective. Applied Microbiology and Biotechnology, 50(2), 145–152. https://doi.org/10.1007/s002530051269; Li, Z.-X., Deng, H.-Q., Jiang, J., He, Z.-Q., Li, D.-M., Ye, X.-G. et al. (2024). Effect of hydrothermal treatment on the rheological properties of xanthan gum. International Journal of Biological Macromolecules, 270, Article 132229. https://doi.org/10.1016/j.ijbiomac.2024.132229; Garcı́a-Ochoa, F., Castro, E., Santos, V. E. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690. https://doi.org/10.1016/s0141-0229(00)00272-6; Cofelice, M., Messia, M. C., Marconi, E., Cuomo, F., Lopez, F. (2023). Effect of the xanthan gum on the rheological properties of alginate hydrogels. Food Hydrocolloids, 142, Article 108768. https://doi.org/10.1016/j.foodhyd.2023.108768; García-Ochoa, F., Santos, V. E., Casas, J. A. (1999). Production and isolation of xanthan gum. Chapter in a book: Carbohydrate Biotechnology Protocols. Humana Press, 1999. https://doi.org/10.1007/978-1-59259-261-6_2; Kumar, P., Kumar, B., Gihar, S., Kumar, D. (2024). Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydrate Research, 538, Article 109070. https://doi.org/10.1016/j.carres.2024.109070; Butschle, M., Lindner, S., Schackmann, M., Dam-Johansen, K. (2024). Towards improved antifouling: Exploring xanthan gum hydrogel coatings. Progress in Organic Coatings, 188, Article 108197. https://doi.org/10.1016/j.porgcoat.2023.108197; Nordin, N.Z., Rashidi, A.R., Dailin, D.J., Malek, R.A., Azelee, N.I.W., Abd Manas, N.H. et al. (2020). Xanthan biopolymer in pharmaceutical and cosmeceutical applications: Critical review. Bioscience Research, 17(1), 205–220.; Sorze, A., Valentini, F., Dorigato, A., Pegoretti, A. (2023). Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications. Molecules, 28(4), Article 1952. https://doi.org/10.3390/molecules28041952; Zhou, W., Hui, Y. H., De Leyn, I., Pagani, M. A., Rosell, C. M., Selman, J. D. et al. (2014). Bakery products science and technology: Second Edition. John Wiley and Sons, Ltd. 2014. https://doi.org/10.1002/9781118792001; Howis, J., Nalepa, M., Gołofit, T., Spychalski, M., Laudańska-Maj, A., Gadomska-Gajadhur, A. (2023). Pseudo-gel ternary systems of xanthan gum in waterethanol solutions for industrial applications. Ceramics International, 49(11), 18825–18835. https://doi.org/10.1016/j.ceramint.2023.03.004; Rather, J. A., Akhter, N., Rather, S. A., Masoodi, F. A., Dar, B. N. (2024). Effect of xanthan gum treatment on the shelf-life enhancement of retorted meatballs (Goshtaba): A traditional meat product of India. Measurement: Food, 13, Ar ticle 100127. https://doi.org/10.1016/j.meafoo.2023.100127; Candido da Silva, L. C., Targino, B. N., Furtado, M. M., de Oliveira Pinto, M. A., Rodarte, M. P., Hungaro, H. M. (2017). Xanthan: Biotechnological production and applications. Chapter in a book: Microbial Production of Food Ingredients and Additives. Academic Press, 2017. https://doi.org/10.1016/B978-0-12-811520-6.00013-1; Gago-Guillán, M., García-Otero, X., Anguiano-Igea, S., Otero-Espinar, F. J. (2023). Compression pressure-induced synergy in xanthan and locust bean gum hydrogels. Effect in drug delivery. Journal of Drug Delivery Science and Technology, 89, Article 105025. https://doi.org/10.1016/j.jddst.2023.105025; Rakshit, P., Giri, T. K., Mukherjee, K. (2024). Research progresses on carboxymethyl xanthan gum: Review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. International Journal of Biological Macromolecules, 266, Article 131122. https://doi.org/10.1016/j.ijbiomac.2024.131122; Rahmatpour, A., Shoghinia, B., Alizadeh, A. H. (2024). A self-assembling hydrogel nanocomposite based on xanthan gum modified with SiO2 NPs and HPAM for improved adsorption of crystal violet cationic dye from aqueous solution. Carbohydrate Polymers, 330, Article 121819. https://doi.org/10.1016/j.carbpol.2024.121819; Kumar, A., Prabha, M., Tiwari, P., Malviya, T., Singh, V. (2024). Xanthan gumcapped Chromia Nanoparticles (XG-CrNPs): A promising nanoprobe for the detection of heavy metal ions. International Journal of Biological Macromolecules, 266, Article 131192. https://doi.org/10.1016/j.ijbiomac.2024.131192; Li, X., Wang, Z., Liu, Y., Liu, R., Wang, Z., Zhang, C. et al. (2024). Properties of cement grout doped with xanthan gum and welan gum at high hydration temperatures. Construction and Building Materials, 420, Article 135664. https://doi.org/10.1016/j.conbuildmat.2024.135664; Yu, X., Han, L., Xu, Q., Li, S., Prakash, S., Dong, X. (2024). Enhanced rheological and 3Dprinting properties of high internal phase emulsions stabilized by egg white microgels synergized with konjac gum/xanthan gum. Food Hydrocolloids, 153, Article 109981. https://doi.org/10.1016/j.foodhyd.2024.109981; https://www.fsjour.com/jour/article/view/622

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 463-467
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 463-467

    File Description: application/pdf

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Conference

    Subject Geographic: RSVPU

    File Description: application/pdf

    Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Седьмой Международной научно-практической конференции преподавателей, молодых ученых и студентов. — Екатеринбург, 2024

  18. 18
    Conference

    Contributors: Соколов, Александр Петрович

    File Description: application/pdf

    Relation: Современные проблемы машиностроения : сборник статей XVI Международной научно-технической конференции, г. Томск, 27 ноября – 1 декабря 2023 г.; http://earchive.tpu.ru/handle/11683/77379

  19. 19
  20. 20