-
1Academic Journal
Authors: Andrei V. Mozharovskiy, Aleksey A. Artemenko, Roman O. Maslennikov, Irina B. Vendik, А. В. Можаровский, А. А. Артеменко, Р. О. Масленников, И. Б. Вендик
Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 4 (2019); 31-44 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 4 (2019); 31-44 ; 2658-4794 ; 1993-8985
Subject Terms: металлический волновод, waveguide-to-microstrip transition, printed circuit board, hollow metal waveguide, волноводно-микрополосковый переход, печатная плата
File Description: application/pdf
Relation: https://re.eltech.ru/jour/article/view/352/324; https://re.eltech.ru/jour/article/view/352/335; 802.11–2016 – IEEE Standard for Information technology – Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks – Specific requirements. Pt. 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. 802.11–2016. doi:10.1109 /IEEESTD.2016.7786995; Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, Shu Sun, R. Mayzus, Hang Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access (Invited). 2013. Vol. 1, № 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Stevens M., Grafton G. The Benefits of 60 GHz Unlicensed Wireless Communications. 10 p. URL: https://www.faltmann.de/pdf/white-paper-benefits-of-60ghz.pdf (дата обращения: 08.07.2019); Решение ГКРЧ от 20.12.2011 № 11-13-06-1. Об использовании радиоэлектронными средствами фиксированной службы полосы радиочастот 57-64 ГГц (в ред. от 10.03.2017 г. № 17-40-03). URL: http://grfc.ru/upload /medialibrary/713/Reshenie_GKRCH_ot_10.03.2017_17_4 0_03_15.02.2019.docx (дата обращения: 11.07.2019); Revision of Part 15 of the Commission’s Rules Regarding Operation in the 57–64 GHz Band. URL: http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf (дата обращения: 08.07.2019); ECC Recommendation (09)01. Use of the 57–64 GHz Frequency Band for Point-to-Point Fixed Wireless Systems. URL: http://www.erodocdb.dk/Docs/doc98/official/pdf /Rec0901.pdf (дата обращения: 08.07.2019); Wells J. Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications. Norwood, MA: Artech House, Inc., 2010. 224 p.; Kim K. W., Na C. H., Woo D. S. New Dielectric-Covered Waveguide-to-Microstrip Transitions for Ka-Band Transceivers // IEEE MTT-S Inter. Microwave Symp. 8–13 June 2003. Philadelphia, PA, USA. Digest. Vol. 2. Piscataway: IEEE, 2003. P. 1115–1118. doi:10.1109/MWSYM.2003.1212564; Refined Characterization of E-plane Waveguide to Microstrip Transition for Millimeter-Wave Applications / Y. Tikhov, J.-W. Moon, Y.-J. Kim, Y. Sinelnikov // Asia-Pacific Microwave Conf. 3–6 Dec. 2000, Sydney, Australia. Piscataway: IEEE, 2000. P. 1187–1190. doi:10.1109/APMC.2000.926043; Shih Y.-C., Ton T.-N., Bui L. Q. Waveguide-to-Microstrip Transitions for Millimeter-Wave Applications // IEEE MTT-S Inter. Microwave Symp. 25–27 May 1988, New York, USA. Digest. Piscataway: IEEE, 1988. P. 473–475. doi:10.1109/MWSYM.1988.22077; Lou Y., Chan C. H., Xue Q. An in-line Waveguideto-Microstrip Transition Using Radial-Shaped Probe // IEEE Antennas and Propagation Society Inter. Symp. 9–15 June 2007, Honolulu, USA. Piscataway: IEEE, 2007. P. 3117–3120. doi:10.1109/APS.2007.4396196; A Full Wave Analysis of Microstrip-to-Waveguide Transitions / H. W. Yao, A. Abdelmonem, J. F. Liang, K. A. Zaki // IEEE MTT-S Inter. Microwave Symp. 23–27 May 1994, San Diego, USA. Digest. Vol. 42, № 12. P. 2371–2380. doi:10.1109/MWSYM.1994.335341; Grabherr W., Huder B., Menzel W. Microstrip to waveguide transition compatible with MM-wave integrated circuits // IEEE Trans. on Microwave Theory and Techniques. 1994. Vol. MTT-42, № 9. P. 1842–1843. doi:10.1109/22.310597; Hyvonen L., Hujanen A. A Compact MMICCompatible Microstrip to Waveguide Transition // IEEE MTT-S Inter. Microwave Symp. 17–21 June 1996, San Francisco, USA. Digest. Piscataway: IEEE, 1996. P. 875–878. doi:10.1109/MWSYM.1996.511077; A Novel Waveguide to Microstrip Transition in Millimeter-Wave LTCC Module / Z. Wang, L. Xia, B. Yan, R. Xu, Y. Guo // IEEE Inter. Symp. on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications. 16–17 Aug. 2007, Hangzhou, China. Piscataway: IEEE, 2007. P. 340–343. doi:10.1109/MAPE.2007.4393616; Xinfeng D. An Integrated Millimeter-Wave Broadband Microstrip-to-Waveguide Vertical Transition Suitable for Multilayer Planar Circuits // IEEE Microwave and Wireless Components Lett. 2016. Vol. 26, iss. 11, P. 897–899. doi:10.1109/LMWC.2016.2614973; Millimeter-Wave Topside Waveguide-to-Microstrip Transition in Multilayer Substrate / Y. Ishikawa, K. Sakakibara, Y. Suzuki, N. Kikuma // IEEE Microwave and Wireless Components Lett. 2018. Vol. 28, iss. 5. P. 380–382. doi:10.1109/LMWC.2018.2812125; Wideband Aperture Coupled Stacked Patch Type Microstrip to Waveguide Transition for V-Band / H. Y. Lee, D. S. Jun, S. E. Moon, E. K. Kim, J. H. Park, K. H. Park // IEEE Proc. of Asia-Pacific Microwave Conf., 2006. 12–15 Dec. 2006, Yokohama, Japan. Piscataway: IEEE, 2006. P. 360–362. doi:10.1109/APMC.2006.4429440; Волноводно-микрополосковый переход в частотном диапазоне 60 ГГц / А. А. Артеменко, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // 19-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (КрыМиКо'2009). 14–18 сентября 2009, Севастополь. Севастополь: Вебер, 2009. С. 505–506.; Microstrip Lines and Slotlines / K. C. Gupta, R. Garg, I. Bahl, P. Bharia. 2nd ed. Boston/London: Artech House, Inc., 1996. 535 p.; Pozar D. M. Microwave Engineering. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2012. 756 p.; IEC 60153–2:2016. Hollow Metallic Waveguides. Pt. 2: Relevant Specifications for Ordinary Rectangular Waveguides. Standard of the International Electrotechnical Commission, 2016. URL: https://webstore.iec.ch /publication/24898 (дата обращения: 08.07.2019); Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave Band using a Hemispherical Open Resonator // IEEE Inter. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). 7–9 Nov. 2011, Tel Aviv, Israel. Piscataway: IEEE, 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Horn A. Dielectric Constant and Loss of Selected Grades of Rogers High Frequency Circuit Substrates from 1–50 GHz: Technical Report 5788 / Rogers Corporation. Chandler, AZ, 2003. 12 p.; https://re.eltech.ru/jour/article/view/352
-
2Academic Journal
Authors: Andrey V. Mozharovskiy, Oleg V. Soykin, Aleksey A. Artemenko, Roman O. Maslennikov, Irina B. Vendik, А. В. Можаровский, О. В. Сойкин, А. А. Артеменко, Р. О. Масленников, И. Б. Вендик
Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 5 (2019); 17-32 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 5 (2019); 17-32 ; 2658-4794 ; 1993-8985
Subject Terms: металлический волновод, waveguide-to-microstrip transition, printed circuit board, metal waveguide, волноводно-микрополосковый переход, печатная плата
File Description: application/pdf
Relation: https://re.eltech.ru/jour/article/view/372/342; https://re.eltech.ru/jour/article/view/372/377; Five Disruptive Technology Directions for 5G / F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski // IEEE Communications Magazine. 2014. Vol. 52, iss. 2. P. 74–80. doi:10.1109/MCOM.2014.6736746; 802.11-2016. IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements. Pt. 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. doi:10.1109/IEEESTD.2016.7786995; Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access (Invited). 2013. Vol. 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Решение ГКРЧ от 20.12.2011 № 11-13-06-1. Об использовании радиоэлектронными средствами фиксированной службы полосы радиочастот 57–64 ГГц (в ред. от 10.03.2017 г. № 17-40-03). URL: http://grfc.ru/upload/medialibrary/713/Reshenie_GKRCH_ot_10.03.2017_17_40_03_15.02.2019.docx (дата обращения: 29.09.2019); ETSI EN 302 217-3 V2.2.1 (2014-04): Harmonized European Standard. URL: https://www.etsi.org/deliver /etsi_en/302200_302299/30221703/02.02.01_60/en_30221703v020201p.pdf (дата обращения: 29.09.2019); Revision of Part 15 of the Commission’s Rules Regarding Operation in the 57–64 GHz Band. URL: http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf (дата обращения: 29.09.2019); Stevens M., Grafton G. The Benefits of 60 GHz Unlisensed Wireless Communications. 10 p. URL: https://www.faltmann.de/pdf/white-paper-benefits-of-60ghz.pdf (дата обращения: 15.02.2019); Богданов Ю., Кочемасов В., Хасьянова Е. Фольгированные диэлектрики – как выбрать оптимальный вариант для печатных плат ВЧ/СВЧ–диапазонов // Печатный монтаж. 2013. № 3. С. 142–147.; Felbecker R., Keusgen W., Peter M. Estimation of permittivity and loss tangent of high frequency materials in the millimeter wave band using a hemispherical open resonator // IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS 2011), Tel Aviv, Israel, 7–9 Nov. 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Signal transmission loss due to copper surface roughness in high-frequency region / E. Liew, T.-A. Okubo, T. Sudo, T. Hosoi, H. Tsuyoshi, F. Kuwako // IPC APEX EXPO 2014, Las Vegas, 25–27 March 2014. URL: http://www.circuitinsight.com/pdf/signal_transmission_loss_copper_surface_roughness_ipc.pdf (дата обращения: 29.09.2019); Design of wideband waveguide to microstrip transition for 60 GHz frequency band / A. Artemenko, A. Maltsev, R. Maslennikov, A. Sevastyanov, V. Ssorin // Proc. of 41st European Microwave Conference (EuMC), 2011, Manchester, UK, 10–13 Oct. 2011. P. 838–841.; Millimeter-Wave Topside Waveguide-toMicrostrip Transition in Multilayer Substrate / Y. Ishikawa, K. Sakakibara, Y. Suzuki, N. Kikuma // IEEE Microwave and Wireless Components Letters. 2018. Vol. 28, iss. 5. P. 380–382. doi:10.1109/LMWC.2018.2812125; A V-band Waveguide Transition Design Appropriate for Monolithic Integration / J. L. Kook, H. L. Dong, J.-S. Rieh, M. Kim // Proc. of Asia-Pacific Microwave Conf. (APMC), Bangkok, Thailand, 11–14 Dec. 2007. P. 1–4. doi:10.1109/APMC.2007.4554756; Kim J., Choe W., Jeong J. Submillimeter-Wave Waveguide-to-Microstrip Transitions for Wide Circuits/Wafers // IEEE Trans. on Terahertz Science and Technology. 2017. Vol. 7, iss. 4. P. 440–445. doi:10.1109/TTHZ.2017.2701151; Kaneda N., Qian Y., Itoh T. A broad-band Microstripto-Waveguide Transition Using Quasi-Yagi Antenna // IEEE Trans. on Microwave Theory and Techniques. 1999. Vol. 47, iss. 12. P. 2562–2567. doi:10.1109/22.809007; Low-Radiation-Loss Waveguide-to-Microstrip Transition Using a Double Slit Configuration for Microstrip Array Feeding / H. Aliakbarian, A. Enayati, M. Yousefbeigi, M. Shahabadi // Asia-Pacific Microwave Conf. Bangkok, Thailand, 11–14 Dec. 2007. Piscataway: IEEE, 2007. P. 737–740. doi:10.1109/APMC.2007.4554952; Low-Radiation-Loss Waveguide-to-Microstrip Transition Using a Double Slit Configuration for Microstrip Array Feeding / H. Aliakbarian, A. Enayati, M. Yousefbeigi, M. Shahabadi // Asia-Pacific Microwave Conf., Bangkok, Thailand, 11–14 Dec. 2007. doi:10.1109/APMC.2007.4554952; Design of a Wideband Transition from DoubleRidge Waveguide to Microstrip Line / Y. Zhou, H. Liu, E. Li, G. Guo, T. Yang // Intern. Conf. on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010. Piscataway: IEEE, 2010. doi:10.1109/icmmt.2010.5525049; Wideband Tapered Antipodal Fin-Line Waveguide-to-Microstrip Transition for E-band Applications / A. Mozharovskiy, A. Artemenko, V. Ssorin, R. Maslennikov, A. Sevastyanov // Proc. of 43st Europ. Microwave Conf. (EuMC), Nuremberg, Germany, 6–10 Oct. 2013. In 3 Vols. Vol. 3. P. 1187–1190.; Zhang C. W. A Novel W-Band Waveguide-ToMicrostrip Antipodal Finline Transition // IEEE Intern. Conf. on Applied Superconductivity and Electromagnetic Devices. Beijing, China, 25–27 Oct. 2013. P. 166–168. doi:10.1109/ASEMD.2013.6780735; Beam-Steerable Integrated Lens Antenna with Waveguide Feeding System for 71-76/81-86 GHz point-topoint Applications / A. Mozharovskiy, A. Artemenko, A. Sevastyanov, V. Ssorin, R. Maslennikov // 10th Europ. Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 Apr. 2016. doi:10.1109/EuCAP.2016.7481774; Broadband and Planar Microstrip-to-Waveguide Transitions in Millimeter-Wave Band / K. Sakakibara, M. Hirono, N. Kikuma, H. Hirayama // Intern. Conf. on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 Apr. 2008. Piscataway: IEEE, 2008. doi:10.1109/ICMMT.2008.4540667; Broadband and planar microstrip-to-waveguide transitions in millimeter-wave band / K. Sakakibara, M. Hirono, N. Kikuma, H. Hirayama // Intern. Conf. on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 Apr. 2008. doi:10.1109/ICMMT.2008.4540667; Refined characterization of E-plane waveguide to microstrip transition for millimeter-wave applications / Y. Tikhov, J.-W. Moon, Y.-J. Kim, Y. Sinelnikov // Asia-Pacific Microwave Conf. Sydney, NSW, Australia, 3–6 Dec. 2000. P. 1187–1190. doi:10.1109/APMC.2000.926043; Wideband Probe-Type Waveguide-to-Microstrip Transition for V-band Applications / O. Soykin, A. Artemenko, V. Ssorin, A. Mozharovskiy, R. Maslennikov // Proc. of 46th Europ. Microwave Conf. (EuMC). London, UK, 4–6 Oct. 2016. P. 1–4. doi:10.1109/EuMC.2016.7824262; Shireen R., Shi S., Prather D. W. W-band microstripto-waveguide transition using via fences // Progress In Electromagnetics Research Lett. 2010. Vol. 16. P. 151–160.; A novel microstrip-to-waveguide transition using electromagnetic bandgap structures / Y. Tahara, A. Ohno, H. Oh-hashi, S. Makino, M. Ono, T. Ohba // Proc. of Intern. Symp. on Antennas and Propagation (ISAP), 2005. P. 459–462.; Pat. US 6 967 542 B2. Int. Cl. H01P 5/107; H01P 5/10; H01P 005/107 (2006.01). Microstrip-Waveguide Transition / M. E. Weinstein. Publ. 2005/11/22.; Пат. RU 2 600 506 С1. H01P 5/107 (2006.01). Волноводно-микрополосковый переход / О. В. Сойкин, В. Н. Ссорин, А. В. Можаровский, А. А. Артеменко, Р. О. Масленников; опубл. 20.10.2016. Бюл. 29.; https://re.eltech.ru/jour/article/view/372
-
3Academic Journal
Authors: Andrey V. Mozharovskiy, А. В. Можаровский
Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 3 (2019); 48-62 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 3 (2019); 48-62 ; 2658-4794 ; 1993-8985
Subject Terms: электродинамическое моделирование, integrated lens antenna, microstrip antenna, printed circuit board, waveguide-to-microstrip transition, dual linear polarization, EM simulation, интегрированная линзовая антенна, микрополосковая антенна, печатная плата, волноводно-микрополосковый переход, двойная линейная поляризация
File Description: application/pdf
Relation: https://re.eltech.ru/jour/article/view/324/301; https://re.eltech.ru/jour/article/view/324/390; Решение ГКРЧ от 25.06.2007 № 07-21-01-001 "Об использовании полос радиочастот в диапазонах 1.5 ГГц и 28 ГГц радиоэлектронными средствами фиксированного беспроводного доступа гражданского назначения" (в ред. от 16.04.2014 № 14-23-09-2). URL: http://www.rfs-rf.ru/upload/medialibrary/fc3/018816.doc (дата обращения 22.02.2019); Recommendation ITU-R F.748-4 (05/2001). Radiofrequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. URL: https://www.itu.int/dms_pubrec/itu-r/rec/f/R-REC-F.748-4-200105-I!!PDF-E.pdf (дата обращения 22.02.2019); Harmonized European Standard ETSI EN 302 326-3 V1.3.1 (2008-02). Fixed Radio Systems; Multipoint Equipment and Antennas; Part 3: Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive for Multipoint Radio Antennas. URL: https://www.etsi.org/deliver/etsi_en/302300_302399/30232603/01.03.01_60/en_30232603v010301p.pdf (дата обращения 22.02.2019); Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, Sh. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access. 2013. Vol. 1, № 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Wells J. Faster than fiber: The future of multi-G/s wireless // IEEE Microwave Magazine. 2009. Vol. 10, iss. 3. P. 104–112. doi:10.1109/MMM.2009.932081; Al-Hourani A., Chandrasekharan S., Kandeepan S. Path loss study for millimeter wave device-to-device communications in urban environment // IEEE Intern. Conf. on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014. Piscataway: IEEE. P. 102–107. doi:10.1109/ICCW.2014.6881180; Recommendation ITU-R P.676-11 (09/2016) "Attenuation by atmospheric gases". URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-I!!PDF-E.pdf (дата обращения 22.02.2019); Qingling Z., Li J. Rain Attenuation in Millimeter Wave Ranges // 7th Intern. Symp. on Antennas, Propagation and EM Theory, Guilin, China, 26–29 Oct. 2006. Piscataway: IEEE, 2006. P. 1–4. doi:10.1109/ISAPE.2006.353538; Recommendation ITU-R P.838-3 (03/2005). Specific attenuation model for rain for use in prediction methods. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-RECP.838-3-200503-I!!PDF-E.pdf (дата обращения 22.02.2019); Recommendation ITU-R P.837-7 (06/2017). Characteristics of precipitation for propagation modelling. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-7-201706-I!!PDF-E.pdf (дата обращения 22.02.2019); Five Disruptive Technology Directions for 5G / F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski // IEEE Communications Magazine. 2014. Vol. 52, iss. 2. P. 74–80. doi:10.1109/MCOM.2014.6736746; A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration / K. Kibaroglu, M. Sayginer, T. Phelps, G. M. Rebeiz // IEEE Transactions on Microwave Theory and Techniques. 2018. Vol. 66, iss. 12. P. 5796–5811. doi:10.1109/TMTT.2018.2854174; Microstrip patch antenna arrays with fan-shaped 90 and 45-degree wide radiation patterns for 28 GHz MIMO applications / S. Churkin, A. Mozharovskiy, A. Artemenko, R. Maslennikov // 12th European Conf. on Antennas and Propagation (EuCAP), London, UK, 9–13 April 2018. P. 1–5. doi:10.1049/cp.2018.1204; A dual-polarized planar array antenna for Kuband satellite communications / M. Ohtsuk, T. Takahashi, Y. Konishi, S. Urasaki, K. Harada // IEEE Antennas and Propagation Society International Symposium Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting, Atlanta, USA, 21–26 June 1998. Piscataway: IEEE, 1998. P. 16–19. doi:10.1109/APS.1998.698732; Diawuo H. A., Jung Y.-B. Broadband ProximityCoupled Microstrip Planar Antenna Array for 5G Cellular Applications // IEEE Antennas and Wireless Propagation Letters. 2018. Vol. 17, iss. 7. P. 1286–1290. doi:10.1109/LAWP.2018.2842242; A planar dual-polarized microstrip 1Dbeamforming antenna array for the 24GHz ISM-band / G. F. Hamberger, A. Drexler, S. Trummer, U. Siart, T. F. Eibert // 10th European Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. Piscataway: IEEE, 2016. P. 1–5. doi:10.1109/EuCAP.2016.7481205; Zhang L., Li L., Yi H. Design of a Traveling Wave Slot Array on Substrate Integrated Waveguide for 24GHz Traffic Monitoring // Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. (CSQRWC), Xuzhou, China, 21–24 July 2018. Piscataway: IEEE, 2018. P. 1–3. doi:10.1109/CSQRWC.2018.8455559; A K-band series-fed microstip array antenna with low sidelobe for anticollision radar application / Y.-L. Chang, Y.-C. Jiao, L. Zhang, G. Chen, X. Qiu // Sixth AsiaPacific Conf. on Antennas and Propagation (APCAP), Xi'an, China, 16–19 Oct. 2017. Piscataway: IEEE, 2017. P. 1–3. doi:10.1109/APCAP.2017.8420878; Center-fed traveling-wave microstrip array antenna using elliptically-shaped radiating elements in quasi millimeter-wave band / K. Sakakibara, K. Shida, Y. Mouri, N. Kikuma // IEEE Intern. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 9–14 July 2017. Piscataway: IEEE, 2017. P. 2609– 2610. doi:10.1109/APUSNCURSINRSM.2017.8073347; 28 GHz waveguide antennas with fan-shaped patterns for base stations MIMO applications / A. Mozharovskiy, S. Churkin, A. Artemenko, R. Maslennikov // 12th European Conf. on Antennas and Propagation (EuCAP), London, UK, 9–13 April 2018. P. 1–5. doi:10.1049/cp.2018.0373; Dufilie P. A. A Ka-band Dual-Pol Monopulse Shaped Reflector Antenna // IEEE Intern. Symp. on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Boston, USA, 8–13 July 2018. Piscataway: IEEE, 2018. P. 1717–1718. doi:10.1109/APUSNCURSINRSM.2018.8608180; Filipovic D. F., Gearhart S. S., Rebeiz G. M. Double-Slot Antennas on Extended Hemispherical and Elliptical Silicon Dielectric Lenses // IEEE Transactions on Microwave Theory and Techniques. 1993. Vol. 41, № 10. P. 1738–1749. doi:10.1109/22.247919; Millimeter-Wave Electronically Steerable Integrated Lens Antennas for WLAN/WPAN Applications / A. Artemenko, A. Maltsev, A. Mozharovskiy, A. Sevastyanov, V. Ssorin // IEEE Transactions on Antennas Propagation. 2013. Vol. 61. P. 1665–1671. doi:10.1109/TAP.2012.2232266; High gain millimeter-wave lens antennas with improved aperture efficiency / A. Mozharovskiy, A. Artemenko, V. Ssorin, R. Maslennikov, A. Sevastyanov // 9th European Conf. on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. Piscataway: IEEE, 2015. P. 1–5.; Boriskin A. V., Sauleau R., Nosich A. I. Performance of Hemielliptic Dielectric Lens Antennas With Optimal Edge Illumination // IEEE Transactions on Antennas Propagation. 2009. Vol. 57, № 7. P. 2193–2198. doi:10.1109/TAP.2009.2021979; Разработка и оптимизация антенной решетки облучателей для сканирующей линзовой антенны частотного диапазона 71–76 ГГц / В. Д. Голубь, А. С. Мысков, А. В. Можаровский, А. А. Артеменко, Р. О. Масленников // Тр. конф. "Антенны и распространение радиоволн". СПб., 2018. С. 112–116.; Эффективный метод расчета характеристик интегрированных линзовых антенн на основе приближений геометрической и физической оптик / А. В. Можаровский, А. А. Артеменко, А. А. Мальцев, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // Изв. вузов. Радиофизика. 2015. Т. 58, № 6. С. 492–504.; Wideband aperture coupled stacked patch type microstrip to waveguide transition for V-band / H. Y. Lee, D. S. Jun, S. E. Moon, E. K. Kim, J. H. Park, K. H. Park // IEEE Proc. of Asia-Pacific Microwave Conf., Yokohama, Japan, 12–15 Dec. 2006. Picataway: IEEE, 2006. P. 360–362. doi:10.1109/APMC.2006.4429440; Волноводно-микрополосковый переход в частотном диапазоне 60 ГГц / А. А. Артеменко, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // 19-я Междунар. Крымская конф. "СВЧ–техника и телекоммуникационные технологии", 2009. С. 505–506.; Design of wideband waveguide to microstrip transition for 60 GHz frequency band / A. Artemenko, A. Maltsev, R. Maslennikov, A. Sevastyanov, V. Ssorin // Proc. of 41st European Microwave Conf. (EuMC), Manchester, UK, 10–13 Oct. 2011. Piscataway: IEEE, 2011. P. 838–841. doi:10.23919/EuMC.2011.6101966; Wideband Probe-Type Waveguide-to-Microstrip Transition for V-band Applications / O. Soykin, A. Artemenko, V. Ssorin, A. Mozharovskiy, R. Maslennikov // Proc. of 46th European Microwave Conf. (EuMC), London, UK, 4–6 Oct. 2016. Piscataway: IEEE, 2016. P. 1–4. doi:10.1109/EuMC.2016.7824262; Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave // IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Tel Aviv, Israel, 7–9 Nov. 2011. Piscataway: IEEE, 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Horn A. Dielectric constant and loss of selected grades of Rogers high frequency circuit substrates from 1- 50 GHz. Rogers Corporation Technical Report 5788, 2003.; https://re.eltech.ru/jour/article/view/324