Showing 1 - 3 results of 3 for search '"волноводно-микрополосковый переход"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 4 (2019); 31-44 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 4 (2019); 31-44 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/352/324; https://re.eltech.ru/jour/article/view/352/335; 802.11–2016 – IEEE Standard for Information technology – Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks – Specific requirements. Pt. 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. 802.11–2016. doi:10.1109 /IEEESTD.2016.7786995; Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, Shu Sun, R. Mayzus, Hang Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access (Invited). 2013. Vol. 1, № 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Stevens M., Grafton G. The Benefits of 60 GHz Unlicensed Wireless Communications. 10 p. URL: https://www.faltmann.de/pdf/white-paper-benefits-of-60ghz.pdf (дата обращения: 08.07.2019); Решение ГКРЧ от 20.12.2011 № 11-13-06-1. Об использовании радиоэлектронными средствами фиксированной службы полосы радиочастот 57-64 ГГц (в ред. от 10.03.2017 г. № 17-40-03). URL: http://grfc.ru/upload /medialibrary/713/Reshenie_GKRCH_ot_10.03.2017_17_4 0_03_15.02.2019.docx (дата обращения: 11.07.2019); Revision of Part 15 of the Commission’s Rules Regarding Operation in the 57–64 GHz Band. URL: http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf (дата обращения: 08.07.2019); ECC Recommendation (09)01. Use of the 57–64 GHz Frequency Band for Point-to-Point Fixed Wireless Systems. URL: http://www.erodocdb.dk/Docs/doc98/official/pdf /Rec0901.pdf (дата обращения: 08.07.2019); Wells J. Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications. Norwood, MA: Artech House, Inc., 2010. 224 p.; Kim K. W., Na C. H., Woo D. S. New Dielectric-Covered Waveguide-to-Microstrip Transitions for Ka-Band Transceivers // IEEE MTT-S Inter. Microwave Symp. 8–13 June 2003. Philadelphia, PA, USA. Digest. Vol. 2. Piscataway: IEEE, 2003. P. 1115–1118. doi:10.1109/MWSYM.2003.1212564; Refined Characterization of E-plane Waveguide to Microstrip Transition for Millimeter-Wave Applications / Y. Tikhov, J.-W. Moon, Y.-J. Kim, Y. Sinelnikov // Asia-Pacific Microwave Conf. 3–6 Dec. 2000, Sydney, Australia. Piscataway: IEEE, 2000. P. 1187–1190. doi:10.1109/APMC.2000.926043; Shih Y.-C., Ton T.-N., Bui L. Q. Waveguide-to-Microstrip Transitions for Millimeter-Wave Applications // IEEE MTT-S Inter. Microwave Symp. 25–27 May 1988, New York, USA. Digest. Piscataway: IEEE, 1988. P. 473–475. doi:10.1109/MWSYM.1988.22077; Lou Y., Chan C. H., Xue Q. An in-line Waveguideto-Microstrip Transition Using Radial-Shaped Probe // IEEE Antennas and Propagation Society Inter. Symp. 9–15 June 2007, Honolulu, USA. Piscataway: IEEE, 2007. P. 3117–3120. doi:10.1109/APS.2007.4396196; A Full Wave Analysis of Microstrip-to-Waveguide Transitions / H. W. Yao, A. Abdelmonem, J. F. Liang, K. A. Zaki // IEEE MTT-S Inter. Microwave Symp. 23–27 May 1994, San Diego, USA. Digest. Vol. 42, № 12. P. 2371–2380. doi:10.1109/MWSYM.1994.335341; Grabherr W., Huder B., Menzel W. Microstrip to waveguide transition compatible with MM-wave integrated circuits // IEEE Trans. on Microwave Theory and Techniques. 1994. Vol. MTT-42, № 9. P. 1842–1843. doi:10.1109/22.310597; Hyvonen L., Hujanen A. A Compact MMICCompatible Microstrip to Waveguide Transition // IEEE MTT-S Inter. Microwave Symp. 17–21 June 1996, San Francisco, USA. Digest. Piscataway: IEEE, 1996. P. 875–878. doi:10.1109/MWSYM.1996.511077; A Novel Waveguide to Microstrip Transition in Millimeter-Wave LTCC Module / Z. Wang, L. Xia, B. Yan, R. Xu, Y. Guo // IEEE Inter. Symp. on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications. 16–17 Aug. 2007, Hangzhou, China. Piscataway: IEEE, 2007. P. 340–343. doi:10.1109/MAPE.2007.4393616; Xinfeng D. An Integrated Millimeter-Wave Broadband Microstrip-to-Waveguide Vertical Transition Suitable for Multilayer Planar Circuits // IEEE Microwave and Wireless Components Lett. 2016. Vol. 26, iss. 11, P. 897–899. doi:10.1109/LMWC.2016.2614973; Millimeter-Wave Topside Waveguide-to-Microstrip Transition in Multilayer Substrate / Y. Ishikawa, K. Sakakibara, Y. Suzuki, N. Kikuma // IEEE Microwave and Wireless Components Lett. 2018. Vol. 28, iss. 5. P. 380–382. doi:10.1109/LMWC.2018.2812125; Wideband Aperture Coupled Stacked Patch Type Microstrip to Waveguide Transition for V-Band / H. Y. Lee, D. S. Jun, S. E. Moon, E. K. Kim, J. H. Park, K. H. Park // IEEE Proc. of Asia-Pacific Microwave Conf., 2006. 12–15 Dec. 2006, Yokohama, Japan. Piscataway: IEEE, 2006. P. 360–362. doi:10.1109/APMC.2006.4429440; Волноводно-микрополосковый переход в частотном диапазоне 60 ГГц / А. А. Артеменко, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // 19-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (КрыМиКо'2009). 14–18 сентября 2009, Севастополь. Севастополь: Вебер, 2009. С. 505–506.; Microstrip Lines and Slotlines / K. C. Gupta, R. Garg, I. Bahl, P. Bharia. 2nd ed. Boston/London: Artech House, Inc., 1996. 535 p.; Pozar D. M. Microwave Engineering. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2012. 756 p.; IEC 60153–2:2016. Hollow Metallic Waveguides. Pt. 2: Relevant Specifications for Ordinary Rectangular Waveguides. Standard of the International Electrotechnical Commission, 2016. URL: https://webstore.iec.ch /publication/24898 (дата обращения: 08.07.2019); Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave Band using a Hemispherical Open Resonator // IEEE Inter. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). 7–9 Nov. 2011, Tel Aviv, Israel. Piscataway: IEEE, 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Horn A. Dielectric Constant and Loss of Selected Grades of Rogers High Frequency Circuit Substrates from 1–50 GHz: Technical Report 5788 / Rogers Corporation. Chandler, AZ, 2003. 12 p.; https://re.eltech.ru/jour/article/view/352

  2. 2
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 5 (2019); 17-32 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 5 (2019); 17-32 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/372/342; https://re.eltech.ru/jour/article/view/372/377; Five Disruptive Technology Directions for 5G / F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski // IEEE Communications Magazine. 2014. Vol. 52, iss. 2. P. 74–80. doi:10.1109/MCOM.2014.6736746; 802.11-2016. IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements. Pt. 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. doi:10.1109/IEEESTD.2016.7786995; Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access (Invited). 2013. Vol. 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Решение ГКРЧ от 20.12.2011 № 11-13-06-1. Об использовании радиоэлектронными средствами фиксированной службы полосы радиочастот 57–64 ГГц (в ред. от 10.03.2017 г. № 17-40-03). URL: http://grfc.ru/upload/medialibrary/713/Reshenie_GKRCH_ot_10.03.2017_17_40_03_15.02.2019.docx (дата обращения: 29.09.2019); ETSI EN 302 217-3 V2.2.1 (2014-04): Harmonized European Standard. URL: https://www.etsi.org/deliver /etsi_en/302200_302299/30221703/02.02.01_60/en_30221703v020201p.pdf (дата обращения: 29.09.2019); Revision of Part 15 of the Commission’s Rules Regarding Operation in the 57–64 GHz Band. URL: http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf (дата обращения: 29.09.2019); Stevens M., Grafton G. The Benefits of 60 GHz Unlisensed Wireless Communications. 10 p. URL: https://www.faltmann.de/pdf/white-paper-benefits-of-60ghz.pdf (дата обращения: 15.02.2019); Богданов Ю., Кочемасов В., Хасьянова Е. Фольгированные диэлектрики – как выбрать оптимальный вариант для печатных плат ВЧ/СВЧ–диапазонов // Печатный монтаж. 2013. № 3. С. 142–147.; Felbecker R., Keusgen W., Peter M. Estimation of permittivity and loss tangent of high frequency materials in the millimeter wave band using a hemispherical open resonator // IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS 2011), Tel Aviv, Israel, 7–9 Nov. 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Signal transmission loss due to copper surface roughness in high-frequency region / E. Liew, T.-A. Okubo, T. Sudo, T. Hosoi, H. Tsuyoshi, F. Kuwako // IPC APEX EXPO 2014, Las Vegas, 25–27 March 2014. URL: http://www.circuitinsight.com/pdf/signal_transmission_loss_copper_surface_roughness_ipc.pdf (дата обращения: 29.09.2019); Design of wideband waveguide to microstrip transition for 60 GHz frequency band / A. Artemenko, A. Maltsev, R. Maslennikov, A. Sevastyanov, V. Ssorin // Proc. of 41st European Microwave Conference (EuMC), 2011, Manchester, UK, 10–13 Oct. 2011. P. 838–841.; Millimeter-Wave Topside Waveguide-toMicrostrip Transition in Multilayer Substrate / Y. Ishikawa, K. Sakakibara, Y. Suzuki, N. Kikuma // IEEE Microwave and Wireless Components Letters. 2018. Vol. 28, iss. 5. P. 380–382. doi:10.1109/LMWC.2018.2812125; A V-band Waveguide Transition Design Appropriate for Monolithic Integration / J. L. Kook, H. L. Dong, J.-S. Rieh, M. Kim // Proc. of Asia-Pacific Microwave Conf. (APMC), Bangkok, Thailand, 11–14 Dec. 2007. P. 1–4. doi:10.1109/APMC.2007.4554756; Kim J., Choe W., Jeong J. Submillimeter-Wave Waveguide-to-Microstrip Transitions for Wide Circuits/Wafers // IEEE Trans. on Terahertz Science and Technology. 2017. Vol. 7, iss. 4. P. 440–445. doi:10.1109/TTHZ.2017.2701151; Kaneda N., Qian Y., Itoh T. A broad-band Microstripto-Waveguide Transition Using Quasi-Yagi Antenna // IEEE Trans. on Microwave Theory and Techniques. 1999. Vol. 47, iss. 12. P. 2562–2567. doi:10.1109/22.809007; Low-Radiation-Loss Waveguide-to-Microstrip Transition Using a Double Slit Configuration for Microstrip Array Feeding / H. Aliakbarian, A. Enayati, M. Yousefbeigi, M. Shahabadi // Asia-Pacific Microwave Conf. Bangkok, Thailand, 11–14 Dec. 2007. Piscataway: IEEE, 2007. P. 737–740. doi:10.1109/APMC.2007.4554952; Low-Radiation-Loss Waveguide-to-Microstrip Transition Using a Double Slit Configuration for Microstrip Array Feeding / H. Aliakbarian, A. Enayati, M. Yousefbeigi, M. Shahabadi // Asia-Pacific Microwave Conf., Bangkok, Thailand, 11–14 Dec. 2007. doi:10.1109/APMC.2007.4554952; Design of a Wideband Transition from DoubleRidge Waveguide to Microstrip Line / Y. Zhou, H. Liu, E. Li, G. Guo, T. Yang // Intern. Conf. on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010. Piscataway: IEEE, 2010. doi:10.1109/icmmt.2010.5525049; Wideband Tapered Antipodal Fin-Line Waveguide-to-Microstrip Transition for E-band Applications / A. Mozharovskiy, A. Artemenko, V. Ssorin, R. Maslennikov, A. Sevastyanov // Proc. of 43st Europ. Microwave Conf. (EuMC), Nuremberg, Germany, 6–10 Oct. 2013. In 3 Vols. Vol. 3. P. 1187–1190.; Zhang C. W. A Novel W-Band Waveguide-ToMicrostrip Antipodal Finline Transition // IEEE Intern. Conf. on Applied Superconductivity and Electromagnetic Devices. Beijing, China, 25–27 Oct. 2013. P. 166–168. doi:10.1109/ASEMD.2013.6780735; Beam-Steerable Integrated Lens Antenna with Waveguide Feeding System for 71-76/81-86 GHz point-topoint Applications / A. Mozharovskiy, A. Artemenko, A. Sevastyanov, V. Ssorin, R. Maslennikov // 10th Europ. Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 Apr. 2016. doi:10.1109/EuCAP.2016.7481774; Broadband and Planar Microstrip-to-Waveguide Transitions in Millimeter-Wave Band / K. Sakakibara, M. Hirono, N. Kikuma, H. Hirayama // Intern. Conf. on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 Apr. 2008. Piscataway: IEEE, 2008. doi:10.1109/ICMMT.2008.4540667; Broadband and planar microstrip-to-waveguide transitions in millimeter-wave band / K. Sakakibara, M. Hirono, N. Kikuma, H. Hirayama // Intern. Conf. on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 Apr. 2008. doi:10.1109/ICMMT.2008.4540667; Refined characterization of E-plane waveguide to microstrip transition for millimeter-wave applications / Y. Tikhov, J.-W. Moon, Y.-J. Kim, Y. Sinelnikov // Asia-Pacific Microwave Conf. Sydney, NSW, Australia, 3–6 Dec. 2000. P. 1187–1190. doi:10.1109/APMC.2000.926043; Wideband Probe-Type Waveguide-to-Microstrip Transition for V-band Applications / O. Soykin, A. Artemenko, V. Ssorin, A. Mozharovskiy, R. Maslennikov // Proc. of 46th Europ. Microwave Conf. (EuMC). London, UK, 4–6 Oct. 2016. P. 1–4. doi:10.1109/EuMC.2016.7824262; Shireen R., Shi S., Prather D. W. W-band microstripto-waveguide transition using via fences // Progress In Electromagnetics Research Lett. 2010. Vol. 16. P. 151–160.; A novel microstrip-to-waveguide transition using electromagnetic bandgap structures / Y. Tahara, A. Ohno, H. Oh-hashi, S. Makino, M. Ono, T. Ohba // Proc. of Intern. Symp. on Antennas and Propagation (ISAP), 2005. P. 459–462.; Pat. US 6 967 542 B2. Int. Cl. H01P 5/107; H01P 5/10; H01P 005/107 (2006.01). Microstrip-Waveguide Transition / M. E. Weinstein. Publ. 2005/11/22.; Пат. RU 2 600 506 С1. H01P 5/107 (2006.01). Волноводно-микрополосковый переход / О. В. Сойкин, В. Н. Ссорин, А. В. Можаровский, А. А. Артеменко, Р. О. Масленников; опубл. 20.10.2016. Бюл. 29.; https://re.eltech.ru/jour/article/view/372

  3. 3
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 22, № 3 (2019); 48-62 ; Известия высших учебных заведений России. Радиоэлектроника; Том 22, № 3 (2019); 48-62 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/324/301; https://re.eltech.ru/jour/article/view/324/390; Решение ГКРЧ от 25.06.2007 № 07-21-01-001 "Об использовании полос радиочастот в диапазонах 1.5 ГГц и 28 ГГц радиоэлектронными средствами фиксированного беспроводного доступа гражданского назначения" (в ред. от 16.04.2014 № 14-23-09-2). URL: http://www.rfs-rf.ru/upload/medialibrary/fc3/018816.doc (дата обращения 22.02.2019); Recommendation ITU-R F.748-4 (05/2001). Radiofrequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. URL: https://www.itu.int/dms_pubrec/itu-r/rec/f/R-REC-F.748-4-200105-I!!PDF-E.pdf (дата обращения 22.02.2019); Harmonized European Standard ETSI EN 302 326-3 V1.3.1 (2008-02). Fixed Radio Systems; Multipoint Equipment and Antennas; Part 3: Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive for Multipoint Radio Antennas. URL: https://www.etsi.org/deliver/etsi_en/302300_302399/30232603/01.03.01_60/en_30232603v010301p.pdf (дата обращения 22.02.2019); Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! / T. S. Rappaport, Sh. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez // IEEE Access. 2013. Vol. 1, № 1. P. 335–349. doi:10.1109/ACCESS.2013.2260813; Wells J. Faster than fiber: The future of multi-G/s wireless // IEEE Microwave Magazine. 2009. Vol. 10, iss. 3. P. 104–112. doi:10.1109/MMM.2009.932081; Al-Hourani A., Chandrasekharan S., Kandeepan S. Path loss study for millimeter wave device-to-device communications in urban environment // IEEE Intern. Conf. on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014. Piscataway: IEEE. P. 102–107. doi:10.1109/ICCW.2014.6881180; Recommendation ITU-R P.676-11 (09/2016) "Attenuation by atmospheric gases". URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-I!!PDF-E.pdf (дата обращения 22.02.2019); Qingling Z., Li J. Rain Attenuation in Millimeter Wave Ranges // 7th Intern. Symp. on Antennas, Propagation and EM Theory, Guilin, China, 26–29 Oct. 2006. Piscataway: IEEE, 2006. P. 1–4. doi:10.1109/ISAPE.2006.353538; Recommendation ITU-R P.838-3 (03/2005). Specific attenuation model for rain for use in prediction methods. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-RECP.838-3-200503-I!!PDF-E.pdf (дата обращения 22.02.2019); Recommendation ITU-R P.837-7 (06/2017). Characteristics of precipitation for propagation modelling. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-7-201706-I!!PDF-E.pdf (дата обращения 22.02.2019); Five Disruptive Technology Directions for 5G / F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski // IEEE Communications Magazine. 2014. Vol. 52, iss. 2. P. 74–80. doi:10.1109/MCOM.2014.6736746; A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration / K. Kibaroglu, M. Sayginer, T. Phelps, G. M. Rebeiz // IEEE Transactions on Microwave Theory and Techniques. 2018. Vol. 66, iss. 12. P. 5796–5811. doi:10.1109/TMTT.2018.2854174; Microstrip patch antenna arrays with fan-shaped 90 and 45-degree wide radiation patterns for 28 GHz MIMO applications / S. Churkin, A. Mozharovskiy, A. Artemenko, R. Maslennikov // 12th European Conf. on Antennas and Propagation (EuCAP), London, UK, 9–13 April 2018. P. 1–5. doi:10.1049/cp.2018.1204; A dual-polarized planar array antenna for Kuband satellite communications / M. Ohtsuk, T. Takahashi, Y. Konishi, S. Urasaki, K. Harada // IEEE Antennas and Propagation Society International Symposium Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting, Atlanta, USA, 21–26 June 1998. Piscataway: IEEE, 1998. P. 16–19. doi:10.1109/APS.1998.698732; Diawuo H. A., Jung Y.-B. Broadband ProximityCoupled Microstrip Planar Antenna Array for 5G Cellular Applications // IEEE Antennas and Wireless Propagation Letters. 2018. Vol. 17, iss. 7. P. 1286–1290. doi:10.1109/LAWP.2018.2842242; A planar dual-polarized microstrip 1Dbeamforming antenna array for the 24GHz ISM-band / G. F. Hamberger, A. Drexler, S. Trummer, U. Siart, T. F. Eibert // 10th European Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. Piscataway: IEEE, 2016. P. 1–5. doi:10.1109/EuCAP.2016.7481205; Zhang L., Li L., Yi H. Design of a Traveling Wave Slot Array on Substrate Integrated Waveguide for 24GHz Traffic Monitoring // Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. (CSQRWC), Xuzhou, China, 21–24 July 2018. Piscataway: IEEE, 2018. P. 1–3. doi:10.1109/CSQRWC.2018.8455559; A K-band series-fed microstip array antenna with low sidelobe for anticollision radar application / Y.-L. Chang, Y.-C. Jiao, L. Zhang, G. Chen, X. Qiu // Sixth AsiaPacific Conf. on Antennas and Propagation (APCAP), Xi'an, China, 16–19 Oct. 2017. Piscataway: IEEE, 2017. P. 1–3. doi:10.1109/APCAP.2017.8420878; Center-fed traveling-wave microstrip array antenna using elliptically-shaped radiating elements in quasi millimeter-wave band / K. Sakakibara, K. Shida, Y. Mouri, N. Kikuma // IEEE Intern. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 9–14 July 2017. Piscataway: IEEE, 2017. P. 2609– 2610. doi:10.1109/APUSNCURSINRSM.2017.8073347; 28 GHz waveguide antennas with fan-shaped patterns for base stations MIMO applications / A. Mozharovskiy, S. Churkin, A. Artemenko, R. Maslennikov // 12th European Conf. on Antennas and Propagation (EuCAP), London, UK, 9–13 April 2018. P. 1–5. doi:10.1049/cp.2018.0373; Dufilie P. A. A Ka-band Dual-Pol Monopulse Shaped Reflector Antenna // IEEE Intern. Symp. on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Boston, USA, 8–13 July 2018. Piscataway: IEEE, 2018. P. 1717–1718. doi:10.1109/APUSNCURSINRSM.2018.8608180; Filipovic D. F., Gearhart S. S., Rebeiz G. M. Double-Slot Antennas on Extended Hemispherical and Elliptical Silicon Dielectric Lenses // IEEE Transactions on Microwave Theory and Techniques. 1993. Vol. 41, № 10. P. 1738–1749. doi:10.1109/22.247919; Millimeter-Wave Electronically Steerable Integrated Lens Antennas for WLAN/WPAN Applications / A. Artemenko, A. Maltsev, A. Mozharovskiy, A. Sevastyanov, V. Ssorin // IEEE Transactions on Antennas Propagation. 2013. Vol. 61. P. 1665–1671. doi:10.1109/TAP.2012.2232266; High gain millimeter-wave lens antennas with improved aperture efficiency / A. Mozharovskiy, A. Artemenko, V. Ssorin, R. Maslennikov, A. Sevastyanov // 9th European Conf. on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. Piscataway: IEEE, 2015. P. 1–5.; Boriskin A. V., Sauleau R., Nosich A. I. Performance of Hemielliptic Dielectric Lens Antennas With Optimal Edge Illumination // IEEE Transactions on Antennas Propagation. 2009. Vol. 57, № 7. P. 2193–2198. doi:10.1109/TAP.2009.2021979; Разработка и оптимизация антенной решетки облучателей для сканирующей линзовой антенны частотного диапазона 71–76 ГГц / В. Д. Голубь, А. С. Мысков, А. В. Можаровский, А. А. Артеменко, Р. О. Масленников // Тр. конф. "Антенны и распространение радиоволн". СПб., 2018. С. 112–116.; Эффективный метод расчета характеристик интегрированных линзовых антенн на основе приближений геометрической и физической оптик / А. В. Можаровский, А. А. Артеменко, А. А. Мальцев, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // Изв. вузов. Радиофизика. 2015. Т. 58, № 6. С. 492–504.; Wideband aperture coupled stacked patch type microstrip to waveguide transition for V-band / H. Y. Lee, D. S. Jun, S. E. Moon, E. K. Kim, J. H. Park, K. H. Park // IEEE Proc. of Asia-Pacific Microwave Conf., Yokohama, Japan, 12–15 Dec. 2006. Picataway: IEEE, 2006. P. 360–362. doi:10.1109/APMC.2006.4429440; Волноводно-микрополосковый переход в частотном диапазоне 60 ГГц / А. А. Артеменко, Р. О. Масленников, А. Г. Севастьянов, В. Н. Ссорин // 19-я Междунар. Крымская конф. "СВЧ–техника и телекоммуникационные технологии", 2009. С. 505–506.; Design of wideband waveguide to microstrip transition for 60 GHz frequency band / A. Artemenko, A. Maltsev, R. Maslennikov, A. Sevastyanov, V. Ssorin // Proc. of 41st European Microwave Conf. (EuMC), Manchester, UK, 10–13 Oct. 2011. Piscataway: IEEE, 2011. P. 838–841. doi:10.23919/EuMC.2011.6101966; Wideband Probe-Type Waveguide-to-Microstrip Transition for V-band Applications / O. Soykin, A. Artemenko, V. Ssorin, A. Mozharovskiy, R. Maslennikov // Proc. of 46th European Microwave Conf. (EuMC), London, UK, 4–6 Oct. 2016. Piscataway: IEEE, 2016. P. 1–4. doi:10.1109/EuMC.2016.7824262; Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave // IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Tel Aviv, Israel, 7–9 Nov. 2011. Piscataway: IEEE, 2011. P. 1–8. doi:10.1109/COMCAS.2011.6105829; Horn A. Dielectric constant and loss of selected grades of Rogers high frequency circuit substrates from 1- 50 GHz. Rogers Corporation Technical Report 5788, 2003.; https://re.eltech.ru/jour/article/view/324