Εμφανίζονται 1 - 20 Αποτελέσματα από 146 για την αναζήτηση '"воспалительная реакция"', χρόνος αναζήτησης: 0,75δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 1 (2024); 16-30 ; Опухоли головы и шеи; Том 14, № 1 (2024); 16-30 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2024-14-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/965/616; Vermorken J.B., Trigo J., Hitt R. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25(16):2171-7. DOI:10.1200/jco.2006.06.7447; Langer C.J. Targeted therapy in head and neck cancer: state of the art 2007 and review of clinical applications. Cancer 2008;112(12):2635-45. DOI:10.1002/cncr.23521; Guigay J., Auperin A., Fayette J. et al. Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as frst-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2021;22(4):463-75. DOI:10.2139/ssrn.3700967; Mirabile A., Miceli R., Calderone R.G. et al. Prognostic factors in recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2019;41(6):1895-902. DOI:10.1002/hed.25636; Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor Perspect Biol 2014;6(3):a008912. DOI:10.1101/cshperspect.a008912; Yarden Y., Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12(8):553-63. DOI:10.1038/nrc3309; Zhang X., Gureasko J., Shen K. et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006;125(6):1137-49. DOI:10.1016/j.cell.2006.05.013; Lemmon M.A., Schlessinger J., Ferguson K.M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspect Biol 2014;6(4):a020768. DOI:10.1101/cshperspect.a020768; Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117-34. DOI:10.1016/j.cell.2010.06.011; Trivedi S., Concha-Benavente F., Srivastava R.M. et al. Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol;41(5):678-84. DOI:10.1093/annonc/mdu156; Li S., Schmitz K.R., Jeffrey P.D. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005;7(4):301-11. DOI:10.1016/j.ccr.2005.03.003; Bhat R., Watzl C.J.P. Serial killing of tumor cells by human natural killer cells - enhancement by therapeutic antibodies. PLoS One 2007;2(3):e326. DOI:10.1371/journal.pone.0000326; Srivastava R.M., Lee S.C., Andrade Filho P.A. et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013;19(7):1858-72. DOI:10.1158/1078-0432.ccr-12-2426; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012;12(4):253-68. DOI:10.1038/nri3175; Ostrand R.S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol 2010;59(10):1593-600. DOI:10.1007/s00262-010-0855-8; Ochando J.C., Chen S.H. Myeloid-derived suppressor cells in transplantation and cancer. Immunol Res 2012;54(1-3):275-85. DOI:10.1007/s12026-012-8335-1; Gabitass R.F., Annels N.E., Stocken D.D. et al. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol 2011;60(10):1419-30. DOI:10.1007/s00262-011-1028-0; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39-51. DOI:10.1016/j.cell.2010.03.014; Mantovani A., Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009; Liu C.Y., Wang Y.M., Wang C.L. et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8 + T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010;136(1):35-45. DOI:10.1007/s00432-009-0634-0; Kusmartsev S., Nefedova Y., Yoder D., Gabrilovich D.I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004;172(2):989-99. DOI:10.4049/jimmunol.172.2.989; Cheng P., Corzo C.A., Luetteke N. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 2008;205(10):2235-49. DOI:10.1084/jem.20080132; Brandau S., Trellakis S., Bruderek K. et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 2011;89(2):311-7. DOI:10.1189/jlb.0310162; Gallina G., Dolcetti L., Serafini P. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006;116(10):2777-90. DOI:10.1172/jci28828; Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005;5(8):641-54. DOI:10.1038/nri1668; Vasquez-Dunddel D., Pan F., Zeng Q. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013;123(4):1580-9. DOI:10.1172/jci60083; Guilliams M., Bruhns P., Saeys Y. et al. The function of Ғсү receptors in dendritic cells and macrophages. Nat Rev Immunol 2014;14:94-108. DOI:10.1038/nri3582; Jing L., Srivastava R.V., Ettyreddy A. et al. Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. J Immunother Cancer 2015;3:54. DOI:10.1186/s40425-015-0097-6; Стукань А.И., Мурашко Р.А., Цыган Н.А. и др. Адаптивный иммунный ответ в патогенезе и лечении плоскоклеточного рака головы и шеи: влияние факторов иммуносупрессии и гендерных особенностей. Опухоли головы и шеи 2022;12(3):114-26. (In Russ.). DOI:10.17650/2222-1468-2022-12-3-114-126; Кутукова С.И., Беляк Н.П., Раскин Г.А. и др. Системное воспаление и иммунологическое микроокружение в прогнозе течения солидных опухолей. Злокачественные опухоли 2019;9(1):29-37.; Zimmermann M., Zouhair A., Azria D. et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 2006;1:11. DOI:10.1186/1748-717x-1-11; Ray K., Ujvari B., Ramana V. et al. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine Growth Factor Rev 2018;41:18-27. DOI:10.1016/j.cytogfr.2018.04.002; Grellier N., Deray G., Yousfi A. et al. Carence martiale fonctionnelle, inflammation et fatigue apres radiotherapie Functional iron deficiency, inflammation and fatigue after radiotherapy. Bull Cancer 2015;102(9):780-5. DOI: 10. 1016/j.bulcan.2015.06.001; Bonner J.A., Harari P.M., Giralt J. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354(6):567-78. DOI:10.1056/nejmoa053422; Ang K.K., Zhang Q., Rosenthal D.I. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 2014;32(27):2940-50. DOI: 1200/jco.2013.53.5633; Maahs L., Ghanem A.I., Gutta R. Cetuximab and anemia prevention in head and neck cancer patients undergoing radiotherapy BMC Cancer 2022;22:626. DOI:10.1186/s12885-022-09708-9; Horsman M.R., Soresen B.S., Busk M. et al. Therapeutic modification of hypoxia. Clini Oncol 2021;33(11):492-509. DOI:10.1016/j.clon.2021.08.014; https://ogsh.abvpress.ru/jour/article/view/965

  3. 3
    Academic Journal

    Συνεισφορές: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 58-64 ; Опухоли головы и шеи; Том 13, № 4 (2023); 58-64 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/937/607; Cho S.K., Mattke S., Gordon H. et al. Development of a model to predict healing of chronic wounds within 12 weeks. Adv Wound Care (New Rochelle) 2020;9(9):516–24. DOI:10.1089/wound.2019.1091; Chen L., Arbieva Z.H., Guo S. et al. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 2010;11:471. DOI:10.1186/1471-2164-11-471; Turabelidze A., Guo S., Chunget Y.A. et al. Intrinsic differences between oral and skin keratinocytes. PLOS One 2014;9(9):e101480. DOI:10.1371/journal.pone.0101480; Toma A.I., Fuller J.M., Willettet N.J. et al. Oral wound healing models and emerging regenerative therapies. Transl Res 2021;236:17–34. DOI:10.1016/j.trsl.2021.06.003; Politis P., Schoenaers J., Jacobs R. et al. Wound healing problems in the mouth. Front Physiol 2016;7:507. DOI:10.3389/fphys.2016.00507; Funato N., Moriyama K., Baba Y. et al. Evidence for apoptosis induction in myofibroblasts during palatal mucoperiosteal repair. J Dent Res 1999;78(9):1511–7. DOI:10.1177/00220345990780090501; Eming S.A., Hammerschmidt M., Krieg T. et al. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol 2009;20:517–27. DOI:10.1016/j.semcdb.2009.04.009; Des Jardins-Park H., Mascharak Sh., Chinta M.S. et al. The spectrum of scarring in craniofacial wound repair. Front Physiol 2019;10:322. DOI:10.3389/fphys.2019.00322; Boscolo-Rizzo P., D’Alessandro A., Polesel J. et al. Different infammatory blood markers correlate with specific outcomes in incident HPV-negative head and neck squamous cell carcinoma : a retrospective cohort study. BMC Cancer 2022;22(1):243. DOI:10.1186/s12885-022-09327-4; Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009;37(5):1528–42. DOI:10.1177/147323000903700531; Schultz G.S., Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009;17(2):153–62. DOI:10.1111/j.1524-475X.2009.00466.x; Lobmann R., Schultz G., Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 2005;28(2):461–71. DOI:10.2337/diacare.28.2.461; Yamagata K., Fukuzawa S., Ishibashi-Kanno N. et al. Association between the C-reactive protein/albumin ratio and prognosis in patients with oral squamous cell carcinoma. Scientific Rep 2021;11(1):5446. DOI:10.1038/s41598-021-83362-2; Gabrilovich D.G., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9(3):162–74. DOI:10.1038/nri2506; Li D., Wang Ch., Wei W. et al. Postoperative complications of free flap reconstruction in moderate-advanced head and neck squamous cell carcinoma: a prospective cohort study based on real-world data. Front Oncol 2022;12:792462. DOI:10.3389/fonc.2022.792462; Lin P.C., Kuo P.J., Kuo S.Ch. et al. Risk factors associated with postoperative complications of free anterolateral thigh flap placement in patients with head and neck cancer: analysis of propensity score-matched cohorts. Microsurgery 2020;40(5):538–44. DOI:10.1002/micr.30587; Spanier G., Böttcher J., Gerken M. et al. Prognostic. Value of perioperative red blood cell transfusion and anemia on survival and recurrence in oral squamous cell carcinoma. Oral Oncol 2020;107:104773. DOI:10.1016/j.oraloncology.2020.104773; Giannoudis P.V., Smith M.R., Evans R.T. et al. Serum CRP and IL-6 levels after trauma: not predictive of septic complications in 31 patients. Acta Orthop Scand 1998;69(2):184–8. DOI:10.3109/17453679809117625; Khandavilli S.D., Ceallaigh P.O., Lloyd C.J. et al. Serum C-reactive protein as a prognostic indicator in patients with oral squamous cell carcinoma. Oral Oncol 2009;45(10):912–4. DOI:10.1016/j.oraloncology.2009.03.015; Kruse A.L., Luebbers H.T., Gratz K.W. C-reactive protein levels: a prognostic marker for patients with head and neck cancer? Head Neck Oncol 2010;2:21. DOI:10.1186/1758-3284-2-21; Lee S., Kim D.W., Kwon S. Prognostic value of systemic inflammatory markers for oral cancer patients based on the 8 th edition of AJCC staging system. Sci Rep 2020;10(1):12111. DOI:10.1038/s41598-020-68991-3; Diao P., Wu Y., Li J. et al. Preoperative systemic immune-inflammation index predicts prognosis of patients with oral squamous cell carcinoma after curative resection. J Transl Med 2018;16:365. DOI:10.1186/s12967-018-1742-x; Kao S.C., Pavlakis N., Harvie R. et al. High blood neutrophil-to-lymphocyte ratio is an indicator of poor prognosis in malignant mesothelioma patients undergoing systemic therapy. Clin Cancer Res 2010;16(23):5805–13. DOI:10.1158/1078-0432.CCR-10-2245; Ong H.S., Gokavarapu S., Wang L.Z. et al. Low pretreatment lymphocyte-monocyte ratio and high platelet-lymphocyte ratio indicate poor cancer outcome in early tongue cancer. J Oral Maxillofac Surg 2017;75(8):1762–74. DOI:10.1016/j.joms.2016.12.023; Mattavelli D., Lombardi D., Missale F. et al. Prognostic nomograms in oral squamous cell carcinoma: The negative impact of low neutrophil to lymphocyte ratio. Front Oncol 2019;9:339. DOI:10.3389/fonc.2019.00339; Liu X., Sun X., Liu J. et al. Preoperative C-reactive protein/albumin ratio predicts prognosis of patients afer curative resection for gastric cancer. Transl Oncol 2015;8(4):339–45. DOI:10.1016/j.tranon.2015.06.006; Кутукова С.И., Беляк Н.П., Иваськова Ю.В. Прогностическая роль факторов системного воспаления в течении плоскоклеточного рака слизистой оболочки полости рта. Медицинский алфавит 2021;10:28–34. DOI:10.33667/2078-5631-2021-10-28-34; Кутукова С.И., Беляк Н.П., Иваськова Ю.В. Системное воспаление в течении аденогенного рака слюнных желез. Ученые записки Первого Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова 2022;29(3):74–80. DOI:10.24884/1607-4181-2022-29-3-74-80; Kudou K., Saeki H., Nakashima Y. et al. C-reactive protein/albuminratio is a poor prognostic factor of esophagogastric junction and upper gastric cancer. J Gastroenterol Hepatol 2019;34(2): 355–63. DOI:10.1111/jgh.14442; Crumley A.B.C., Stuart R.C., McKernan M. et al. Is hypoalbuminemia an independent prognostic factor in patients with gastric cancer? World J Surg 2010;34(10):2393–8. DOI:10.1007/s00268-010-0641-y; Takebe J., Champagne C.M., Offenbacher Ishibashi S.K. et al. Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line. J Biomed Mater Res Part A 2003;64(2):207–16. DOI:10.1002/jbm.a.10275; Laschke M.W., Harder Y., Amon M. et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 2006;12(8):2093–104. DOI:10.1089/ten.2006.12.2093; Kuboki Y., Jin Q., Kikuchi M. et al. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res 2002; 43(2–3):529–34. DOI:10.1080/03008200290001104; Wu G., Liu Y., Iizuka T. et al. The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds. Biomaterials 2010;31(29):7485–93. DOI:10.1016/j.biomaterials.2010.06.037; Suarato G., Bertorelli R., Athanassiou A. Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 2018;6:137. DOI:10.3389/fbioe.2018.00137; Refai A.K., Textor M., Brunette D.M. et al. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 2004;70(2):194–205. DOI:10.1002/jbm.a.30075; Mendonça G., Mendonça D.B., Aragão F.J. et al. Advancing dental implant surface technology – from micron- to nanotopography. Biomaterials 2008;29(28):3822–35. DOI:10.1016/j.biomaterials.2008.05.012; Ma Q.L., Zhao L.Z., Liu R.R. et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014;35(37):9853–67. DOI:10.1016/j.biomaterials.2014.08.025; Paul N.E., Skazik C., Harwardt M. et al. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008;29(30):4056–64. DOI:10.1016/j.biomaterials.2008.07.010; Jones J.A., Chang D.T., Meyerson H. et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. Biomed Mater Res Part A 2007;83(3):585–96. DOI:10.1002/jbm.a.31221; Yun J.K., DeFife K., Colton E. et al. Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. J Biomed Mater Res 1995;29(2):257–68. DOI:10.1002/jbm.820290217; Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–69. DOI:10.1038/nri2448; Arnold L., Henry A., Poron F. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007;204(5): 1057–69. URL: https://www.researchgate.net/publication/6344940_Inflammatory_monocytes_recruited_after_skeletal_muscle_injury_switch_into_antiinflammatory_macrophages_to_support_myogenesis; Kim S.G. Immunomodulation for maxillofacial reconstructive surgery Kim Maxillofac Plast Reconstr Surg 2020;42(1):5. DOI:10.1186/s40902-020-00249-4; https://ogsh.abvpress.ru/jour/article/view/937

  4. 4
    Academic Journal

    Πηγή: General Reanimatology; Том 20, № 4 (2024); 30-38 ; Общая реаниматология; Том 20, № 4 (2024); 30-38 ; 2411-7110 ; 1813-9779

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2507/1853; https://www.reanimatology.com/rmt/article/view/2507/1861; Ye Q., Wang B., Mao J. The pathogenesis and treatment of the «cytokine storm» in COVID-19. J Infect. 2020; 80 (6): 607–613. DOI:10.1016/j.jinf.2020.03.037. PMID: 32283152.; Fara A., Mitrev Z., Rosalia R.A., Assas B.M. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020; 10 (9): 200160. DOI:10.1098/rsob.200160. PMID: 32961074.; Hirano T., Murakami M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52 (5): 731–733. DOI:10.1016/j.immuni.2020.04.003. PMID: 32325025.; Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8 (4): 420–422. DOI:10.1016/S2213-2600(20)30076-X. PMID: 32085846.; Grasselli G., Tonetti T., Protti A., Langer T., Girardis M., Bellani G., Laffey J., et al; collaborators. Pathophysiology of COVID-19associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020; 8 (12): 1201–1208. DOI:10.1016/S2213-2600(20)30370-2. PMID: 32861276.; Liu Y., Zhang C., Huang F., Yang Y., Wang F., Yuan J., Zhang Z., et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev. 2020; 7 (6): 1003–1011. DOI:10.1093/nsr/nwaa037. PMID: 34676126.; Ragab D., Salah E.H., Taeimah M., Khattab R., Salem R. The COVID-19 Cytokine Storm; What we know so far. Front Immunol. 2020; 11: 1446. DOI:10.3389/fimmu.2020.01446. PMID: 32612617.; Rostamian A., Ghazanfari T., Arabkheradmand J., Edalatifard M., Ghaffarpour S., Salehi, M., Raeeskarami S.R., et al. Interleukin-6 as a potential predictor of COVID-19 disease severity in hospitalized patients and its association with clinical laboratory routine tests. Immunoregulation. 2020: 29–36. DOI:10.32598/IMMUNOREGULATION.3.1.4.; Coomes E.A., Haghbayan H. Interleukin-6 in covid-19: a systematic review and meta-analysis. Rev Med Virol. 2020; 30 (6): 1–9. DOI:10.1002/rmv.2141. PMID: 32845568.; Zhang Y., Li J., Zhan Y., Wu L., Yu X., Zhang W., Ye L., et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun. 2004; 72 (8): 4410–5. DOI:10.1128/IAI.72.8.4410-4415.2004. PMID: 15271897.; Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018; 15 (4): 234–248. DOI:10.1038/nrclinonc.2018.8. PMID: 29405201.; Kalliolias G.D., Ivashkiv L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016; 12 (1): 49–62. DOI:10.1038/nrrheum.2015.169. PMID: 26656660.; Leija-Martínez J.J., Huang F., Del-Río-Navarro B.E., Sanchéz-Muñoz F., Muñoz-Hernández O., Giacoman-Martínez A., Hall-Mondragon M.S., et al. IL-17A and TNFas potential biomarkers for acute respiratory distress syndrome and mortality in patients with obesity and COVID-19. Med Hypotheses. 2020; 144: 109935. DOI:10.1016/j.mehy.2020.109935. PMID: 32795834.; Widyasari K., Kim J. A review of the currently available antibody therapy for the treatment of coronavirus disease 2019 (COVID-19). Antibodies (Basel). 2023; 12 (1): 5. DOI:10.3390/antib12010005. PMID: 36648889.; Hawchar F., Tomescu D., Träger K., Joskowiak D., Kogelmann K., Soukup J., Friesecke S., et al. Hemoadsorption in the critically ill-Final results of the International CytoSorb Registry. PLoS One. 2022; 17 (10): e0274315. DOI:10.1371/journal.pone.0274315. PMID: 36282800.; Kogelmann K., Hübner T., Schwameis F., Drüner M., Scheller M., Jarczak D. First evaluation of a new dynamic scoring system intended to support prescription of adjuvant CytoSorb hemoadsorption therapy in patients with septic shock. J Clin Med. 2021; 10 (13): 2939. DOI:10.3390/jcm10132939. PMID: 34209001.; Jansen A., Waalders N.J.B., van Lier D.P.T., Kox M., Pickkers P. CytoSorb hemoperfusion markedly attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo. Crit Care. 2023; 27 (1): 117. DOI:10.1186/s13054-023-04391-z. PMID: 36945034.; Hayanga J.W.A., Song T., Durham L., Garrison L., Smith D., Molnar Z., Scheier J., et al. Extracorporeal hemoadsorption in critically ill COVID-19 patients on VV ECMO: the CytoSorb therapy in COVID-19 (CTC) registry. Crit Care. 2023; 27 (1): 243. DOI:10.1186/s13054-023-04517-3. PMID: 37337243.; Rodeia S.C., Martins F.L., Fortuna P., Bento L. Cytokine adsorption therapy during extracorporeal membrane oxygenation in adult patients with COVID-19. Blood Purif. 2021; 2: 1–7. DOI:10.1159/000518712. PMID: 34856539.; Pieri M., Fominskiy E., Nardelli P., Bonizzoni M.A., Scandroglio A.M. CytoSorb purification in critically ill SARS-CoV-2 patients. Int J Artif Organs. 2021: 3913988211052572. DOI:10.1177/03913988211052572. PMID: 34702109.; Wunderlich-Sperl F., Kautzky S., Pickem C., Hörmann C. Adjuvant hemoadsorption therapy in patients with severe COVID-19 and related organ failure requiring CRRT or ECMO therapy: a case series. Int J Artif Organs. 2021; 44 (10): 694–702. DOI:10.1177/03913988211030517. PMID: 34256643.; Mehta Y., Mehta C., Nanda S., Kochar G., George J.V., Singh M.K. Use of CytoSorb therapy to treat critically ill coronavirus disease 2019 patients: a case series. J Med Case Rep. 2021; 15 (1): 476. DOI:10.1186/s13256-021-03021-y. PMID: 34535189.; Ruiz-Rodríguez J.C., Molnar Z., Deliargyris E.N., Ferrer R. The use of CytoSorb therapy in critically ill COVID-19 patients: review of the rationale and current clinical experiences. Crit Care Res Pract. 2021: 7769516. DOI:10.1155/2021/7769516. PMID: 34336280.; Damiani M., Gandini L., Landi F., Borleri G., Fabretti F., Gritti G., Riva I. Extracorporeal cytokine hemadsorption in severe COVID-19 respiratory failure. Respir Med. 2021; 185: 106477. DOI:10.1016/j.rmed.2021.106477. PMID: 34102594.; Nassiri A.A., Hakemi M.S., Miri M.M., Shahrami R., Koomleh A.A., Sabaghian T. Blood purification with CytoSorb in critically ill COVID-19 patients: a case series of 26 patients. Artif Organs. 2021. DOI:10.1111/aor.14024. PMID: 34152629.; Schroeder I., Scharf C., Zoller M., Wassilowsky D., Frank S., Stecher S.S., Stemmler J., et al. Charakteristika und outcome von 70 beatmeten COVID-19-Patienten: bilanz nach der ersten welle an einem universitären Zentrum [Characteristics and outcome of 70 ventilated COVID-19 patients : summary after the first wave at a university center]. Anaesthesist. 2021; 70 (7): 573–581. German. DOI:10.1007/s00101-020-00906-3. PMID: 33369696.; Кутепов Д.Е., Пасько В.Г., Гаврилов С.В., Хашукоева И.Х. Опыт применения экстракорпоральных методов детоксикации у больных COVID-19. Кремлевская медицина. Клинический вестник. 2020; (3): 27–32. DOI:10.26269/jtd-d019.; Zarbock A., Nadim M.K., Pickkers P., Gomez H., Bell S., Joannidis M., Kashani K., et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol. 2023; 19 (6): 401–417. DOI:10.1038/s41581-023-00683-3. PMID: 36823168.; Kietaibl S., Ahmed A., Afshari A., Albaladejo P., Aldecoa C., Barauskas G., De Robertis E., et al. Management of severe peri-operative bleeding: guidelines from the European Society of Anaesthesiology and Intensive Care: second update 2022. Eur J Anaesthesiol. 2023; 40 (4): 226–304. DOI:10.1097/EJA.0000000000001803. PMID: 36855941.; Ronco C., Bellomo R. (eds): Adsorption: the new frontier in extracorporeal blood purification. Contrib Nephrol. Basel, Karger. 2023; 200. DOI:10.1159/000527344.; Meier-Schellersheim M., Varma R., Angermann B.R. Mechanistic models of cellular signaling, cytokine crosstalk, and cell-cell communication in immunology. Front Immunol. 2019; 10: 2268. DOI:10.3389/fimmu.2019.02268. PMID: 31681261.; Alharthy A., Faqihi F., Memish Z.A., Balhamar A., Nasim N., Shahzad A., Tamim H., et al. Continuous renal replacement therapy with the addition of CytoSorb cartridge in critically ill patients with COVID-19 plus acute kidney injury: a caseseries. Artif Organs. 2021; 45 (5): E101–E112. DOI:10.1111/aor.13864. PMID: 33190288.; Magomedov M., Kim T., Masolitin S., Yaralian A., Kalinin E., Pisarev V. Hemoperfusion with the Efferon CT extracorporeal adsorbers containing mesoporous styrene–divinylbenzene copolymer (SDC) in patients with severe COVID-19. Critical Care. 2021; 25 (Supl1): P041.; Persic V., Jerman A., Vrecko M.M., Berden J., Gorjup V., Stecher A., Lukic M., et al. Effect of CytoSorb coupled with hemodialysis on interleukin-6 and hemodynamic parameters in patients with systemic inflammatory response syndrome: a retrospective cohort study. J Clin Med. 2022; 11 (24): 7500. DOI:10.3390/jcm11247500. PMID: 36556116.; Pieri M., Bonizzoni M.A., Belletti A., Calabrò M.G., Fominskiy E., Nardelli P., Ortalda A., et al. Extracorporeal blood purification with CytoSorb in 359 critically ill patients. Blood Purif. 2023: 1–9. DOI:10.1159/000530872. PMID: 37669640.; Dominik A., Stange J. Similarities, differences, and potential synergies in the mechanism of action of albumin dialysis using the MARS albumin dialysis device and the CytoSorb hemoperfusion device in the treatment of liver failure. Blood Purif. 2021; 50 (1): 119–128. DOI:10.1159/000508810. PMID: 32615564.; David S., Thamm K., Schmidt B.M.W., Falk C.S., Kielstein J.T. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J Intensive Care. 2017; 5: 12. DOI:10.1186/s40560-017-0208-1. PMID: 28127437.; Akil A., Napp L.C., Rao C., Klaus T., Scheier J., Pappalardo F. Use of CytoSorb© hemoadsorption in patients on venovenous ECMO support for severe acute respiratory distress syndrome: a systematic review. J Clin Med. 2022; 11 (20): 5990. DOI:10.3390/jcm11205990. PMID: 36294309.; Рыбалко А.С., Воронин А.В., Вагулин А.О., Сарыглар А.С., Заболотская Л.В., Переходов С.Н., Карпун Н.А., с соавт. Опыт раннего применения селективной сорбции цитокинов при COVID-19-ассоциированном респираторном дистресс-синдроме. Медицинский алфавит. 2021; (17): 71–75. DOI:10.33667/2078-5631-2021-17-71-75.; Supady A., Weber E., Rieder M., Lother A., Niklaus T., Zahn T., Frech F., et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): a single centre, open-label, randomized, controlled trial. Lancet Respir Med. 2021; 9 (7): 755–762. DOI:10.1016/S2213-2600 (21)00177-6. PMID: 34000236.; Scharf C., Schroeder I., Paal M., Winkels M., Irlbeck M., Zoller M., Liebchen U. Can the cytokine adsorber CytoSorb® help to mitigate cytokine storm and reduce mortality in critically ill patients? A propensity score matching analysis. Ann Intensive Care. 2021; 11 (1): 115. DOI:10.1186/s13613-021-00905-6. PMID: 34292421.; Schultz P., Schwier E, Eickmeyer C, Henzler D, Köhler T. Highdose CytoSorb hemoadsorption is associated with improved survival in patients with septic shock: A retrospective cohort study. J Crit Care. 2021; 64: 184–192. DOI:10.1016/j.jcrc.2021. 04.011. PMID: 33962219.; Jarczak D., Roedl K., Fischer M., de Heer G., Burdelski C., Frings D.P., Sensen B., et al. Effect of hemadsorption therapy in critically ill patients with COVID-19 (CYTOCOV-19): a prospective randomized controlled pilot trial. Blood Purif. 2023; 52 (2): 183–192. DOI:10.1159/000526446. PMID: 36075200.; He J., Lin Y., Cai W., Lin Y., Qin W., Shao Y., Liu Q. Efficacy of supplemental hemoadsorption therapy on severe and critical patients with COVID-19: an evidence-based analysis. Shock. 2023; 60 (3): 333–344. DOI:10.1097/SHK.0000000000002189. PMID: 37548606.; Einollahi B., Javanbakht M., Ebrahimi M., Ahmadi M., Izadi M., Ghasemi S., Einollahi Z., et al. Surveying haemoperfusion impact on COVID-19 from machine learning using Shapley values. Inflammopharmacology. 2024. DOI:10.1007/s10787024-01494-z. PMID: 38762840.; Tomescu D., Popescu M., Akil A., Nassiri A.A., WunderlichSperl F., Kogelmann K., Molnar Z., et al. The potential role of extracorporeal cytokine removal with CytoSorb® as an adjuvant therapy in Acute Respiratory Distress Syndrome. Int J Artif Organs. 2023; 46 (12): 605–617. DOI:10.1177/03913988231211740. PMID: 38037333.; Calamai I., Giuntini R., Mori I., Venturi L., Tani C., Peruzzi S., Bichi L., Spina R., Bichi L. Workshop purification therapies — from research to clinical evidence. Scispace. Open access. 2022; 51 (Suppl 3): 2–100. https://typeset.io/papers/workshop-purification-therapies-fromresearch-to-clinical-2pm1z6pb?ysclid=lzme36god870389236.; Mitzner S., Kogelmann K., Ince C., Molnár Z., Ferrer R., Nierhaus A. Adjunctive hemoadsorption therapy with CytoSorb in patients with septic/vasoplegic shock: a best practice consensus statement. J Clin Med. 2023; 12 (23): 7199. DOI:10.3390/jcm12237199. PMID: 38068250.; Rampino T., Gregorini M., Perotti L., Ferrari F., Pattonieri E.F., Grignano M.A., Valente M., et al. Hemoperfusion with CytoSorb as adjuvant therapy in critically ill patients with SARS-CoV2 pneumonia. Blood Purif. 2021; 50 (4–5): 566–571. DOI:10.1159/000511725. PMID: 33181508.; Popescu M., Dima S., David C., Tudor A., Simionescu M., Tomescu D. Standard renal replacement therapy combined with hemoadsorption in the treatment of critically ill septic patients. Ther Apher Dial. 2021; 25 (5): 663–670. DOI:10.1111/1744-9987.13612. PMID: 33270367.; Ратников В.А., Щеглов, А.Н., Абрамовский С.В., Симутис И.С., Данилов М.С., Иванова Г.Г., Сыроватский А.А. Предикторы клинической эффективности гемосорбции цитокинов при COVID-19. Общая реаниматология. 2023; 19 (1): 20–26. DOI:10.15360/1813-9779-2023-1-2224.; Полушин, Ю.С., Акмалова, Р.В., Соколов, Д.В., Бовкун, И.В., Шлык, И.В., Паршин, Е.В., Ткаченко, О.Ю. Изменение уровня некоторых цитокинов при использовании гемофильтрации с сорбцией у пациентов с COVID-19. Вестник анестезиологии и реаниматологии. 2021; 18 (2): 31–39. DOI:10.21292/2078-5658-2021-18-2-31-39.; https://www.reanimatology.com/rmt/article/view/2507

  5. 5
    Academic Journal

    Συγγραφείς: Hristich, T.N., Hontsariuk, D.O.

    Πηγή: GASTROENTEROLOGY; Том 53, № 1 (2019); 54-61
    Гастроэнтерология-Gastroenterologìa; Том 53, № 1 (2019); 54-61
    Гастроентерологія-Gastroenterologìa; Том 53, № 1 (2019); 54-61

    Περιγραφή αρχείου: application/pdf

  6. 6
    Academic Journal

    Συγγραφείς: G. V. Bulava, Г. В. Булава

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 1 (2023); 92-98 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 1 (2023); 92-98 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1574/1278; https://www.jnmp.ru/jour/article/view/1574/1299; World Health Organization. Global Health Estimates: Life expectancy and leading causes of death and disability. Deaths by cause, age and sex. Available at: http://www.who.int/healthinfo/global_burden_disease/estimates/en/ index1.html [Accessed 21 february 2023]; World Health Organization. Violence and injuries: the facts. Geneva, Switzerland: World Health Organization; 2010.; Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384(9952):1455–1465. PMID: 25390327 https://doi. org/10.1016/S0140-6736(14)60687-5; Sauaia A, Moore FA, Moore EE. Postinjury inflammation and organ dysfunction. Crit Care Clin. 2017;33(1):167–191. PMID: 27894496 https://doi. org/10.1016/j.ccc.2016.08.006; Gabbe BJ, Simpson PM, Cameron PA, Ponsford J, Lyons RA, Collie A, et al. Long-term health status and trajectories of seriously injured patients: a population-based longitudinal study. PLoS Med. 2017;14(7):e1002322. PMID: 28678814 https://doi.org/10.1371/journal.pmed.1002322 eCollection 2017 Jul.; Callcut RA, Wakam G, Conroy AS, Kornblith LZ, Howard BM, Campion EM, et al. Discovering the truth about life after discharge: Long-term traumarelated mortality. J Trauma Acute Care Surg. 2016;80(2):210–217. PMID: 26606176 https://doi.org/10.1097/TA.0000000000000930; Tonglet ML, Greiffenstein P, Pitance F, Degesves S. Massive bleeding following severe blunt trauma: the first minutes that can change everything. Acta Chir Belg. 2016;116(1):11–15. PMID: 27385134 https://doi.org/10.1080/ 00015458.2015.1136488; Vargas M, García A, Caicedo Y, Parra MW, Ordoñez CA. Vargas M, et al. Damage control in the intensive care unit: what should the intensive care physician know and do? Colomb Med (Cali). 2021;52(2):e4174810. PMID: 34908625 https://doi.org/10.25100/cm.v52i2.4810; Tien HC, Spencer F, Tremblay LN, Rizoli SB, Brenneman FD. Preventable deaths from hemorrhage at a level I Canadian trauma center. J Trauma. 2007;62(1):142–146. PMID: 17215745 https://doi.org/10.1097/01. ta.0000251558.38388.47; Schäfer N, Driessen A, Fröhlich M, Stürmer EK, Maegele M; TACTIC partners. Diversity in clinical management and protocols for the management of major bleeding of trauma patients across European level 1 Trauma Centres. Scand J Trauma Resusc Emerg Med. 2015;23:74. PMID: 26428070 https://doi. org/10.1186/s13049-015-0147-6; Chin-Yee IH, Gray-Statchuk L, Milkovich S, Ellis CG. Transfusion of stored red blood cells adhere in the rat microvasculature. Transfusion. 2009;49(11):2304– 2310. PMID: 19624601 https://doi.org/10.1111/j.1537-2995.2009.02315.x; D’Alessandro A, Liumbruno G, Grazzini G, Zolla L. Red blood cell storage: the story so far. Blood Transfusion. 2010;8(2):82–88. PMID: 20383300 https://doi. org/10.2450/2009.0122-09; Jy W, Ricci M, Shariatmadar S, Gomez-Marin O, Horstman LH, Ahn YS. Microparticles in stored red blood cells as potential mediators of transfusion complications. Transfusion. 2011;51(4):886–893. PMID: 21496051 https:// doi.org/10.1111/j.1537-2995.2011.03099.x; Curry N, Brohi K. Surgery in Traumatic Injury and Perioperative Considerations. Semin Thromb Hemost. 2020;46(1):73–82. PMID: 31563126 https://doi.org/10.1055/s-0039-1697932; Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–1345. PMID: 18048040 https://doi.org/10.1016/ j.injury.2007.10.003; Агаджанян В.В. (ред.) Политравма. Септические осложнения. Новосибирск: Наука; 2005.; Wafaisade AP, Lefering RMD, Bouillon BMD, Sakka SGMD, Thamm OCMD, Paffrath TMD, et al.; Trauma Registry of the German Society for Trauma Surgery. Epidemiology and risk factors of sepsis after multiple trauma: An analysis of 29,829 patients from the Trauma Registry of the German Society for Trauma Surgery. Crit Care Med. 2011;39(4):621–628. PMID: 21242798 https://doi.org/10.1097/CCM.0b013e318206d3df; Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. PMID: 20203610 https://doi.org/10.1038/ nature08780; Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care. 2012;2(1):27. PMID: 22788849 https://doi.org/10.1186/2110-5820-2-27; Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Brit J Surg. 2012;99(Suppl 1):12–20. PMID: 22441851 https://doi.org/0.1002/bjs.7717; Liew PX, Kubes P. The Neutrophil’s Role During Health and Disease. Physiol Rev. 2019;99(2):1223–1248. PMID: 30758246 https://doi.org/10.1152/ physrev.00012.2018; Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–396. PMID: 32202340 https://doi.org/10.1002/ JLB.4MIR0220-574RR; Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. PMID: 25339958 https://doi.org/10.3389/fimmu.2014.00491 eCollection 2014.; Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–341. PMID: 29507356 https://doi.org/10.1038/ s41590-018-0064-8; Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159. PMID: 22424226 https://doi.org/10.1016/ j.cell.2012.02.035; Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circulation Research. 2012;111(9):1198–1207. PMID: 23065343 https://doi.org/10.1161/CIRCRESAHA.112.268946; West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Revs Immunol. 2017;17(6):363–375. PMID: 28393922 https://doi.org/10.1038/nri.2017.21; Nakahira K, Hisata S, Choi AM. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal. 2015;23(17):1329– 1350. PMID: 26067258 https://doi.org/10.1089/ars.2015.6407; Boyapati RK, Rossi AG, Satsangi J, Ho GT. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 2016;9(3):567– 582. PMID: 26931062 https://doi.org/10.1038/mi.2016.14; Krychtiuk KA, Ruhittel S, Hohensinner PJ, Koller L, Kaun C, Lenz M, et al. Mitochondrial DNA and Toll-Like Receptor-9 Are Associated with Mortality in Critically Ill Patients. Crit Care Med. 2015;43(12):2633–2641. PMID: 26448617 https://doi.org/10.1097/CCM.0000000000001311; Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013;10(12):e1001577. PMID: 24391478 https://doi.org/10.1371/journal.pmed.1001577; Хубутия М.Ш., Шабанов А.К., Скулачев М.В., Булава Г.В., Савченко И. М., Гребенников О.А., и др. Митохондриальная и ядерная ДНК у пострадавших с тяжелой сочетанной травмой. Общая реаниматология. 2013;9(6):24–35.; Gołąbek-Dropiewska K, Pawłowska J, Witkowski J, Lasek J, Marks W, Stasiak M, et al. Analysis of selected pro- and anti-inflammatory cytokines in patients with multiple injuries in the early period after trauma. Cent Eur J Immunol. 2018;43(1):42–49. PMID: 29731691 https://doi.org/10.5114/ceji.2018.74872; Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581– 2590. PMID: 22110166 https://doi.org/10.1084/jem.20111354; Hildebrand F, Pape HC, Krettek C. Die Bedeutung der Zytokine in der posttraumatischen Entzündungsreaktion [The importance of cytokines in the posttraumatic inflammatory reaction]. Unfallchirurg. 2005;108(10):793– 794, 796–803. PMID: 16175346 https://doi.org/10.1007/s00113-005-1005-1; Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–1501. PMID: 22695412 https://doi.org/0.1097/ TA.0b013e318256e000; Duggal NA, Upton J, Phillips AC, Sapey E, Lord JM. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013;12(5):873–881. PMID: 23755918 https://doi.org/10.1111/acel.12114; Bruijns SR, Guly HR, Bouamra O, Lecky F, Lee WA. The value of traditional vital signs, shock index, and age-based markers in predicting trauma mortality. J Trauma Acute Care Surg. 2013;74(6):1432–1437. PMID: 23694869 https://doi.org/10.1097/TA.0b013e31829246c7; Burk AM, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348– 354. PMID: 22258234 https://doi.org/10.1097/SHK.0b013e3182471795; Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–261. PMID: 23590652 https://doi.org/10.1111/ijlh.12084; van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol. 2009;85(2):195–204. PMID: 18948548 https://doi.org/10.1189/jlb.0708400; Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, et al. Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood. 2013;122(2):253–261. PMID: 23652806 https://doi.org/10.1182/blood-2013-03-492801; Timar CI, Lorincz AM, Csepanyi-Komi R, Valyi-Nagy A, Nagy G, Buzas EI, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013;121(3):510–518. PMID: 23144171 https://doi. org/10.1182/blood-2012-05-431114; Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51. PMID: 19144520 https://doi. org/10.1016/j.tcb.2008.11.003; Leonard JM, Zhang CX, Lu L, Hoofnagle MH, Fuchs A, Clemens RA, et al. Extrathoracic multiple trauma dysregulates neutrophil function and exacerbates pneumonia-induced lung injury. J Trauma Acute Care Surg. 2021;90(6):924–934. PMID: 34016916 https://doi.org/10.1097/ TA.0000000000003147; Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532– 1535. PMID: 15001782 https://doi.org/10.1126/science.1092385; Hietbrink F, Koenderman L, Althuizen M, Leenen LP. Modulation of the innate immune response after trauma visualised by a change in functional PMN phenotype. Injury. 2009;40(8):851–855. PMID: 19339006 https://doi. org/10.1016/j.injury.2008.11.002; Groeneveld KM, Koenderman L, Warren BL, Jol S, Leenen LPH, Hietbrink F. Early decreased neutrophil responsiveness is related to late onset sepsis in multitrauma patients: An international cohort study. PLoS One. 2017;12(6): e0180145. PMID: 28665985 https://doi.org/10.1371/journal.pone.0180145 eCollection 2017.; Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–640. PMID: 23747022 https://doi.org/ 10.1016/j.coph.2013.05.012; McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016;7:556. PMID: 27994591 https://doi. org/10.3389/fimmu.2016.00556 eCollection 2016.; Liu MH, Tian J, Su YP, Wang T, Xiang Q, Wen L. Cervical sympathetic block regulates early systemic inflammatory response in severe trauma patients. Med Sci Monitor. 2013;19:194–201. PMID: 23492458 https://doi. org/10.12659/MSM.883833; Hall S, Kumaria A, Belli A. The role of vagus nerve overactivity in the increased incidence of pneumonia following traumatic brain injury. Br J Neurosurg. 2014;28(2):181–186. PMID: 24024980 https://doi.org/10.3109/02 688697.2013.835373; Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–1311. PMID: 11780861 https://doi.org/10.1089/08977150 152725605; Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, et al. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(10 Pt B):2614–2626. PMID: 28533056 https://doi.org/10.1016/j.bbadis.2017.05.020; Kharrazian D. Traumatic Brain Injury and the Effect on the Brain-Gut Axis. Altern Ther Health Med. 2015;21(Suppl 3):28–32. PMID: 26348611; Patterson TT, Nicholson S, Wallace D, Hawryluk GWJ, Grandhi R. Complex Feed-Forward and Feedback Mechanisms Underlie the Relationship Between Traumatic Brain Injury and the Gut-Microbiota-Brain Axis. Shock. 2019;52(3):318–325. PMID: 30335675 https://doi.org/10.1097/ SHK.0000000000001278; Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44. PMID: 28526435 https://doi.org/10.1016/j.bbi.2017.05.009; Alverdy JC. Microbiome Medicine: This Changes Everything. J Am Coll Surg. 2018;226(5):719–729. PMID: 29505823 https://doi.org/10.1016/j.jamcollsurg .2018.02.004; Patel JJ, Rosenthal MD, Miller KR, Martindale RG. The gut in trauma. Curr Opin Crit Care. 2016;22(4):339–346. PMID: 27314259 https://doi. org/10.1097/MCC.0000000000000331; Hang CH, Shi JX, Li JS, Li WQ, Yin HX. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol. 2005;11(8):1149–1154. PMID: 15754395 https://doi.org/10.3748/wjg.v11.i8.1149; Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. PMID: 19343057 https://doi.org/10.1038/nri2515; Howard BM, Kornblith LZ, Christie SA, Conroy AS, Nelson MF, Campion EM, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2(1):e000108. PMID: 29766103 https://doi.org/10.1136/tsaco-2017-000108 eCollection 2017.; Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients. 2021;13(7):2439. PMID: 34371948 https://doi.org/10.3390/nu13072439; Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209. PMID: 25830558; Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. PMID: 15260992 https:// doi.org/10.1016/j.cell.2004.07.002; Ivanov II, Honda K Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4):496–508. PMID: 23084918 https://doi. org/10.1016/j.chom.2012.09.009; Burmeister DM, Johnson TR, Lai Z, Scroggins SR, DeRosa M, Jonas RB, et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J Trauma Acute Care Surg. 2020;88(5):579–587. PMID: 32039976 https://doi.org/10.1097/TA.0000000000002612; Nielson JL, Paquette J, Liu AW, Guandique CF, Tovar CA, Inoue T, et al. Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat Commun. 2015;6:8581. PMID: 26466022 https:// doi.org/10.1038/ncomms9581; https://www.jnmp.ru/jour/article/view/1574

  7. 7
    Academic Journal

    Συνεισφορές: 1

    Πηγή: Annals of the Russian academy of medical sciences; Vol 77, No 6 (2022); 408-419 ; Вестник Российской академии медицинских наук; Vol 77, No 6 (2022); 408-419 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.776

    Περιγραφή αρχείου: application/pdf

  8. 8
    Academic Journal

    Πηγή: Clinical anatomy and operative surgery; Vol. 3 No. 1 (2004); 32-39
    Клиническая анатомия и оперативная хирургия; Том 3 № 1 (2004); 32-39
    Клінічна анатомія та оперативна хірургія; Том 3 № 1 (2004); 32-39

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://kaos.bsmu.edu.ua/article/view/264717

  9. 9
    Academic Journal

    Πηγή: Research and Practical Medicine Journal; Том 9, № 4 (2022); 83-95 ; Research'n Practical Medicine Journal; Том 9, № 4 (2022); 83-95 ; 2410-1893 ; 10.17709/2410-1893-2022-9-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/805/514; https://www.rpmj.ru/rpmj/article/downloadSuppFile/805/644; https://www.rpmj.ru/rpmj/article/downloadSuppFile/805/645; https://www.rpmj.ru/rpmj/article/downloadSuppFile/805/658; Рябков М. Г., Измайлов С. Г., Лукоянычев Е. Е., Сабаури Р. В., Орлинская Н. Ю. Тактика при интраабдоминальной гипертензии у больных с острыми заболеваниями органов брюшной полости. Хирургия. Журнал им. Н. И. Пирогова. 2013;3:48–54.; Тимербулатов М. В., Тимербулатов Ш. В., Гатауллина Э. З., Валитова Э. Р. Послеоперационные вентральные грыжи: современное состояние проблемы. Медицинский вестник Башкортостана. 2013;8(5):101–107.; Ермолов А. С., Благовестнов Д. А., Алексеев А. К., Упырев А. В., Ярцев П. А., Шляховский И. А., и др. Хирургическое лечение пациентов с большими и гигантскими послеоперационными вентральными грыжами. Хирургия. Журнал им. Н. И. Пирогова. 2019;9:38–43. https://doi.org/10.17116/hirurgia201909138; Тарасова Н. К., Дыньков С. М., Поздеев В. Н., Тетерин А. Ю., Османова Г. Ш. Анализ причин рецидива послеоперационных вентральных грыж. Хирургия. Журнал им. Н.И. Пирогова. 2019;10:36–42. https://doi.org/10.17116/hirurgia201910136; Власов А. В., Кукош М. В. Проблема раневых осложнений при эндопротезировании брюшной стенки по поводу вентральных грыж. Современные технологии в медицине. 2013;5(2):116–124.; Белоконев В. И., Пономарева Ю. В., Пушкин С. Ю., Мелентьева О. Н., Гуляев М. Г. Возможные предикторы и морфологические аспекты развития серомы после пластики грыжи передней брюшной стенки. Новости хирургии. 2014;22(6):665–670.; Михин И. В., Кухтенко Ю. В., Панчишкин А. С. Большие и гигантские послеоперационные вентральные грыжи: возможности хирургического лечения. Вестник Волгоградского государственного медицинского университета. 2014;2(50):8–16.; Brooks DC. Clinical features, diagnosis, and prevention of incisional hernias. UpToDate. 2018, 1–16 p. Доступно по: https://www.uptodate.com/contents/clinical-features-diagnosis-and-prevention-of-incisional-hernias/print, Дата обращения: 01.11.2022.; Бесчастнов В. В., Измайлов С. Г., Багрянцев М. В., Орлинская Н. Ю., Лукоянычев Е. Е., Миронов А. А. Активность процессов репаративной регенерации в условиях локальной циркуляторной гипоксии околораневой области. Новости хирургии. 2015;23(6):612–618. https://doi.org/10.18484/2305-0047.2015.6.612; Mathes SJ, Steinwald PM, Foster RD, Hoffman WY, Anthony JP. Complex abdominal wall reconstruction: a comparison of flap and mesh closure. Ann Surg. 2000 Oct;232(4):586–596. https://doi.org/10.1097/00000658-200010000-00014; Парахонский А. П., Цыганок С. С. Иммуноцитохимия лейкоцитов при воспалении. Фундаментальные исследования. 2004;(1):74–75.; Калинина Н. М., Сосюкин А. Е., Вологжанин Д. А. и др. Травма: воспаление и иммунитет. Цитокины и воспаление. 2005;4(1):28–35.; Магомедов М. М., Магомедбеков Р. Э., Исмаилов Г. М. Системная воспалительная реакция при аллопластических методах лечения паховых грыж. Вестник новых медицинских технологий. 2017;(2):48–59. https://doi.org/10.12737/article_59099e6cbbb6f5.58108559; Сарбаева Н. Н., Пономарева Ю. В., Милякова М. Н. Макрофаги: разнообразие фенотипов и функций, взаимодействие с чужеродными материалами. Гены и клетки. 2016;11(1):9–17.; Кукош М. В., Измайлов С. Г., Лукоянычев Е. Е., Евсюков Д. А. Новые технологии в профилактике раневой инфекции при протезирующей пластике. Альманах института Хирургии им. А. В. Вишневского. 2020;(1):375–376. Доступно по: http://book.surgeons.ru/components/com_jshopping/files/demo_products/Thesis_2020_part1.pdf, Дата обращения: 06.11.2022.; Лукоянычев Е. Е., Измайлов С. Г., Миронов А. А., Евсюков Д. А. Фармакологическая стимуляция приживления сетчатого имплантата после пластики вентральных грыж (клиническое исследование). Казанский медицинский журнал. 2021;102(1):6– 11. https://doi.org/10.17816/kmj2021-6; https://www.rpmj.ru/rpmj/article/view/805

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Συγγραφείς: Mokryk, O. Ya.

    Πηγή: Bulletin of Scientific Research; No. 2 (2019); 78-84 ; Вестник научных исследований; № 2 (2019); 78-84 ; Вісник наукових досліджень; № 2 (2019); 78-84 ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2019.2

    Περιγραφή αρχείου: application/pdf

  15. 15
    Academic Journal

    Συγγραφείς: Nahirnyi, Ya. P.

    Πηγή: CLINICAL DENTISTRY; No. 1 (2020); 17-23 ; Клінічна Стоматологія; № 1 (2020); 17-23 ; 2415-3036 ; 2311-9624 ; 10.11603/2311-9624.2020.1

    Περιγραφή αρχείου: application/pdf

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    Συγγραφείς: Munteanu Ivanov, M.V.

    Πηγή: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 65 (1) 106-113

    Περιγραφή αρχείου: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17185/EU/Alternative terapeutice noi de ameliorere a prognozei de lungă durată a pacienților cu insuficiență cardiacă cronică prin implementarea strategiilor chirurgicale, intervenționale și de recuperare peri/20.80009.8007.34; https://ibn.idsi.md/vizualizare_articol/114996; urn:issn:18570011

  18. 18
    Academic Journal

    Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 13, № 1 (2016); 30-37 ; Вестник анестезиологии и реаниматологии; Том 13, № 1 (2016); 30-37 ; 2541-8653 ; 2078-5658

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/76/114; Гусев Е. Ю., Юрченко Л. Н., Черешнев В. А. и др. Методология изучения системного воспаления // Цитокины и воспаление. – 2008. – Т. 7, № 1. – С. 15–23.; Прохоренко Т. С., Саприна Т. В., Лазаренко Ф. Э. и др. Система фактора некроза опухолей-α в патогенезе аутоиммунного сахарного диабета // Бюллетень сиб. мед. – 2011. – № 1. – С. 64–69.; Шевченко Ю. Л., Стойко Ю. М., Замятин М. Н. и др. Кровосберегающий эффект транексамовой кислоты при эндопротезировании коленного сустава // Общ. реаниматология. – 2008. – Т. IV, № 6. – С. 1–4.; Bastian D., Tamburstuen M. V., Lyngstadaas S. P. et al. Systemic and local cytokine kinetics after total hip replacement surgery // Eur. Surg. Res. – 2008. – Vol. 41, № 4. – P. 334–340.; Clementsen T., Krohn C. D., Reikeras O. Systemic and local cytokine patterns during total hip surgery // Scand. J. Clin. Lab. Invest. – 2006. – Vol. 66, № 6. – P. 535–542.; Haghes S. F., Hendricks B. D., Edwards D. R. et al. Lower limb orthopaedic surgery results in changes to coagulation and non-specific inflammatory biomarkers, including selective clinical outcome measures // Eur. J. Med. Res. – 2013. – Vol. 18. – P. 40. http://www.eurjmedres.com/content/18/1/40; Jimenez J. J., Iribarren J. L., Lorente L. et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: a randomized double-blind, dosedependent, phase IV clinical trial // J. Cardiothoracic Surg. – 2011. – Vol. 6. – P. 138. http://www.cardiothoracicsurgery.org/content/6/1/138; Jimenez J. J., Iribarren J. L., Lorente L. et al. Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis: a case control study followed by a randomized double-blind controlled trial // Crit. Care. – 2007. – Vol. 11, № 6. – R.117 (doi:10.1186/cc6173). – http://ccforum.com/content/11/6/R117; Ker K., Edwards P., Perel P. et al. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis // BMJ. – 2012. – Vol. 344. – e3054–e3067. doi:10.1136/bmj.e3054; Ker K., Prieto-Merino D., Roberts I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss // Br. J. Surg. – 2013. – Vol. 100, № 10. – P. 1271–1279.; Levy J. H. Anti-inflammatory strategies and hemostatic agents: old drugs, new ideas // Hematol. Oncol. Clin. North. Am. – 2007. – Vol. 21, № 1. – P. 89–101.; Li Z. J., Fu X., Xing D. et al. Is tranexamic acid effective and safe in spinal surgery? A meta-analysis of randomized controlled trials // Eur. Spine J. – 2013. – Vol. 22. – P. 1950–1957.; Nadler S. B., Hidalgo J. H., Bloch T. Prediction of blood volume in normal human adults // Surgery. – 1962. – Vol. 51, № 2. – P. 224–232.; Ng W. C., Jerath A., Wasowicz M. Tranexamic acid: a clinical review // Anaesthesiology Intensive Therapy. – 2015. – Vol. 47, № 4. – Р. 339–350.; Poeran J., Rasul R., Suzuki S. et al. Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety // BMJ. – 2014. – Vol. 349. – g4829-g4839. doi:10.1136/bmj.g4829.; Vel R., Udupi B. P., Prakash M. V. et al. Effect of low dose tranexamic acid on intra-operative blood loss in neurosurgical patients // Saudi. J. Anaesth. – 2015. – Vol. 9, № 1. – P. 42–48.

  19. 19
  20. 20
    Academic Journal

    Συνεισφορές: Grant for government support to leading science schools of the Russian Federation (contest NSH-2018, NSH 2696.2018.7), Грант для государственной поддержки ведущих научных школ Российской Федерации (Конкурс НШ-2018, НШ 2696.2018.7)

    Πηγή: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 18-29 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 18-29 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2167/1534; Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy. Science. 2012; 335: 936–941. DOI:10.1126/science.1214935.; Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013; 13 (3): 260–268. DOI:10.1016/S1473-3099(13)70001-X.; Schefold J.C., Hasper D., Reinke P., Monneret G., Volk H.D. Consider delayed immunosuppression into the concept of sepsis. Crit Care Med. 2008; 36 (11): 3118. DOI:10.1097/CCM.0b013e31818bdd8f.; Ward N.S., Casserly B., Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin. Chest Med. 2008; 29 (4): 617–625. DOI:10.1016/j.ccm.2008.06.010.; Monneret G., Venet F., Kullberg B.J., Netea M.G. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med. Mycol. 2011; 49 (Suppl. 1): S17–S23. DOI:10.3109/13693786.2010.509744.; Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013; 13 (12): 862–874. DOI:10.1038/nri3552.; Delano M.J., Thayer T., Gabrilovich S., Kelly-Scumpia K.M., Winfield R.D., Scumpia P.O., Cuenca A.G., Warner E., Wallet S.M., Wallet M.A., O’Malley K.A., Ramphal R., Clare-Salzer M., Efron P.A., Mathews C.E., Moldawer L.L. Sepsis induces early alterations in innate immunity that impact mortality to secondary infection. J. Immunol. 2011; 186 (1): 195–202. DOI:10.4049/jimmunol.1002104.; Stephan F., Yang K., Tankovic J., Soussy C.J., Dhonneur G., Duvaldestin P., Brochard L., Brun-Buisson C., Harf A., Delclaux C. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit. Care Med. 2002; 30 (2): 315–322.; Marini O., Costa S., Bevilacqua D., Calzetti F., Tamassia N., Spina C., De Sabata D., Tinazzi E., Lunardi C., Scupoli M.T., Cavallini C., Zoratti E., Tinazzi I., Marchetta A., Vassanelli A., Cantini M., Gandini G., Ruzzenente A., Guglielmi A., Missale F., Vermi W., Tecchio C., Cassatella M.A., Scapini P. Mature CD10+ and immature CD10- neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood. 2017; 129 (10): 1343–1356. DOI:10.1182/blood-2016-04-713206.; Orr Y., Taylor J.M., Bannon P.G., Geczy C., Kritharides L. Circulating CD10-/CD16 low neutrophils provide a quantitative index of active bone marrow neutrophil release. Br. J. Haematol. 2005; 131 (4): 508–519. DOI:10.1111/j.1365-2141.2005.05794.x.; Parihar A., Eubank T.D., Doseff A.I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate. Immun. 2010; 2 (3): 204–215. DOI:10.1159/000296507.; Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009; 30 (10): 475–487. DOI:10.1016/j.it.2009.07.009.; Fumeaux T., Dufour J., Stern S., Pugin J. Immune monitoring of patients with septic shock by measurement of intraleukocyte cytokines. Intensive Care Med. 2004; 30 (11): 2028–2037. DOI:10.1007/s00134-004-2429-8.; Cavaillon J.M., Adrie C., Fitting C., Adib-Conquy M. Endotoxin tolerance: is there a clinical relevance? J. Endotoxin Research. 2003; 9 (2): 101–107. DOI:10.1179/096805103125001487.; Lukaszewicz A.C., Grienay M., Resche-Rigon M., Pirracchio R., Faivre V., Boval B., Payen D. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit. Care Мed. 2009; 37 (10): 2746–2752. DOI:10.1097/CCM.; Delano M.J., Ward P.A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J. Clin. Invest. 2016; 126 (1): 23–31. DOI:10.1172/JCI82224.; Pachot A., Cazalis M.A., Venet F., Turrel F., Faudot C., Voirin N., Diasparra J., Bourgoin N., Poitevin F., Mougin B., Lepape A., Monneret G. Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J. Immunol. 2008; 180 (9): 6421–6429. DOI:10.4049/jimmunol.180.9.6421.; Piani A., Hossle J.P., Birchler T., Siegrist C.A., Heumann D., Davies G., Loeliger S., Seger R., Lauener R.P. Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Eur. J. Immunol. 2000; 30 (11): 3140–3146. DOI:10.1002/1521-4141(200011)30:113.0.CO;2-O.; Wolk K., Docke W.D., von Baehr V., Volk H.D., Sabat R. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood. 2000; 96 (1): 218–223.; Wolk K., Höflich C., Zuckermann-Becker H., Döcke W.D., Volk H.D., Sabat R. Reduced monocyte CD86 expression in postinflammatory immunodeficiency. Crit. Care Med. 2007; 35 (2): 458–467. DOI:10.1097/01.CCM.0000254724.54515.2F.; Venet F., Lukaszewicz A.C., Payen D., Hotchkiss R., Monneret G. Monitoring the immune response in sepsis: A rational approach to administration of immunoadjuvant therapies. Curr. Opin. Immunol. 2013; 25 (4): 477–483. DOI:10.1016/j.coi.2013.05.006.; Chenouard A., Braudeau C., Cottron N., Bourgoin P., Salabert N., Roquilly A., Josien R., Joram N., Asehnoune K. HLA-DR expression in neonates after cardiac surgery under cardiopulmonary bypass: a pilot study. Intensive Care Medicine Experimental. 2018; 6 (1): 1. DOI:10.1186/s40635-017-0166-x; Fabienne V., Cour M., Demaret J., Guillaume M., Laurent A. Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest. Shock. 2016; 46 (1): 33–36. DOI:10.1097/SHK.0000000000000561.; Umansky V., Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013; 6 (2): 169–177. DOI:10.1007/s12307-012-0126-7.; Bronte V., Brandau S., Chen S.-H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature communications. 2016; 7: 12150. DOI:10.1038/ncomms12150.; Koehn B.H., Apostolova P., Haverkamp J.M., Miller J.S., McCullar V., Tolar J., Munn D.H., Murphy W.J., Brickey W.J., Serody J.S., Gabrilovich D.I., Bronte V., Murray P.J., Ting J.P., Zeiser R., Blazar B.R. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015; 126 (13): 1621–1628. DOI:10.1182/blood-2015-03-634691.; Uhel F., Azzaoui I., Grégoire M., Pangault C., Dulong J., Tadiй J.M., Gacouin A., Camus C., Cynober L., Fest T., Le Tulzo Y., Roussel M., Tarte K. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in septic patients. Am. J. Respir. Crit. Care Med. 2017; 196 (3): 315–327. DOI:10.1164/rccm.201606-1143OC.; Gey A. Tadie J.M., Caumont-Prim A., Hauw-Berlemont C., Cynober L., Fagon J.Y., Terme M., Diehl J.L., Delclaux C., Tartour E. Granulocytic Myeloid-Derived Suppressor Cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clin. Exp. Immunol. 2015; 180 (2): 280–288. DOI:10.1111/cei.12567.; Tadié J.M., Cynober L., Peigne V., Caumont-Prim A., Neveux N., Gey A., Guerot E., Diehl J.L., Fagon J.Y., Tartour E., Delclaux C. Arginine administration to critically ill patients with a low nitric oxide fraction in the airways: a pilot study. Intensive Care Med. 2013; 39 (9): 1663–1665. DOI:10.1007/s00134-013-2984-y.; Steinman R.M., Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 2006; 311: 17–58.; Riccardi F., Della Porta M.G., Rovati B., Casazza A., Radolovich D., De Amici M., Danova M., Langer M. Flow cytometric analysis of peripheral blood dendritic cells in patients with severe sepsis. Cytometry B Clin. Cytom. 2011; 80: 1421. DOI:10.1002/cyto.b.20540.; Guisset O., Dilhuydy M.S., Thiebaut R., Lefevre J., Camou F., Sarrat A., Gabinski C., Moreau J.F., Blanco P. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 2007; 33 (1): 148–152. DOI:10.1007/s00134-006-0436-7.; Hotchkiss R.S., Tinsley K.W., Swanson P.E., Grayson M.H., Osborne D.F., Wagner T.H., Cobb J.P., Coopersmith C., Karl I.E. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 2002; 168 (5): 2493–2500. DOI:10.4049/jimmunol.168.5.2493.; Pastille E., Didovic S., Brauckmann D., Rani M., Agrawal H., Schade F.U., Zhang Y., Flohe S.B. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J. Immunol. 2011; 186 (2): 977986. DOI:10.4049/jimmunol.1001147; Adrie C., Lugosi M., Sonneville R., Souweine B., Ruckly S., Cartier J.C., Garrouste-Orgeas M., Schwebel C., Timsit J.F. OUTCOMEREA study group. Persistent lymphopenia is a risk factor for ICU-acquired infections and for death in ICU patients with sustained hypotension at admission. Annals of Intensive Care. 2017; 7: 30. DOI:10.1186/s13613-017-0242-0.; Inoue S., Suzuki-Utsunomiya K., Okada Y., Taira T., Iida Y., Miura N., Tsuji T., Yamagiwa T., Morita S., Chiba T., Sato T., Inokuchi S. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit. Care Med. 2013; 41 (3): 810–819. DOI:10.1097/CCM.0b013e318274645f.; De Jager C.P.C., van Wijk P.T.L., Mathoera R.B., de Jongh-Leuvenink J., van der Poll T., Wever P.C. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit. Care. 2010; 14 (5): R192. DOI:10.1186/cc9309.; Forel J.-M., Chiche L., Thomas G., Mancini J., Farnarier C., Cognet C., Guervilly C., Daumas A., Vély F., Xéridat F., Vivier E., Papazian L. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One. 2012; 7(12): e50446. DOI:10.1371/journal.pone.0050446.; Souza-Fonseca-Guimaraes F., Parlato M., Fitting C., Cavaillon J.M., Adib-Conquy M. NK cell tolerance to TLR agonists mediated by regulatory T cells after polymicrobial sepsis. J. Immunol. 2012; 188 (12): 5850–5858. DOI:10.4049/jimmunol.1103616.; Grimaldi D., Le Bourhis L., Sauneuf B., Dechartres A., Rousseau C., Ouaaz F., Milder M., Louis D., Chiche J.D., Mira J.P., Lantz O., Pène F. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014; 40 (2): 192–201. DOI:10.1007/s00134-013-3163-x.; Venet F., Bohe J., Debard A.L., Bienvenu J., Lepape A., Monneret G. Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock. Crit Care Med. 2005; 33 (12): 2836–2840. DOI:10.1097/01.CCM.0000189745.66585.AE.; Hotchkiss R.S., Nicholson D.W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 2006; 6 (11): 813–822. DOI:10.1038/nri1943.; Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013; 13 (4): 227–242. DOI:10.1038/nri3405.; Zhang Y., Li J., Lou J., Zhou Y., Bo L., Zhu J., Zhu K., Wan X., Cai Z., Deng X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit. Care. 2011; 15 (1): R70. DOI:10.1186/cc10059.; Huang X., Venet F., Wang Y.L., Lepape A., Yuan Z., Chen Y., Swan R., Kherouf H., Monneret G., Chung C.S., Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci USA. 2009; 106 (15): 6303–6308. DOI:10.1073/pnas.0809422106.; Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., Malcus C., Chéron A., Allaouchiche B., Gueyffier F., Ayala A., Monneret G., Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care. 2011; 15 (2): R99. DOI:10.1186/cc10112.; Day C.L., Kaufmann D.E., Kiepiela P., Brown J.A., Moodley E.S., Reddy S., Mackey E.W., Miller J.D., Leslie A.J., DePierres C., Mncube Z., Duraiswamy J., Zhu B., Eichbaum Q., Altfeld M., Wherry E.J., Coovadia H.M., Goulder P.J., Klenerman P., Ahmed R., Freeman G.J., Walker B.D. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006; 443 (7109): 350–354. DOI:10.1038/nature05115.; Huang X., Chen Y., Chung C.S., Yuan Z., Monaghan S.F., Wang F., Ayala A. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis. J. Immunol. 2014; 192 (3): 1091–1099. DOI:10.4049/jimmunol.1302252.; Goyert S.M., Silver J. Editorial: PD-1, a new target for sepsis treatment: better late than never. J. Leukoc. Biol. 2010; 88: 225–226. DOI:10.1189/jlb.0410240.; Wick M., Kollig E., Muhr G., Koller M. The potential pattern of circulating lymphocytes TH1/TH2 is not altered after multiple injuries. Arch. Surg. 2000; 135 (11): 1309–1314. DOI:10.1001/archsurg.135.11.1309.; Zajac A.J., Blattman J.N., Murali-Krishna K., Sourdive D.J.D., Suresh M., Altman J.D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 1998; 188 (12): 2205–2213. DOI:10.1084/jem.188.12.2205.; Kuethe J.W., Mintz-Cole R., Johnson B.L. 3rd, Midura E.F., Caldwell C.C., Schneider B.S. Assessing the Immune Status of Critically Ill Trauma Patients by Flow Cytometry. Nurs. Res. 2014; 63 (6): 426–434. DOI:10.1097/NNR.0000000000000061.; Monneret G., Debard A.L., Venet F., Bohe J., Hequet O., Bienvenu J., Lepape A. Marked elevation of human circulating CD41CD251 regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003; 31 (7): 2068– 2071. DOI:10.1097/01.CCM.0000069345.78884.0F.; Kessel A., Bamberger E., Masalha M., Toubi E. The role of T regulatory cells in human sepsis. J. Autoimmun. 2009; 32 (3–4): 211–215. DOI:10.1016/j.jaut.2009.02.014.; Chen K., Zhou Q.X., Shan H.W., Li W.F., Lin Z.F. Prognostic value of CD4(1)CD25(1) Tregs as a valuable biomarker for patients with sepsis in ICU. World. J. Emerg. Med. 2015; 6 (1): 40–43. DOI:10.5847/wjem.j.1920-8642.2015.01.007.; Huang H., Xu R., Lin F., Bao C., Wang S., Ji C., Li K., Jin L., Mu J., Wang Y., Li L., Sun L., Xu B., Zhang Z., Wang F.S. High circulating CD39(+) regulatory T cells predict poor survival for sepsis patients. Int. J. Infect. Dis. 2015; 30: 57–63. DOI:10.1016/j.ijid.2014.11.006.; https://bulletin.tomsk.ru/jour/article/view/2167