-
1Academic Journal
Authors: A. V. Graf, A. S. Maklakova, M. V. Maslova, Ya. V. Krushinskaya, A. A. Guseva, N. A. Sokolova, А. В. Граф, А. С. Маклакова, М. В. Маслова, Я. В. Крушинская, А. А. Гусева, Н. А. Соколова
Contributors: This study was performed under the state assignment of Moscow State University, project number №121032300071-8.
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2 (2024); 151-159 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2 (2024); 151-159 ; 0137-0952
Subject Terms: ранний постнатальный период, heart rate variability, autonomic nervous system, intrauterine programming, early postnatal period, вариабельность сердечного ритма, вегетативная нервная система, внутриутробное программирование
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1374/675; Vaduganathan M., Mensah G., Turco J. The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol. 2022;80:2361–2371.; Giussani D., Davidge S.T. Developmental programming of cardiovascular disease by prenatal hypoxia. J. Dev. Orig. Health Dis. 2013;4(5):328–337.; Sutovska H., Babarikova K., Zeman M., Molcan L. Prenatal hypoxia affects foetal cardiovascular regulatory mechanisms in a sex – and circadian-dependent manner: a review. Int. J. Mol. Sci. 2022:23(5):2885.; Kwon E.J., Kim Y.J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017;60(6):506–519.; Koos B.J. Adenosine A2a receptors and O2 sensing in development. Am. J. Physiol. Regul., Integr. Comp. Physiol. 2011;301(3):R601–R622.; Hutter D., Kingdom J., Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int. J. Pediatr. 2010:2010(1):401323.; Graf A., Trofimova L., Ksenofontov A., Baratova L., Bunik V. Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy. Cells. 2020;9(1):139.; Maslova M.V., Graf A.V., Maklakova A.S., Krushinskaya Ya.V., Sokolova N.A., Koshelev V.B. Acute hypoxia during organogenesis affects cardiac autonomic balance in pregnant rats. Bull. Exp. Biol. Med. 2005;139(2):180–182.; Marcela S.G., Cristina R.M.M., Angel P.G.M., Manuel A.M., Sofía D.C., Patricia D.L.R.S., Bladimir R.R., Concepción S.G. Chronological and morphological study of heart development in the rat. Anat. Rec. 2012;295(8):1267–1290.; Itani N., Salinas C.E., Villena M., Skeffington K.L., Beck C., Villamor E., Blanco C.E., Giussani D.A. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J. Physiol. 2018;596(15):2991–3006.; Trofimova L., Lovat M., Groznaya A., Efimova E., Dunaeva T., Maslova M., Graf A., Bunik V. Behavioral impact of the regulation of the brain 2-oxoglutarate dehydrogenase complex by synthetic phosphonate analog of 2-oxoglutarate: Implications into the role of the complex in neurodegenerative diseases. Int. J. Alzheimers. Dis. 2010;2010(1):749061.; Baevsky R.М., Chernikova A.G. Heart rate variability analysis: physiological foundations and main methods. Cardiometry. 2017;(10):66–76.; Граф А., Маслова М., Маклакова А., Соколова Н., Кудряшова Н., Крушинская Я. Влияние гипоксии в период раннего органогенеза на деятельность сердца и норадренергический компонент регуляции в постнатальном периоде. Бюлл. эксп. биол. мед. 2006;142(11):484–486.; Graf A.V., Maslova M.V., Artiukhov A.V., Ksenofontov A.L., Aleshin V.A., Bunik V.I. Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age. Int. J. Mol. Sci. 2022;23(5):2579.; Курьянова Е.В., Теплый Д.Л., Зеренинова Н.В. Становление регуляции хронотропной функции сердца в постнатальном онтогенезе белых крыс по данным спектрального анализа вариабельности. Бюлл. эксп. биол. мед. 2011;152(12):614–617.; Зефиров Т.Л., Святова Н.В. Возрастные особенности вагусной регуляции хронотропной функции сердца десимпатизированных и интактных крыс. Бюлл. эксп. биол. мед. 1997;123(6):703–705.; Чиглинцев В.М. Эффекты выключения симпатического шейного ганглия на показатели сердечной деятельности крыс. Вестн. Нижневарт. гос. ун-та. 2013;(3):16–21.; Vakhitov B.I., Vakhitov I.K., Volkov A.Kh., Chinkin S.S. Regulation mechanism of heartbeat rate, shocked blood volume, and their formation heterochronousity among small laboratory animals. Drug. Invention. Today. 2018;10(S3):3193–3196.; Ziyatdinova N.I., Sergeeva A.M., Dementieva R.E., Zefirov T.L. Peculiar effects of muscarinic M1, M2, and M3 receptor blockers on cardiac chronotropic function in neonatal rats. Bull. Exp. Biol. Med. 2012;154:1–2.; Hasan W. Autonomic cardiac innervation. Organogenesis. 2013;9(3):176–193.; Shepard T., Muffley L., Smith L. Ultrastructural study of mitochondria and their cristae in embryonic rats and primate (N. nemistrina). Anat. Rec. 1998;252(3):383–392.; Ellington S. In vitro analysis of glucose metabolism and embryonic growth in postimplantation rat embryos. Development. 1987;100(3):431–439.; Patterson A.J, Zhang L. Hypoxia and fetal heart development. Curr. Mol. Med. 2010;10(7):653–666.; Tintu A., Rouwet E., Verlohren S. et al. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences. PLoS. One. 2009;4(4):e5155.; Sessa F., Anna V., Messina G., Cibelli G., Monda V., Marsala G., Ruberto M., Biondi A., Cascio O., Bertozzi G., Pisanelli D., Maglietta F., Messina A., Mollica M.P., Salerno M. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany N.Y.). 2018;10(2):166–177.; Svitok P., Molcan L., Stebelova K., Vesela A., Sedlackova N., Ujhazy E., Mach M., Zeman M. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens. Res. 2016;39(7):501–505.; Portbury A.L., Chandra R., Groelle M., McMillian M.K., Elias A., Herlong J.R., Rios M., Roffler-Tarlov S., Chikaraishi D.M. Catecholamines act via a β-adrenergic receptor to maintain fetal heart rate and survival. Am. J. Physiol. Heart. Circ. Physiol. 2003;284(6):Н2069–H2077.; Li G., Bae S., Zhang L. Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am. J. Physiol. Heart. Circ. Physiol. 2004;286(5):H1712–H1719.
-
2Academic Journal
Authors: Kovtun, O. P., Tsyvian, P. B., Markova, T. V., Chumarnaya, T. V., Ковтун, О. П., Цывьян, П. Б., Маркова, Т. В., Чумарная, Т. В.
Subject Terms: PRETERM BIRTH, FETAL PROGRAMMING, CARDIOVASCULAR DISEASES, DIAGNOSTICS AND PREVENTION, ПРЕЖДЕВРЕМЕННОЕ РОЖДЕНИЕ, ВНУТРИУТРОБНОЕ ПРОГРАММИРОВАНИЕ, СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ, ДИАГНОСТИКА И ПРОФИЛАКТИКА
File Description: application/pdf
Relation: Scopus; Ковтун О.П., Цывьян П.Б., Маркова Т.В., Чумарная Т.В. Ремоделирование сердца недоношенных детей. Вестник РАМН. 2020;75(6):631–637.; http://elib.usma.ru/handle/usma/7197
Availability: http://elib.usma.ru/handle/usma/7197
-
3Academic Journal
Authors: Kovtun O.P., Tsyvian P.B., Markova T.V., Chumarnaya T.V.
Contributors: 0, This work was supported by Ural State Medical University, was carried out within the framework of the IIF UrB RAS theme No AAAA-A18-118020590031-8 and was supported by UrFU Competitiveness Enhancement Program (agreement 02.A03.21.0006), Работа выполнена при финансовой поддержке ФГБОУ ВО УГМУ Минздрава России, в рамках госзадания ИИФ УрО РАН (тема № АААА-А18-118020590031-8) и поддержана постановлением Правительства РФ № 211 от 16.03.2013 (соглашение 02.A03.21.0006)
Source: Annals of the Russian academy of medical sciences; Vol 75, No 6 (2020); 631-637 ; Вестник Российской академии медицинских наук; Vol 75, No 6 (2020); 631-637 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.756
Subject Terms: preterm birth, fetal programming, cardiovascular diseases, diagnostics and prevention, преждевременное рождение, внутриутробное программирование, сердечно-сосудистые заболевания, диагностика и профилактика
File Description: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/1268/1382; https://vestnikramn.spr-journal.ru/jour/article/downloadSuppFile/1268/1208
-
4Academic Journal
Authors: N. V. Bashmakova, P. B. Tsyvian, G. N. Chistyakova, I. V. Dankova, Yu. M. Trapeznikova, S. V. Bychkova, I. I. Remizova, Н. В. Башмакова, П. Б. Цывьян, Г. Н. Чистякова, И. В. Данькова, Ю. М. Трапезникова, С. В. Бычкова, И. И. Ремизова
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 61, № 5 (2016); 14-18 ; Российский вестник перинатологии и педиатрии; Том 61, № 5 (2016); 14-18 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2016-61-5
Subject Terms: эндотелиальная дисфункция, assisted reproductive technologies, in vitro fertilization, intrauterine programming, cardiovascular and metabolic abnormalities, endothelial dysfunction, вспомогательные репродуктивные технологии, экстракорпоральное оплодотворение, внутриутробное программирование, сердечно-сосудистая и метаболическая патология
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/373/398; Barker D.J. The fetal and infant origins of disease. Eur J Clin Invest 1995; 25: 7: 457–463.; Barker D.J. Fetal origins of cardiovascular disease. Ann Med 1999; 31: Suppl 1: 3–6.; Barker D.J., Osmond C., Golding J. et al. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298: 6673: 564–567.; Forsen T., Eriksson J., Tuomilehto J. et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 1: 176–182.; Ludwig A.K., Sutcliffe A.G., Diedrich K. Post-neonatal health and development of children born after assisted reproduction: a systematic review of controlled studies. Eur J Obstet Gynecol Reprod Biol 2006; 127: 1: 3–25.; Sunderam S., Kissin D.M., Flowers L. et al. Assisted reproductive technology surveillance — United States, 2009. MMWR Surveill Summ 2012; 61: 1–23.; Savage N., Peek J., Hofman P.L., Cutfield W.S. Childhood outcomes of assisted reproductive technology. Human Reprod 2011; 26: 9: 2392–2400.; de Mouzon J., Goossens V., Bhattacharya S. et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Human Reprod 2010; 25: 9: 1851–1862.; Charakida M., Deanfield J.E., Halcox J.P. Childhood origins of arterial disease. Curr Opin Pediatr 2007; 19: 5: 538–545.; Urbina E.M., Williams R.V., Alpert B.S. et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 2009; 54: 5: 919–950.; Laurent S., Cockcroft J., Van Bortel L. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 21: 2588–2605.; Scherrer U., Rimoldi S.F., Rexhaj E. et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation 2012; 125: 15: 1890– 1896.; Ceelen M., van Weissenbruch M.M., Prein J. et al. Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8–18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum Reprod 2009; 24: 2788–2795.; Ceelen M., van Weissenbruch M.M., Roos J.C. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab 2007; 92: 9: 3417–3423.; Belva F., Painter R., Bonduelle M. Are ICSI adolescents at risk for increased adiposity? Hum Reprod 2012; 27: 257–264.; Yeung E., Druschel C. Cardiometabolic health of children conceived by assisted reproductive technologies. Fertil Steril 2013; 99: 2: 318–326.; Miles H.L., Hofman P.L., Peek J. In vitro fertilization improves childhood growth and metabolism. J Clin Endocrinol Metab 2007;92:3441–3445.; Sakka S.D., Loutradis D., Kanaka-Gantenbein C. et al. Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertil Steril 2010; 94: 1693–1699.; Scherrer U., Rimoldi S.F., Rexhaj E. et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation 2012; 125: 1890–1896. 20. Kanaka-Gantenbein C., Sakka S., Chrousos G.P. Assisted reproduction and its neuroendocrine impact on the offspring. Progr Brain Res 2010; 182: 161–174.; Bao W., Threefoot S.A., Srinivasan S.R., Berenson G.S. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens 1995; 8: 657–665.; Watkins A.J., Platt D., Papenbrock T. et al. Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc Natl Acad Sci USA 2007; 104: 5449–5454.; Belva F., Henriet S., Liebaers I., Van Steirteghem A. Medical outcome of 8-year-old singleton ICSI children (born >or=32 weeks’ gestation) and a spontaneously conceived comparison group. Hum Reprod 2007; 22: 506–515.; Belva F., Roelants M., De Schepper J. et al. Blood pressure in ICSI-conceived adolescents. Hum Reprod 2012; 27: 3100– 3118.; Celermajer D.S. Manipulating nature: might there be a cardiovascular price to pay for the miracle of assisted conception? Circulation 2012; 125: 1832–1834.; Chason R.J., Csokmay J., Segars J.H. et al. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab 2011; 22: 412–420.; Amor D.J., Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod 2008; 23: 2826–2834.; Eroglu A., Layman L.C. Role of ART in imprinting disorders. Semin Reprod Med 2012; 30: 92–104.; Klemetti R., Sevon T., Gissler M., Hemminki E. Health of children born after ovulation induction. Fertil Steril 2010; 93: 1157–1168.; Ombelet W., Martens G., De Schepper P. et al. Perinatal outcome of 12,021 singleton and 3108 twin births after non-IVFassisted reproduction: a cohort study. Hum Reprod 2006; 21: 1025–1032.; Kallen B., Olausson P.O., Nygren K.G. Neonatal outcome in pregnancies from ovarian stimulation. Obstet Gynecol 2002; 100: 414–419.; Savage T., Peek J.C., Robinson E.M. et al. Ovarian stimulation leads to shorter stature in childhood. Hum Reprod 2012; 27: 3092–3099.; Nelissen E.C., van Montfoort A.P., Coonen E. et al. Further evidence that culture media affect perinatal outcome: findings after transfer of fresh and cryopreserved embryos. Hum Reprod 2012; 27: 1966–1976.; Skilton M.R., Evans N., Griffiths K.A., Harmer J.A., Celermajer D.S. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 2005; 365: 1484–1486.; Leeson C.P., Whincup P.H., Cook D.G. et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation 1997; 96: 2233– 2238.; Barker D.J., Bagby S.P., Hanson M.A. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2006; 2: 700–707.; Watkins A.J., Fleming T.P. Blastocyst environment and its influence on off-spring cardiovascular health: the heart of the matter. J Anat 2009; 215: 52–59.; Vander-Weele T.J., Mumford S.L., Schisterman E.F. Conditioning on intermediates in perinatal epidemiology. Epidemiology 2012; 23: 1–9.; Lewis R., Poore K., Godfrey K. The role of the placenta in the developmental origins of health and disease — implications for practice. Rev Gynaecol Perinat Pract 2006; 6: 70–79; Barker D.J., Larsen G., Osmond C., Thornburg K.L. The placental origins of sudden cardiac death. Int J Epidemiol 2012; 41: 1394–1399.; Haavaldsen C., Tanbo T., Eskild A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod 2012; 27: 576–582.; Bashmakova N.V., Tsyvian P.B., Chistiakova G.N. Endothelial function, regulation of angiogenesis and embryonic central hemodynamics in ART conceived pregnancies. Gynecol Endocrinol 2015; 31: S1: 31–33.; Цывьян П.Б., Башмакова Н.В., Проценко Ю.Л. Сократительная активность сердца плода при синдроме задержки развития: связь между региональной неоднородностью, расслаблением и постнагрузкой. Физиология человека 2004; 30: 89–94. (Tsyvian P.B., Bashmakova N.V., Protsenko Yu.L. Contractile cardiac activity in fetuses with intrauterine growth retardation: correlation between regional nonuniformity, relaxation, and afterload. Fiziologiya cheloveka 2004; 30: 89–94. (in Russ)); Цывьян П.Б. Внутриутробная гипертензия и ремоделирование сердца плода. Росс физиол журн им. И.М. Сеченова 2004; 90: 8: 457–461. (Tsyvian P.B. Intrauterine hypertension and fetal heart remodeling. Ross fiziol zhurn im I.M. Sechenova 2004; 90: 457–461. (in Russ)); Цывьян П.Б., Башмакова Н.В., Михайлова С.В. и др. Ранние гемодинамические изменения у плода при синдроме задержки развития. Рос вестн акуш-гинекол 2006; 5: 12– 15. (Tsyvian P.B., Bashmakova N.V., Mikhailova S.V. et al. Early fetal hemodynamics changes in intrauterine growth restriction. Ros vestn akush-ginekol 2006; 5: 12–15. (in Russ)); Tsyvian P.B., Markova T.V., Hop W.C.J., Wladimiroff J.W. Left ventricular isovolumic relaxation and rennin-angiotensin system in the growth restricted fetus. Europ J Obstet Gyn Reprod Biol 2008; 140: 33–37.; Tsyvian P.B., Kovtun O.P., Kovalev V.V. Left ventricular isovolumic relaxation time in human embryo: relationship with cardiac afterload in pre- and postnatal hypertension. J Develop Origins Health Disease 2011; 2: Suppl.1: 271.
-
5Academic Journal
Authors: Цывьян, П. Б.
Source: Вестник Уральского государственного медицинского университета
Subject Terms: ЭПИГЕНЕТИЧЕСКИЕ ВОЗДЕЙСТВИЯ, МЕТИЛИРОВАНИЕ ДНК, ПИТАНИЕ МАТЕРИ, ВНУТРИУТРОБНОЕ ПРОГРАММИРОВАНИЕ ЗАБОЛЕВАНИЙ
File Description: application/pdf
Relation: Вестник Уральского государственного медицинского университета. 2015. №2-3; http://elib.usma.ru/handle/usma/93
Availability: http://elib.usma.ru/handle/usma/93
-
6
-
7
-
8Academic Journal
Authors: Ким О.Т., Дадаева В.А., Драпкина О.М.
Source: Profilakticheskaya Meditsina
Subject Terms: DOHaD, prevention, obesity, prenatal programming, epigenetics, профилактика, ожирение, внутриутробное программирование, эпигенетика
Availability: https://repository.rudn.ru/records/article/record/95797/