-
1Academic Journal
Authors: A. N. Busygin, B. H. Gabdulin, S. Yu. Udovichenko, N. A. Shulaev, A. D. Pisarev, A. H. A. Ebrahim, А. Н. Бусыгин, Б. Х. Габдулин, С. Ю. Удовиченко, Н. А. Шулаев, А. Д. Писарев, А. Х. А. Ибрагим
Contributors: The study was conducted with the support of the Ministry of Education and Science of the Russian Federation within the framework of the state assignment (project FEWZ-2024-0020)., Исследование проведено при поддержке Минобрнауки РФ в рамках государственного задания (проект FEWZ-2024-0020).
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 4 (2024); 324-329 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 4 (2024); 324-329 ; 2413-6387 ; 1609-3577
Subject Terms: вольт-амперная характеристика мемристора, physical model of charge mass transfer, oxygen vacancies and trapped electrons, current-voltage characteristic of a memristor, oxide film temperature, модель массопереноса зарядов, кислородные вакансии
Relation: Larentis S., Nardi F., Balatti S., David C. Gilmer D.C., Ielmini D. Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II: Modeling. IEEE Transactions on Electron Devices. 2012; 59(9): 2468—4275. https://doi.org/10.1109/TED.2012.2202320; Kim S., Kim S-J., Kim K.M., Lee S.R., Chang M., Cho E., Kim Y.-B., Kim Ch.J., Chung U. –I., Yoo I.-K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Reports. 2013; 3: 1680. https://doi.org/10.1038/srep01680; Kim S., Choi S.H., Lu W. Comprehensive Physical model of dynamic resistive switching in an oxide memristor. Acsnano. 2014; 8(3): 2369—2376. https://doi.org/10.1021/nn405827t; Basnet P., Pahinkar D.G., West M.P., Perini C.J., Graham S., Vogel E.M. Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. Journal of Materials Chemistry C. 2020; 8(15): 5092—5101. https://doi.org/10.1039/c9tc06736a; Parit A.K., Yadav M.S., Gupta A.K., Mikhaylov A., Rawat B. Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory. Chaos, Solitons and Fractals. 2021; 145(10-12): 110818. https://doi.org/10.1016/j.chaos.2021.110818; Busygin A., Udovichenko S., Ebrahim A., Bobylev A., Gubin A. Mathematical model of metal-oxide memristor resistive switching based on full physical model of heat and mass transfer of oxygen vacancies and ions. Physica Status Solidi (A) Applications and Materials. 2023; 220(11): 2200478. https://doi.org/10.1002/pssa.202200478; Chernov A.A., Islamov D.R., Pik’nik A.A., Perevalov T.V., Gritsenko V.A. Three-dimensional non-linear complex model of dynamic memristor switching. ECS Transactions. 2017; 75(32): 95—104. https://doi.org/10.1149/07532.0095; Kuzmichev D.S., Markeev A.M. Neuromorphic properties of forming-free non-filamentary TiN/Ta2O5/Ta structures with an asymmetric current-voltage characteristic. Nanobiotechnology Reports. 2021; 16(6): 804—810. https://doi.org/10.1134/S2635167621060136; https://met.misis.ru/jour/article/view/636
-
2Academic Journal
Authors: Габдулин, Б. Х., Бусыгин, А. Н., Удовиченко, С. Ю., Gabdulin, B. Kh., Busygin, A. N., Udovichenko, S. Yu.
Subject Terms: перенос заряда в мемристоре, теплоперенос в активном слое мемристора, металлооксидные мемристоры, движение ионов кислорода, вольт-амперная характеристика мемристора, численное моделирование, charge transfer in memristor, heat transfer in memristor active layer, metal oxide memristor, oxygen ion dynamics, current-voltage characteristic, numerical simulation
File Description: application/pdf
Relation: Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика. — 2025. — Т. 11, № 2 (42)