Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"вертикальное электронное содержание"', χρόνος αναζήτησης: 0,46δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: this work was carried out within the framework of Activity 3.3 of the Union State Program “Development of basic elements of orbital and ground facilities for creating multi-satellite constellations of small spacecraft for Earth surface and near-Earth space observation «Complex-SG»” for 2023–2026., работа выполнена в рамках Программы Союзного государства «Разработка базовых элементов орбитальных и наземных средств в интересах создания многоспутниковых группировок малоразмерных космических аппаратов наблюдения земной поверхности и околоземного космического пространства “Комплекс-СГ”» на 2023–2026 годы, мероприятие 3.3.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 70, № 1 (2025); 79-88 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 70, № 1 (2025); 79-88 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2025-70-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/881/694; Куницын, В. Е. Радиотомография ионосферы / В. Е. Куницын, Е. Д. Терещенко, Е. С. Андреева. – М.: Физматлит, 2007. – 693 с.; Hofmann-Wellenhof, B. GNSS – Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and More / B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle. – Springer, 2008. – xxix, 516 p. https://doi.org/10.1007/978-3-211-73017-1; Results of Studies on Processes Occurring in the Ionosphere and Earth’s Magnetic Field Over the Territory of the Republic of Belarus for the Year 2023 / A. O. Naumov, P. A. Khmarski, G. A. Aronov, D. S. Kotov // Nonlinear Phenomena in Complex Systems. – 2024. – Vol. 27, № 3. – P. 225–233. https://doi.org/10.5281/zenodo.13960570; A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena / E. L. Afraimovich, E. I. Astafyeva, V. V. Demyanov [et al.] // Journal of Space Weather and Space Climate. – 2013. – Iss. 3. – Art. ID A27. https://doi.org/10.1051/swsc/2013049; Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems / E. Astafyeva, Yu. Yasyu kevich, A. Maksikov, I. Zhivetiev // Space Weather. – 2014. – Vol. 12, Iss. 7. – P. 508–525. https://doi.org/10.1002/2014SW001072; Артемьев, В. М. Радиотомография поля концентрации электронов в ионосфере на основе фильтра Калмана / В. М. Артемьев, А. О. Наумов // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. – 2012. – № 2. – С. 86–92.; Способ оценивания полного электронного содержания в ионосфере на основе ретрансляции сигналов глобальной навигационной спутниковой системы GPS / И. В. Белоконов, А. М. Крот, С. В. Козлов [и др.] // Информатика. – 2023. – Т. 20, № 2. – С. 7−27. https://doi.org/10.37661/1816-0301-2023-20-2-7-27; Method and Results of Real Time Modeling of Ionosphere Radiotomography on the Basis of the Kalman Filter Theory / V. M. Artemiev, A. O. Naumov, V. L. Stepanov, N. I. Murashko // Journal of Automation and Information Sciences. – 2008. – Vol. 40, № 2. – P. 52–62. https://doi.org/10.1615/JAutomatInfScien.v40.i2.50; Yasyukevich, Yu. V. Advances in GNSS Positioning and GNSS Remote Sensing / Yu. V. Yasyukevich, B. Zhang, V. R. De vanaboyina // Sensors. – 2024. – Vol. 24, № 4. – Art. ID 1200. https://doi.org/10.3390/s24041200; Yasyukevich, Yu. V. Estimating the total electron content absolute value from the GPS/GLONASS data / Yu. V. Yasyu kevich, A. A. Mylnikova, A. S. Polyakova // Results in Physics. – 2015. – Vol. 5. – P. 32–33. https://doi.org/10.1016/j.rinp.2014.12.006; Определение концентрации электронов в ионосфере над территорией Республики Беларусь по данным глобальных навигационных спутниковых систем (на англ. яз.) / А. O. Наумов, П. A. Хмарский, Н. И. Бышнев, Н. А. Петровский // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. – 2024. – Т. 69, № 1. – С. 53–64. https://doi.org/10.29235/1561-8358-2024-69-1-53-64; GNSS metadata and data validation in the EUREF Permanent Network / C. Bruyninx, J. Legrand, A. Fabian, E. Pottiaux // GPS Solutions. – 2019. – Vol. 23. – Art. ID 106. https://doi.org/10.1007/s10291-019-0880-9; Артемьев, В. М. Алгоритм и методика оптимизации его параметров для трехмерной реконструкции ионосферы / В. М. Артемьев, П. А. Хмарский, А. О. Наумов // Неразрушающий контроль и диагностика. – 2024. – № 1. – С. 42–52.; Methods and software for calculating total electronic content based on GNSS data / A. Naumov, P. Khmarskiy, N. Byshniou, M. Piatrouski // 7th Advanced Engineering Days, 1–2 July. 2023. Mersin, Türkiye. – 2023. – P. 158–160.; Methods and software for estimation of total electron content in ionosphere using GNSS observations / A. Naumov, P. Khmarskiy, N. Byshnev, M. Piatrouski // Engineering Applications. – 2023. – Vol. 2, № 3. – P. 243–253.; Regional integration of long-term national dense GNSS network solutions / A. Kenyeres, J. G. Bellet, C. Bruyninx [et al.] // GPS Solutions. – 2019. – Vol. 23, Iss. 4. – Art. ID 122. https://doi.org/10.1007/s10291-019-0902-7; EUREF’s contribution to national, European and Global Geodetic Infrastructures / J. Ihdle, H. Habrich, M. Sacher [et al.] // Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 – July 2, 2011 / eds.: C. Rizos, P. Willis. – Springer, 2014. – P. 189–196. – (Series: International Association of Geodesy Symposia; Vol. 139). https://doi.org/10.1007/978-3-642-37222-3_24; Ignacio, R. RINEX. The Receiver Independent Exchange Format Version 4.00. – Darmstadt: IGS/RTCM RINEX WG, 2021. – 120 p.; Khmarski, P. A. Algorithms for Three-Dimensional Reconstruction of Electron Concentration Fields in the Ionosphere using Data from the Global Navigation Satellite System / P. A. Khmarski, A. О. Naumov // 31st Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2024), 27–29 May 2024, Saint Petersburg, Russia: [Proceedings]. – St. Petersburg: State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC, 2024. – P. 185–188. – URL: http://www.elektropribor.spb.ru/upload/medialibrary/8cc/31-ICINS-2024-all.pdf (date of access 21.01.2025).; https://vestift.belnauka.by/jour/article/view/881

  2. 2
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 69, № 1 (2024); 53-64 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 69, № 1 (2024); 53-64 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2024-69-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/830/652; Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS – Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and More. Springer, 2008. xxix, 516 p. https://doi.org/10.1007/978-3-211-73017-1; Sickle J. Van. GPS for Land Surveyors. 4th ed. CRC Press, 2015. 368 p. https://doi.org/10.1201/b18 480; Astafyeva E. Ionospheric detection of natural hazards. Reviews of Geophysics, 2019, vol. 57, pp. 1265–1288. https://doi. org/10.1029/2019RG000668; Komjathy A., Yang Y.-M., Meng X., Verkhoglyadova O., Mannucci A. J., Langley R. B. Review and perspectives: Understanding natural-hazards-generated ionospheric perturbations using GPS measurements and coupled modeling. Radio Science, 2016, vol. 51, iss. 7, pp. 951–961. https://doi.org/10.1002/2015RS005910; Laštovička J. Long-Term Changes in Ionospheric Climate in Terms of foF2. Atmosphere, 2022, vol. 13, no. 1, art. ID 110. https://doi.org/10.3390/atmos13010110; Milanowska B., Wielgosz P., Krypiak-Gregorczyk A., Jarmołowski W. Accuracy of Global Ionosphere Maps in Relation to Their Time Interval. Remote Sensing, 2021, vol. 13, no. 18, art. ID 3552. https://doi.org/10.3390/rs13183552; Galkin I., Fron A., Reinisch B., Hernández-Pajares M., Krankowski A., Nava B., Bilitza D. [et al.]. Global Monitoring of Ionospheric Weather by GIRO and GNSS Data Fusion. Atmosphere, 2022, vol. 13, no. 3, art. ID 371. https://doi.org/10.3390/ atmos13030371; Zakharenkova I., Cherniak I., Braun J. J, Wu Q. Global Maps of Equatorial Plasma Bubbles Depletions Based on FORMOSAT-7/COSMIC-2 Ion Velocity Meter Plasma Density Observations. Space Weather, 2021, vol. 21, iss. 5, art. ID e2 023SW003 438. https://doi.org/10.1029/2023SW003438; Yasyukevich Y., Mylnikova A., Vesnin A. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series. Sensors, 2020, vol. 20, no. 19, art. ID 5702. https://doi.org/10.3390/s20195702; Juan J. M., Sanz J., Rovira-Garcia A., González-Casado G., Ibanez D., Perez R. O. AATR an ionospheric activity indicator specifically based on GNSS measurements. Journal of Space Weather and Space Climate, 2018, vol. 8, art. ID A14. https://doi.org/10.1051/swsc/2017044; Rideout W., Coster A. Automated GPS processing for global total electron content data. GPS Solut, 2006, vol. 10, pp. 219–228. https://doi.org/10.1007/s10 291-006-0029-5; Roma-Dollase D., Hernández-Pajares M., Krankowski A., Kotulak K., Ghoddousi-Fard R., Yunbin Yuan, Zishen Li [et al.]. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. Journal of Geodesy, 2018, vol. 92, pp. 691–706. https://doi.org/10.1007/s00190-017-1088-9; Zishen Li, Ningbo Wang, Hernández-Pajares M., Yunbin Yuan, Krankowski A., Ang Liu, Jiuping Zha [et al.]. IGS real-time service for global ionospheric total electron content modeling. Journal of Geodesy, 2020, vol. 94, art. ID 32. https:// doi.org/10.1007/s00190-020-01 360-0; Lean J. L., Meier R. R., Picone J. M., Sassi F., Emmert J. T., Richards P. G. Ionospheric total electron content: Spatial patterns of variability. Journal of Geophysical Research: Space Physics, 2016, vol. 121, iss. 10, pp. 10,367–10,402. https://doi. org/10.1002/2016JA023210; Huang C., Lu G., Zhang Y., Paxton L. J., eds. Ionosphere Dynamics and Applications. American Geophysical Union: Wiley, 2021. xi, 559 p. https://doi.org/10.1002/9781119815617; Naumov A. O., Khmarskiy P. A., Byshnev N. I., Piatrouski N. I. Methods and software for calculating total electron content based on GNSS data. 7 th Advanced Engineering Days (AED), 1–2 July 2023, Mersin, Türkiye. Available at: https:// publish.mersin.edu.tr/index.php/aed/article/view/1151 (accessed 2 July 2023).; Ignacio R. RINEX. The Receiver Independent Exchange Format Version 4.00. Darmstadt, IGS/RTCM RINEX WG, 2021. 120 p.; Materassi M., Forte B., Coster A., Skone S. The Dynamical Ionosphere a Systems Approach to Ionospheric Irregularity. Elsevier, 2020. 323 p. https://doi.org/10.1016/C2 017-0-01069-8; Artemiev V. M., Naumov A. O., Stepanov V. L., Murashko N. I. Method and Results of Real Time Modeling of Ionosphere Radiotomography on the Basis of the Kalman Filter Theory. Journal of Automation and Information Sciences, 2008, vol. 40, no. 2, pp. 52–62. https://doi.org/10.1615/JAutomatInfScien.v40.i2.50; Belokonov I. V., Krot А. М., Kozlov S. V., Kaplarchuk E. А., Savinykh I. E., Shapkin А. S. A method for estimating the total electron content in the ionosphere based on the retransmission of signals from the global navigation satellite system GPS. Informatika = Informatics, 2023, vol. 20, no. 2, pp. 7−27 (in Russian). https://doi.org/10.37661/1816-0301-2023-20-2-7-27; Kaplarchuk E. А., Kozlov S. V., Savinykh I. E., Shapkin А. S. Processing of retransmitted global navigation satellite system GPS navigation signals in the problem of measuring the total electron content in the ionosphere. Informatika = Informatics, 2023, vol. 20, no. 3, pp. 30−45 (in Russian). https://doi.org/10.37661/1816-0301-2023-20-3-30-45; Arikan F., Nayir H., Sezen U., Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC.; Radio Science, 2008, vol. 43, RS4004. 13 p. https://doi.org/10.1029/2007RS003785; Naumov A., Khmarskiy P., Byshnev N., Piatrouski M. Methods and software for estimation of total electron content in ionosphere using GNSS observations. Engineering Applications, 2023, vol. 2, no. 3, pp. 243–253.; Themens D. R., Jayachandran P. T., Langley R. B., MacDougall J. W., Nicolls J. Determining receiver biases in GPSderived total electron content in the auroral oval and polar cap region using ionosonde measurements. GPS Solut, 2013, vol. 17, pp. 357–369. https://doi.org/10.1007/s10 291-012-0284-6; Hieu La Van, Ferreira V. G., He X., Tang X. Study on cycle-slip detection and repair methods for a single dualfrequency global positioning system (GPS) receiver. Boletim de Ciências Geodésicas, 2014, vol. 20, no. 4, pp. 984–1004. https://doi.org/10.1590/S1982-21702014000400054; Wang N., Yuan Y., Li Z., Montenbruck O., Tan B. Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, 2016, vol. 90, no. 3, pp. 209–228. https://doi.org/10.1007/s00190-015-0867-4; Montenbruck O., Hauschild A., Steigenberger P. Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps. Navigation – Journal of the ION, 2014, vol. 61, no. 3, pp. 191–201. https://doi.org/10.1002/ navi.644; Wang Y., Zhao L., Gao Y. Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver. Sensors, 2021, vol. 21, no. 2, art. ID 443. https://doi.org/10.3390/s21020443; Komjathy A. Global Ionospheric Total Electron Content Mapping Using the Global Positioning System. University of New Brunswick, 1997. 265 p.; https://vestift.belnauka.by/jour/article/view/830