Εμφανίζονται 1 - 10 Αποτελέσματα από 10 για την αναζήτηση '"видеокапилляроскопия"', χρόνος αναζήτησης: 0,56δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The authors declare that they did not receive any external funding for the study and preparation of the publication. The authors express their gratitude to the residents of the Department of Hospital Therapy of the Pediatric Faculty of the Federal State Autonomous Educational Institution of Higher Education “N.I.Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation for their assistance in calculating the density of the capillary network and preparing a list of references, Авторы заявляют об отсутствии внешнего финансирования при проведении исследования и подготовке публикации. Авторы выражают благодарность ординаторам кафедры госпитальной терапии педиатрического факультета Федерального государственного автономного образовательного учреждения высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения Российской Федерации за помощь в вычислении плотности капиллярной сети и подготовке списка литературы

    Πηγή: PULMONOLOGIYA; Том 33, № 6 (2023); 760-771 ; Пульмонология; Том 33, № 6 (2023); 760-771 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4332/3580; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2093; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2094; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2250; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2251; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2252; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2253; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2254; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2255; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2256; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2257; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2258; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2259; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2260; Chen C., Haupert S.R., Zimmermann L. et al. Global prevalence of post-Coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J. Infect. Dis. 2022; 226 (9): 1593–1607. DOI:10.1093/infdis/jiac136.; World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 [Accessed: July 01, 2023].; ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002; 166 (1): 111–117. DOI:10.1164/ajrccm.166.1.at1102.; Pimenta S.P., Rocha R.B., Baldi B.G. et al. Desaturation – distance ratio: a new concept for a functional assessment of interstitial lung diseases. Clinics (Sao Paulo). 2010; 65 (9): 841–846. DOI:10.1590/s1807-59322010000900005.; Ora J., Calzetta L., Pezzuto G. et al. A 6MWT index to predict O2 flow correcting exercise induced SpO2 desaturation in ILD. Respir. Med. 2013; 107 (12): 2014–2021. DOI:10.1016/j.rmed.2013.10.002.; Lachant D., Kennedy E., Derenze B. et al. Cardiac effort to compare clinic and remote 6-minute walk testing in pulmonary arterial hypertension. Chest. 2022; 162 (6): 1340–1348. DOI:10.1016/j.chest.2022.06.025.; Cheng C., Daskalakis C., Falkner B. Non-invasive assessment of microvascular and endothelial function. J. Vis. Exp. 2013; (71): e50008. DOI:10.3791/50008.; Пахтусов Н.Н., Юсупова А.О., Привалова Е.В. и др. Эндотелиальная дисфункция и воспаление у пациентов с ишемической болезнью сердца и необструктивным поражением коронарных артерий. Кардиология. 2021; 61 (1): 52–58. DOI:10.18087/cardio.2021.1.n1423.; Богатырева Ф.М., Каплунова В.Ю., Кожевникова М.В. и др. Оценка структурного и функционального состояния сосудов у пациентов с гипертрофической кардиомиопатией. Кардиология. 2021; 61 (12): 16–21. DOI:10.18087/cardio.2021.12.n1718.; Tello B.G., Ramos E., Simeón-Aznar C.P. et al. Pos0256 automated capillary detection and image analysis software in capillaroscopy: capillary.io. Ann. Rheum. Dis. 2021; 80 (Suppl. 1): 350–351. DOI:10.1136/annrheumdis-2021-eular.4022.; Smith V., Herrick A.L., Ingegnoli F. et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud's phenomenon and systemic sclerosis. Autoimmun. Rev. 2020; 19 (3): 102458. DOI:10.1016/j.autrev.2020.102458.; Bernardino V., Rodrigues A., Lladó A. et al. The impact of nailfold capillaroscopy in the approach of microcirculation. Vascular Biology. 2019. DOI:10.5772/intechopen.90525.; Carlucci A., Paneroni M., Carotenuto M. et al. Prevalence of exercise-induced oxygen desaturation after recovery from SARS-CoV-2 pneumonia and use of lung ultrasound to predict need for pulmonary rehabilitation. Pulmonology. 2021: S2531-0437(21)00117-3. DOI:10.1016/j.pulmoe.2021.05.008.; Fernández-de-Las-Peñas C., Palacios-Ceña D., Gómez-Mayordomo V. et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: a systematic review and meta-analysis. Eur. J. Intern. Med. 2021; 92: 55–70. DOI:10.1016/j.ejim.2021.06.009.; Daher A., Balfanz P., Cornelissen C. et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020; 174: 106197. DOI:10.1016/j.rmed.2020.106197.; Lam G.Y., Befus A.D., Damant R.W. et al. Exertional intolerance and dyspnea with preserved lung function: an emerging long COVID phenotype? Respir. Res. 2021; 22 (1): 222. DOI:10.1186/s12931-021-01814-9.; Lee J.H., Yim J.J., Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis. Respir. Res. 2022; 23 (1): 233. DOI:10.1186/s12931-022-02163-x.; Wen H., Huapaya J.A., Kanth S.M. et al. Quantitative CT metrics associated with variability in the diffusion capacity of the lung of post-COVID-19 patients with minimal residual lung lesions. J. Imaging. 2023; 9 (8): 150. DOI:10.3390/jimaging9080150.; Price L.C., Garfield B., Bloom C. et al. Persistent isolated impairment of gas transfer following COVID-19 pneumonitis relates to perfusion defects on dual-energy computed tomography. ERJ Open Res. 2022; 8 (4): 00224. DOI:10.1183/23120541.00224-2022.; Grist J.T., Chen M., Collier G.J. et al. Hyperpolarized 129Xe MRI abnormalities in Dyspneic patients 3 months after COVID-19 pneumonia: preliminary results. Radiology. 2021; 301 (1): E353–360. DOI:10.1148/radiol.2021210033.; Yu J.Z., Granberg T., Shams R. et al. Lung perfusion disturbances in nonhospitalized post‐COVID with dyspnea – a magnetic resonance imaging feasibility study. J. Intern. Med. 2022; 292 (6): 941–956. DOI:10.1111/joim.13558.; Zhou I.Y., Mascia M., Alba G.A. et al. Dynamic contrast-enhanced MRI demonstrates pulmonary microvascular abnormalities months after SARS-CoV-2 infection. Am. J. Respir. Crit. Care Med. 2023; 207 (12): 1636–1639. DOI:10.1164/rccm.202210-1884LE.; Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol. Rep. 2021; 9 (3): e14726. DOI:10.14814/phy2.14726.; Mondini L., Confalonieri P., Pozzan R. et al. Microvascular alteration in COVID-19 documented by nailfold capillaroscopy. Diagnostics (Basel). 2023; 13 (11): 1905. DOI:10.3390/diagnostics13111905.; Natalello G., De Luca G., Gigante L. et al. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: Broadening the spectrum of COVID-19 microvascular involvement. Microvasc. Res. 2021; 133: 104071. DOI:10.1016/j.mvr.2020.104071.; Hansen-Smith F.M. Capillary network patterning during angiogenesis. Clin. Exp. Pharmacol. Physiol. 2000; 27 (10): 830–835. DOI:10.1046/j.1440-1681.2000.03341.x.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Pries A.R., Höpfner M., le Noble F. et al. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer. 2010; 10 (8): 587–593. DOI:10.1038/nrc2895.; Baratto C., Caravita S., Faini A. et al. Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. (1985). 2021; 130 (5): 1470–1478. DOI:10.1152/japplphysiol.00710.2020.; Ijiri N., Kanazawa H., Yoshikawa T., Hirata K. Application of a new parameter in the 6-minute walk test for manifold analysis of exercise capacity in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 1235–1240. DOI:10.2147/copd.s71383.; Ambrosino P., Calcaterra I., Molino A. et al. Persistent endothelial dysfunction in post-acute COVID-19 syndrome: a case-control study. Biomedicines. 2021; 9 (8): 957. DOI:10.3390/biomedicines9080957.; Willems L., Nagy M., ten Cate H. et al. Sustained inflammation, coagulation activation and elevated endothelin-1 levels without macrovascular dysfunction at 3 months after COVID-19. Thromb. Res. 2022; 209: 106–114. DOI:10.1016/j.thromres.2021.11.027.; von Meijenfeldt F.A., Havervall S., Adelmeijer J. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome: comment from von Meijenfeldt et al. J. Thromb. Haemost. 2022; 20 (1): 267–269. DOI:10.1111/jth.15580.; Prasannan N., Heightman M., Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis. Blood Adv. 2022; 6 (13): 4041–4048. DOI:10.1182/bloodadvances.2021006944.; https://journal.pulmonology.ru/pulm/article/view/4332

  3. 3
    Academic Journal

    Πηγή: Biomedical Photonics; Том 12, № 2 (2023); 16–23 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/591/415; https://www.pdt-journal.com/jour/article/view/591/440; Dougherty T.J. et al. Photodynamic Therapy JNCI: Journal of the National Cancer Institute // Oxford Academic. – 1998. – Vol. 90(12). – P. 889-905.; Li X. et al. Clinical development and potential of photothermal and photodynamic therapies for cancer // Nature Publishing Group. – 2020. – Vol. 17(11). – P. 657-674.; Korbelik M. et al. Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy // Br J Cancer. Nature Publishing Group. – 2000. – Vol. 82(11). – P. 1835.; Souza C.S. et al. Long-term follow-up of topical 5-aminolaevulinic acid photodynamic therapy diode laser single session for nonmelanoma skin cancer // Photodiagnosis Photodyn Ther. – 2009. – Vol. 6 (3-4). – P. 207-213.; Chen D. et al. Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study // Photodiagnosis Photodyn Ther. Elsevier. – 2016. – Vol. 14. – P.142-151.; Orlova A. et al. Diffuse Optical Spectroscopy Monitoring of Experimental Tumor Oxygenation after Red and Blue Light Photodynamic Therapy // Multidisciplinary Digital Publishing Institute. – 2021. – Vol. 9(1). – P. 19.; Khurana M. et al. Intravital high-resolution optical imaging of individual vessel response to photodynamic treatment // J Biomed Opt. J Biomed Opt. – 2008. – Vol. 13(4). – P. 1.; Grishacheva T.G. et al. Digital Analysis of Colposcopic Images Before and After Photodynamic Therapy with Open Source Software ImageJ and Fluorescence diagnostics // Optica Publishing Group. – 2020. – P. JW3A.2.; Christou E.E. et al. Evaluation of the choriocapillaris after photodynamic therapy for chronic central serous chorioretinopathy. A review of optical coherence tomography angiography (OCT-A) studies // Graefes Arch Clin Exp Ophthalmol. Graefes Arch Clin Exp Ophthalmol. – 2022. – Vol. 260(6). – P. 1823-1835.; Gallucci F. et al. Indications and results of videocapillaroscopy in clinical practice // Advances in medical sciences. – 2008. – Vol. 53(2). – P. 149-157.; Machikhin A.S. et al. Exoscope-based videocapillaroscopy system for in vivo skin microcirculation imaging of various body areas. Optica Publishing Group. – 2021. – Vol. 12(8). – P. 4627-4636.; Da Silva F.A.M., Newman E.L. Dynamic capillaroscopy: a minimally invasive technique for assessing photodynamic effectS in vivo // Photochem Photobiol. John Wiley & Sons, Ltd. – 1993. – P. Vol. 58(6). – P. 884-889.; Kamshilin A.A. et al. A new look at the essence of the imaging photoplethysmography. Scientific Reports. Nature Publishing Group. – 2015. – Vol. 5(1). – P. 1-9.; Kumar M. et al. PulseCam: a camera-based, motion-robust and highly sensitive blood perfusion imaging modality // Nature Publishing Group. – 2020. – Vol. 10(1). – P. 1-17.; Park J. et al. Photoplethysmogram Analysis and Applications: An Integrative Review // Front Physiol. Frontiers Media S.A. – 2022. – Vol. 12. – P. 2511.; Allen J. Photoplethysmography and its application in clinical physiological measurement // Physiol Meas. Physiol Meas. – 2007. – Vol. 28(3). – С. R1; Guryleva A.V. et al. Feasibility of videocapillaroscopy for characterization of microvascular patterns in skin lesions // Proceedings of SPIE – The International Society for Optical Engineering. – 2022. – Vol. 12147.; Dolmans D.E.J.G.J., Fukumura D., Jain R.K. Photodynamic therapy for cancer // Nature Publishing Group. – 2003. – Vol. 3(5). – P. 380-387.; Gunaydin G., Gedik M.E., Ayan S. Photodynamic Therapy—Current Limitations and Novel Approaches // Front Chem. Frontiers Media S.A. – 2021. – Vol. 9. – P. 400.; Foster T., et al. Oxygen consumption and diffusion effects in photodynamic therapy // Radiat. Res. – 1991. – Vol. 126. – P. 296-303.; Henderson B., et al. Oseroff, Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate // Cancer Res. – 2000. – Vol. 60. – P. 525-529.; Klimenko V.V., et al. Pulse mode of laser photodynamic treatment induced cell apoptosis // Photodiagnosis Photodyn Ther. – 2016. – Vol. 13. – P. 101-107.; Wilson B.C., Patterson M.S. The physics, biophysics and technology of photodynamic therapy // Phys Med Biol. – 2008. – Vol. 53(9). – P. 61-109.; Abbot N.C. et al. Laser Doppler Perfusion Imaging of Skin Blood Flow Using Red and Near-Infrared Sources // Journal of Investigative Dermatology Elsevier. – 1996. – Vol. 107(6). – P. 882-886.; Moço A., Verkruysse W. Pulse oximetry based on photoplethysmography imaging with red and green light: Calibratability and challenges. J Clin Monit Comput // Springer Science and Business Media B.V. – 2021. – Vol. 35(1). – P. 123-133.; Han S. et al. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography // Multidisciplinary Digital Publishing Institute. – 2019. – Vol. 19(24). – P. 5441.; Volkov M. V et al. Evaluation of blood microcirculation parameters by combined use of laser // Doppler flowmetry and videocapillaroscopy methods. – 2017.; Dremin V. et al. Dynamic evaluation of blood flow microcirculation by combined use of the laser Doppler flowmetry and high‐speed videocapillaroscopy methods //Journal of biophotonics. – 2019. – Т. 12. – №. 6. – С. e201800317.

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: Rheumatology Science and Practice; Vol 41, No 3 (2003); 11-15 ; Научно-практическая ревматология; Vol 41, No 3 (2003); 11-15 ; 1995-4492 ; 1995-4484 ; 10.14412/1995-4484-2003-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/1216/888; Anders H.J., Sigl Т., Schattenkirchner М. Differentiation between primary and secondary Raynaud's phenomenon: a prospective study comparing nailfold capillaroscopy using an ophtalmoscope or stereomicroscope. Ann.Rheum.Dis., 2001, 60(4). 407-409. Bedarida G. Kim D., Blaschke T.F., Hoffman B.B. Venodilation in Ravnaud's disease. Lancet, 1993, 342, 1451-1454. Belch J.J.F. Raynaud's phenomenon: its relevance to scleroderma. Ann.Rlieum.Dis., 1991, 50, 839-845. Bierbrauer A.F.G., Mennel H.D., Schmidt J.A. Wichert P. Intravital microscopy and capillaroscopically guided nail fold biopsy in sceroderma. Ann.Rheum. Dis., 1996, 55, 305310. Binaghi F., Cannas F. Mathieu A., Pitzus F. Correlation among capillaroscopic abnormalities, digital flow and immunologic findings in patients with isolated Raynaud's phenomenon. Intern.Angiol., 1992, II, 186-194. Blockmans D., Beyens G., Verhaeghe R. Predictive value of nailfold capillaroscopy in the diagnosis of connective tissue diseases. Clin.Rheumatol., 1996, 15 (2), 148-153. Brennan P., Silman A., Black C. et al. Validity and reliability of three methods used in the diagnosis of Raynaud's phenomenon Br.J. Rheum., 1993, 32, 357-361. Bukhari М., Herrick A.L., Moore T. et al. Increased nailfold capillary dimension in primary Raynaud's phenomenon and systemic sclerosis. Br.J.Rheum., 1996, 35, 1127-1131. Bukhari М., Hollis S., Moore Т., et al. Quantitation of microcirculatory abnormalities in patients with primary Raynaud’s phenomenon and systemic sclerosis by video capillaroscopy. Rheumatol., 2000, 39, 506-512. Carpentier P.H., Maricq H.R. Microvasculature in systemic sclerosis. Rheum.Dis.Clin.North.Am., 1990, 16, 75-91. Currey J., Newland B. Nailfold capillary microscopy in patients with Raynaud's phenomenon: experience in a district General Hospital. Br.J.Rheumatol., 1998, 37(5), 383. Houtman P.M., Kallenberg C.G.M., Fidler V., Wouda A.A.Diagnostic significance of nailfold capillary patterns in patients with Raynaud's phenomenon. J. Rheumatol., 1986, 13(3),556-563. Isenberg D.A., Black C. Raynaud's phenomenon, scleroderma. and overlap syndromes. BMJ, 1995, 310. 795-798. Kabasakal Y. Elvis D M., Ring E.F., WcHugh N.J. Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls. Ann.Rheum.Dis., 1996, 55, 507-512. Kulka J.P. Microcirculatory impairment as a factor in inflammatory tissue damage. Ann.N.Y.Acad.Sci. 1946, 116, 1018-1041. Lee P., Sarkozi J., Bookman A.A. et al. Digital blood flow and nailfold capillary microscopy in Raynaud's phenomenon. J.Rheumatol., 1986, 13, 564-569. Maricq H.R., Harper F.E., Tan E.M., LeRoy E.C. Microvascular abnormalities as possible predictors of disease subsets in Raynaud's phenomenon and early connective tissue disease. Clin.Exp.Rhcumato!., 1983, 1, 195-205. Maricq H.R. Widefield capillary microscopy. Arthr.Rheum., 1981, 24(9), 1159-1165. Scheja A., Akesson A., Niewierowick I,, et al. Computer based quantitative analysis of capillary abnormalities in systemic sclerosis and its relation to plasma concentration of von Willebrand factor. Ann.Rheum. Dis., 1996, 55, 52-56. Statham B.N., Rowell N.R. Quantification of the nail fold capillary abnormalities in systemic sclerosis and Raynaud's syndrome. Acta Dermatol. Venerol., (Stockholm), 1986, 66, 139-143. Wong M.L., Highton J., Palmer D.G. Sequential nailfold capillary microscopy in scleroderma and related disorders. Ann. Rheum.Dis., 1998. 47, 53-61. Zufferey P., Depairon М., Chamot A.M., Monti M. Prognostic significance of nailfold capillary microscopy in patients with Raynaud's phenomenon and scleroderma-pat- tem abnormalities. A six-year follow-up study. Clin. Rheumatol., 1992, 11(4), 536-541.

  8. 8
  9. 9
  10. 10