Εμφανίζονται 1 - 20 Αποτελέσματα από 95 για την αναζήτηση '"бортезомиб"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: The work was supported by a grant of the Russian Science Foundation (project No. 23-21-00154 “Development of methods for predicting the properties of pharmacological preparations based on their molecular structure using the theory of topological analysis of chemographs”), FRC IU RAS., Работа выполнена за счет гранта Российского научного фонда (проект № 23-21-00154 «Разработка методов прогноза свойств фармакологических препаратов по их молекулярной структуре с помощью теории топологического анализа хемографов»), ФИЦ ИУ РАН.

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 2 (2023); 291-302 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 2 (2023); 291-302 ; 2070-4933 ; 2070-4909

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/807/481; Vose J., Armitage J., Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008; 26 (25): 4124–30. https://doi.org/10.1200/JCO.2008.16.4558.; Alaggio R., Amador C., Anagnostopoulos I., et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022; 36 (7): 1720–48. https://doi.org/10.1038/s41375-022-01620-2.; A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood. 1997; 89 (11): 3909–18.; Cheson B.D., Fisher R.I., Barrington S.F., et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014; 32 (27): 3059–3068. https://doi.org/10.1200/JCO.2013.54.8800.; Iqbal J., Weisenburger D.D., Greiner T.C., et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010; 115 (5): 1026–36. https://doi.org/10.1182/blood-2009-06-227579.; Amador C., Greiner T.C., Heavican T.B., et al. Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry. Blood. 2019; 134 (24): 2159–70. https://doi.org/10.1182/blood.2019000779.; Торшин И.Ю., Громова О.А., Тетруашвили Н.К. Хемотранскриптомный анализ синергизма D-хироинозитола и миоинозитола в контексте постгеномной фармакологии. Акушерство и гинекология. 2022; 9: 135–45. https://doi.org/10.18565/aig.2022.9.135-145.; Лила А.М., Торшин И.Ю., Громов А.Н. и др. Фармакоинформационные исследования хондропротекторов. Современная ревматология. 2021; 15 (5): 114–20. https://doi.org/10.14412/1996-7012-2021-5-114-120.; Громова О.А., Торшин И.Ю., Сорокин А.И. и др. Хемотранскриптомный анализ молекулы этилметилгидроксипиридина сукцината в контексте постгеномной фармакологии. Неврология, нейропсихиатрия, психосоматика. 2020; 12 (5): 130–7. https://doi.org/10.14412/2074-2711-2020-5-130-137.; Inghirami G., Chan W.C., Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev. 2015; 263 (1): 124–59. https://doi.org/10.1111/imr.12248.; Marchi E., O’Connor O.A. The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J Clin. 2020; 70 (1): 47–70. https://doi.org/10.3322/caac.21589.; Pizzi M., Margolskee E., Inghirami G. Pathogenesis of peripheral T cell lymphoma. Annu Rev Pathol. 2018; 13: 293–320. https://doi.org/10.1146/annurev-pathol-020117-043821.; Josefowicz S.Z. Regulators of chromatin state and transcription in CD4 T-cell polarization. Immunology. 2013; 139 (3): 299–308. https://doi.org/10.1111/imm.12115.; Iqbal J., Wright G., Wang C., et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014; 123 (19): 2915–23. https://doi.org/10.1182/blood-2013-11-536359.; Wang T., Feldman A.L., Wada D.A., et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014; 123 (19): 3007–15. https://doi.org/10.1182/blood-2013-12-544809.; Mourad N., Mounier N., Brière J., et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l'Adulte (GELA) Trials. Blood. 2008; 111 (9): 4463–70. https://doi.org/10.1182/blood-2007-08-105759.; Reimer P., Rüdiger T., Geissinger E., et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol. 2009; 27 (1): 106–13. https://doi.org/10.1200/JCO.2008.17.4870.; Simon A., Peoch M., Casassus P., et al. Upfront VIP-reinforced-ABVD (VIP-rABVD) is not superior to CHOP/21 in newly diagnosed peripheral T cell lymphoma. Results of the randomized phase III trial GOELAMS-LTP95. Br J Haematol. 2010; 151 (2): 159–66. https://doi.org/10.1111/j.1365-2141.2010.08329.x.; d’Amore F., Relander T., Lauritzsen G.F., et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 2012; 30 (25): 3093–9. https://doi.org/10.1200/JCO.2011.40.2719.; Swerdlow S.H., Campo E., Pileri S.A., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127 (20): 2375–90. https://doi.org/10.1182/blood-2016-01-643569.; de Leval L., Rickman D.S., Thielen C., et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007; 109 (11): 4952–63. https://doi.org/10.1182/blood-2006-10-055145.; Waitkus M.S., Diplas B.H., Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018; 34 (2): 186–95. https://doi.org/10.1016/j.ccell.2018.04.011.; Wang C., McKeithan T.W., Gong Q., et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015; 126 (15): 1741–52. https://doi.org/10.1182/blood-2015-05-644591.; Odejide O., Weigert O., Lane A.A., et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014; 123 (9): 1293–6. https://doi.org/10.1182/blood-2013-10-531509.; Dan H., Zhang S., Zhou Y., Guan Q. DNA methyltransferase inhibitors: catalysts for antitumour immune responses. Onco Targets Ther. 2019; 12: 10903–16. https://doi.org/10.2147/OTT.S217767.; Feinberg A.P., Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004; 4 (2): 143–53. https://doi.org/10.1038/nrc1279.; Yoder J.A., Walsh C.P., Bestor T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997; 13 (8): 335–40. https://doi.org/10.1016/s0168-9525(97)01181-5.; Akhavan-Niaki H., Samadani A.A. DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys. 2013; 67 (2): 501–13. https://doi.org/10.1007/s12013-013-9555-2.; Lemonnier F., Dupuis J., Sujobert P., et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood. 2018; 132 (21): 2305–9. https://doi.org/10.1182/blood-2018-04-840538.; O’Connor O.A., Falchi L., Lue J.K., et al. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood. 2019; 134 (17): 1395–405. https://doi.org/10.1182/blood.2019001285.; Falchi L., Ma H., Klein S., et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: a multicenter phase 2 study. Blood. 2021; 137 (16): 2161–70. https://doi.org/10.1182/blood.2020009004.; Clozel T., Yang S., Elstrom R.L., et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 2013; 3 (9): 1002–19. https://doi.org/10.1158/2159-8290.CD-13-0117.; Martin P., Bartlett N.L., Chavez J.C., et al. Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood. 2022; 139 (8): 1147–59. https://doi.org/10.1182/blood.2021011679.; Palomero T., Couronné L., Khiabanian H., et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014; 46 (2): 166–70. https://doi.org/10.1038/ng.2873.; Abbas H.A., Reville P.K., Jiang X., et al. Response to hypomethylating agents in myelodysplastic syndrome is associated with emergence of novel TCR clonotypes. Front Immunol. 2021; 12: 659625. https://doi.org/10.3389/fimmu.2021.659625.; Ruan J., Moskowitz A.J., Mehta-Shah N., et al. Multicenter phase 2 study of oral azacitidine (CC-486) plus CHOP as initial treatment for peripheral T-cell lymphoma. Blood. 2023; blood.2022018254. https://doi.org/10.1182/blood.2022018254.; Grimm J., Simnica D., Jäkel N., et al. Azacitidine-induced reconstitution of the bone marrow T cell repertoire is associated with superior survival in AML patients. Blood Cancer J. 2022; 12 (1): 19. https://doi.org/10.1038/s41408-022-00615-7.; Bodo J., Zhao X., Sharma A., et al. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways. Br J Haematol. 2013; 163 (1): 72–80. https://doi.org/10.1111/bjh.12498.; Bodo J., Zhao X., Sharma A., et al. The PI3K inhibitor GS-1101 (CAL-101) synergistically potentiates HDAC-induced proliferation inhibition and apoptosis through the activation of JNK in lymphoma cells. Blood. 2012; 120 (21): 3714. https://doi.org/10.1182/blood.V120.21.3714.3714.; Ozaki K.I., Kosugi M., Baba N., et al. Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib. Biochem Biophys Res Commun. 2010; 391 (4): 1610–5. https://doi.org/10.1016/j.bbrc.2009.12.086.; Zhou C., Qiu L., Sun Y., et al. Inhibition of EGFR/PI3K/AKT cell survival pathway promotes TSA’s effect on cell death and migration in human ovarian cancer cells. Int J Oncol. 2006; 29 (1): 269–78.; Quan P., Moinfar F., Kufferath I., et al. Effects of targeting endometrial stromal sarcoma cells via histone deacetylase and PI3K/AKT/mTOR signaling. Anticancer Res. 2014; 34 (6): 2883–97.; Ferreira A.C., Robaina M.C., Rezende L.M., et al. Histone deacetylase inhibitor prevents cell growth in Burkitt’s lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann Hematol. 2014; 93 (6): 983–93. https://doi.org/10.1007/s00277-014-2021-4.; Yamada T., Horinaka M., Shinnoh M., et al. A novel HDAC inhibitor OBP-801 and a PI3K inhibitor LY294002 synergistically induce apoptosis via the suppression of survivin and XIAP in renal cell carcinoma. Int J Oncol. 2013; 43 (4): 1080–6. https://doi.org/10.3892/ijo.2013.2042.; Nguyen T., Dai Y., Attkisson E., et al. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res. 2011; 17 (10): 3219–32. https://doi.org/10.1158/1078-0432.CCR-11-0234.; Wozniak M.B., Villuendas R., Bischoff J.R., et al. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica. 2010; 95 (4): 613–21. https://doi.org/10.3324/haematol.2009.013870.; Bhende P.M., Park S.I., Lim M.S., et al. The dual PI3K/mTOR inhibitor, NVP-BEZ235, is efficacious against follicular lymphoma. Leukemia. 2010; 24 (10): 1781–4. https://doi.org/10.1038/leu.2010.154.; Kim A., Park S., Lee J.E., et al. The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leuk Res. 2012; 36 (7): 912–20. https://doi.org/10.1016/j.leukres.2012.02.010.; Alzahrani A.S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019; 59: 125–32. https://doi.org/10.1016/j.semcancer.2019.07.009.; Li H., Prever L., Hirsch E., Gulluni F. Targeting PI3K/AKT/mTOR signaling pathway in breast cancer. Cancers (Basel). 2021; 13 (14): 3517. https://doi.org/10.3390/cancers13143517.; Yoshioka K., Yoshida K., Cui H., et al. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med. 2012; 18 (10): 1560–9. https://doi.org/10.1038/nm.2928.; Raiborg C., Schink K.O., Stenmark H. Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J. 2013; 280 (12): 2730–42. https://doi.org/10.1111/febs.12116.; Reif K., Okkenhaug K., Sasaki T., et al. Cutting edge: differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J Immunol. 2004; 173 (4): 2236–40. https://doi.org/10.4049/jimmunol.173.4.2236.; Soond D.R., Bjørgo E., Moltu K., et al. PI3K p110δ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood. 2010; 115 (11): 2203–13. https://doi.org/10.1182/blood-2009-07-232330.; Okkenhaug K., Patton D.T., Bilancio A., et al. The p110δ isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol. 2006; 177 (8): 5122–8. https://doi.org/10.4049/jimmunol.177.8.5122.; Furman R.R., Sharman J.P., Coutre S.E., et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014; 370 (11): 997–1007. https://doi.org/10.1056/NEJMoa1315226.; Balakrishnan K., Peluso M., Fu M., et al. Inhibition of PI3K-δ and -γ isoforms by IPI-145 in chronic lymphocytic leukemia overcomes signals from PI3K/AKT/S6 pathway and promotes apoptosis. Blood. 2013; 122 (21): 4167. https://doi.org/10.1182/blood.V122.21.4167.4167.; Huang X., Proctor J., Yang Y., et al. The potent PI3K-δ,γ inhibitor, IPI-145, exhibits preclinical activity in murine and human T-cell acute lymphoblastic leukemia. Blood. 2013; 122 (21): 1438. https://doi.org/10.1182/blood.V122.21.1438.1438.; Horwitz S.M., Porcu P., Flinn I., et al. Duvelisib (IPI-145), a phosphoinositide-3-kinase-δ,γ inhibitor, shows activity in patients with relapsed/refractory T-cell lymphoma. Blood. 2014; 124 (21): 803. https://doi.org/10.1182/blood.V124.21.803.803.; Flinn I., Oki Y., Patel M., et al. A Phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed/refractory iNHL. Blood. 2014; 124 (21): 802. https://doi.org/10.1182/blood.V124.21.802.802.; Goy A., Younes A., McLaughlin P., et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005; 23 (4): 667–75. https://doi.org/10.1200/JCO.2005.03.108.; Zinzani P.L., Khuageva N.K., Wang H., et al. Bortezomib plus rituximab versus rituximab in patients with high-risk, relapsed, rituximab-naïve or rituximab-sensitive follicular lymphoma: subgroup analysis of a randomized phase 3 trial. J Hematol Oncol. 2012; 5: 67. https://doi.org/10.1186/1756-8722-5-67.; Ruan J., Martin P., Furman R.R., et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol. 2011; 29 (6): 690–7. https://doi.org/10.1200/JCO.2010.31.1142.; Anderson K.C., Alsina M., Bensinger W., et al. Waldenström’s macroglobulinemia/lymphoplasmacytic lymphoma, version 2.2013. J Natl Compr Canc Netw. 2012; 10 (10): 1211–9. https://doi.org/10.6004/jnccn.2012.0128.; Karin M., Cao Y., Greten F.R., Li Z.W. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002; 2 (4): 301–10. https://doi.org/10.1038/nrc780.; Moreau P., Pylypenko H., Grosicki S., et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011; 12 (5): 431–40. https://doi.org/10.1016/S1470-2045(11)70081-X.; Zinzani P.L., Musuraca G., Tani M., et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007; 25 (27): 4293–7. https://doi.org/10.1200/JCO.2007.11.4207.; Lee J., Suh C., Kang H.J., et al. Phase I study of proteasome inhibitor bortezomib plus CHOP in patients with advanced, aggressive T-cell or NK/T-cell lymphoma. Ann Oncol. 2008; 19 (12): 2079–83. https://doi.org/10.1093/annonc/mdn431.; Kim S.J., Yoon D.H., Kang H.J., et al. Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial. Eur J Cancer. 2012; 48 (17): 3223–31. https://doi.org/10.1016/j.ejca.2012.06.003.; Hatzi K., Melnick A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol Med. 2014; 20 (6): 343–52. https://doi.org/10.1016/j.molmed.2014.03.001.; Rasheed W., Bishton M., Johnstone R.W., Prince H.M. Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther. 2008; 8 (3): 413–32. https://doi.org/10.1586/14737140.8.3.413.; Coiffier B., Pro B., Prince H.M., et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012; 30 (6): 631–6. https://doi.org/10.1200/JCO.2011.37.4223.; Lavrol Clin. Cancer trial results. Horwitz S., Nikitina A., Kotlov N., et al. The combination of duvelisib and romidepsin (DR) is highly active against relapsed/refractory peripheral T-cell lymphoma with low rates of transaminitis: final results and biomarker analysis. 2021. URL: https://clin.larvol.com/abstract-detail/ASH%202021/52318948 (дата обращения 10.02.2023).; https://www.pharmacoeconomics.ru/jour/article/view/807

  7. 7
  8. 8
    Academic Journal

    Συγγραφείς: Laletina L.A., Moiseeva N.I., Karamysheva A.F.

    Συνεισφορές: The study was performed with the support of the Russian Foundation for Basic Research (grant мол_а No. 18-315-00075)., Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант мол_а №18-315-00075).

    Πηγή: Advances in Molecular Oncology; Vol 7, No 1 (2020); 23-31 ; Успехи молекулярной онкологии; Vol 7, No 1 (2020); 23-31 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 10, No 2 (2017); 53-61 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 10, No 2 (2017); 53-61 ; 2070-4933 ; 2070-4909 ; 10.17749/2070-4909.2017.10.2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/193/183; Rajkumar S. V., Dimopoulos M. A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15 (12): e538-e548.; Rajkumar S. V. Multiple myeloma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014; 89 (10): 999-1009; 23: 3-9.; Росcий ские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний . Под руководством проф. И. В. Поддубной, проф. В. Г. Савченко. М. 2014; 68 с.; Злокачественные новообразования в России в 2014 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, Г.В. Петровой . М. 2014. 250 с.; Harousseau J.-L., Dreyling M. Multiple Myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010; 21 (5): 155-157.; Rajkumar S. V. Myeloma today: Disease definitions and treatment advances. Am J Hematol. 2016; 91 (1): 90-100.; Richardson P. G., Barlogie B., Berenson J. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003; 348 (26): 2609-2617.; Kumar S. K., Rajkumar S. V., Dispenzieri A. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008; 111 (5): 2516-2520.; Kumar S. K., Dispenzieri A., Lacy M. Q. et al. Continued improve- ment in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014; 28 (5): 1122-1128.; Quach H., Ritchie D., Stewart A. K., Neeson P., Harrison S., Smyth M. J. et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010; 24: 22-32.; San Miguel J., Weisel K., Moreau P. et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013; 14 (11): 1055-1066.; Dimopoulos M., Palumbo A., Weisel K. et al. Safety and Efficacy in the Stratus (MM-010) Trial, a Single-Arm Phase 3b Study Evaluating Pomalidomide+ Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma. Blood (ASH Ann. Meet. Abstr.) 2014; 124 (21).; Rychak E., Mendy D., Miller K., Schafer P., Chopra R., Daniel T. O. et al. Overcoming resistance; the use of pomalidomide (POM) and dexame-thasone (DEX) in resensitizing lenalidomide (LEN)-resistant multiple myeloma (MM) cells. Haematologica (EHA Annu Meet Abstr). 2011; 96.; Ocio E. M., Fernández-Lázaro D., San-Segundo L., GonazálezMéndez L., Martı́n Sánchez M., Garayoa M. et al. Reversibility of the resistance to lenalidomide and pomalidomide and absence of crossresistance in a murine model of MM. Blood (ASH Annu Meet Abstr). 2011; 118.; Rychak E., Mendy D., Shi T., Ning Y., Leisten J., Raymon H. et al. Pomalidomide and dexamethasone are synergistic in pre-clinical models of lenalidomide-refractory multiple myeloma (MM). Clin Lymphoma Myeloma Leuk (IMW Annu Meet Abstr) 2013; 13 (1): abstract P-294.; Richardson P. G., Siegel D. S., Vij R., Hofmeister C. C., Baz R., Jagannath S., Chen C., Lonial S., Jakubowiak A., Bahlis N., Song K., Belch A., Raje N., Shustik C., Lentzsch S., Lacy M., Mikhael J., Matous J., Vesole D., Chen M., Zaki M. H., Jacques C., Yu Z., Anderson K. C. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014 Mar 20; 123 (12): 1826-32.; Семочкин С. В. Помалидомид в терапии рецидивирующей и рефрактерной множественной миеломы: презентация клинического случая и обзор литературы. Онкогематология. 2015; 10 (3): 44-52.; Kumar A., Porwal M., Verma A., Mishra A. K. Impact of pomalidomide therapy in multiple myeloma: a recent survey. J. Chemother. 2014; 26 (6): 321-7.; Dimopoulos M. A., Leleu X., Palumbo A., Moreau P., Delforge M., Cavo M., Ludwig H., Morgan G. J., Davies F. E., Schey A., Zweegman S., Hansson M., Weisel K., Mateos M. V., Facon T., Miguel J. F.S. Совместное экспертное заключение по оптимальному применению помалидомида при рецидивирующей и рефрактерной множественной миеломе. Репринт. Leukemia. 2014; 1-13.; NCCN Clinical Practice Guidelines in Oncology, Multiple Myeloma, 2015; I. URL: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Дата обращения: 01.03.17.; Ягудина Р. И., Хабриев Р. У., Правдюк Н. Г. Оценка технологий здравоохранения. М. 2013; 416 с.; Федеральный закон от 19.12.2016 № 415-ФЗ «О федеральном бюджете на 2017 и на плановый период 2018 и 2019 годов».; Методические рекомендации по оценке влияния на бюджет в рамках реализации программы государственных гарантий бесплатного оказания гражданам медицинской помощи. Утверждены приказом № 145-од ФГБУ «ЦЭККМП» Министерства здравоохранения Российской Федерации от 23.12.2016.; Постановление Правительства РФ от 19 декабря 2016 года № 1403 «О Программе государственных гарантий бесплатного оказания гражданам медицинской помощи на 2017 год и на плановый период 2018 и 2019 годов».; https://www.pharmacoeconomics.ru/jour/article/view/193

  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 5, No 1 (2012); 13-19 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 5, No 1 (2012); 13-19 ; 2070-4933 ; 2070-4909

    Relation: Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 1998; 102:1115-23.; Boyle P, Ferlay J.Cancer incidence and mortality in Europe, 2004. Ann Oncol. 2005;16:481-8.; Dimopoulos M, Spencer A, Attal M, Miles Prince H, Harousseau J-Let al. Lenalidomide plus Dexamethasone for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2007;357(21):2123-32.; Greipp PR, San Miguel J, Durie BGM, Crowley JJ, Barlogie B, Blade J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412-20.; Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106-30.; Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2:175-87.; Kyle RA, Gertz MA, Witzig ТЕ, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc.2003;78:21-33.; Richardson PG, Sonneveld P, Schuster MW, et al. Extended followup of a phase 3 trial in relapsed multiple myeloma: Final time-toevent results of the APEX trial. Blood. 2007; 110(10):3557-60.; Sant M, Aareleid T, Berrino F, Bielska Lasota M, Carli PM, Faivre J, et al. EUROCARE-3: survival of cancer patients diagnosed 1990-94-results and commentary. Ann Oncol. 2003; 14 Suppl 5:v61-v118.; Stadtmauer et al. Lenalidomide in combination with dexamethasone is more effective than dexamethasone at first relapse in multiple myeloma. Abstract #3552, ASH 2006.; Weber D, Knight R, Chen C, Spencer A, et al. Prolonged overall survival with lenalidomide plus dexamethasone compared with dexamethasone alone in patients with relapsed or refractory multiple myeloma. Abstract #412, ASH 2007.; Weber DM, Chen C, Niesvizky R, Wang M, Belch A. et al. Lenalidomide plus Dexamethasone for Relapsed Multiple Myeloma in North America; N Engl J Med. 2007;357(21):2133-42.; Информационный ресурс www.aptechka.ru [по состоянию на 05.09.2010]; Прайс-лист ММА им. И. М. Сеченова www.mma.ru; Прейскурант Онкологического центра им. Н. Н. Блохина.; Приказ Минздравсоцразвития РФ от 21.07.2006 n 549 об утверждении стандарта медицинской помощи больным множественной миеломой.; Регистр предельных отпускных цен производителей по состоянию на 15.04.10.; https://www.pharmacoeconomics.ru/jour/article/view/9

  20. 20
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; № 1 (2014); 75-79 ; Российский журнал детской гематологии и онкологии (РЖДГиО); № 1 (2014); 75-79 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2014-0-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/17/13; Alba P., Karim M. Y., Hunt B. J. Mycophenolate mofetil as a treatment for autoimmune haemolytic anaemia in patients with systemic lupus erythematosus and antiphospholipid syndrome. Lupus 2003;12 (8):633–5.; Bass G. F., Tuscano E. T., Tuscano J. M. Diagnosis and classification of autoimmune hemolytic anemia. Autoimmun Rev 2014;13(4–5):560–4.; Baudino L., Nimmerjahn F., Azeredo da Silveira S. et al. Differential contribution of three activating IgG Fc receptors (FcgammaRI, FcgammaRIII, and FcgammaRIV) to IgG2a- and IgG2b-induced autoimmune hemolytic anemia in mice. J Immunol 2008;180(3):1948–53.; Chen F. E., Owen I., Savage D. et al. Late onset haemolysis and red cell autoimmunisation after allogeneic bone marrow transplant. Bone Marrow Transplant 1997;19(5):491–5.; Cheung W. W., Hwang G. Y., Tse E., Kwong Y. L. Alemtuzumab induced complete remission of autoimmune hemolytic anemia refractory to corticosteroids, splenectomy and rituximab. Haematologica 2006;91(5 Suppl):ECR13.; Crowther M., Chan Y. T., Garbett I. K. et al. Evidence-based focused review of the treatment of idiopathic warm immune hemolytic anemia in adults. Blood 2011;118(15):4036–40.; Faraci M., Zecca M., Pillon M. et al. Autoimmune hematological diseases after allogeneic hematopoietic stem cell transplantation in children: an Italian multicenter experience. Biol Blood Marrow Transplant 2014;20(2):272–8.; Flores G., Cunningham-Rundles C., Newland A. C., Bussel J. B. Efficacy of intravenous immunoglobulin in the treatment of autoimmune hemolyticanemia; results in 73 patients. Am J Hematol 1993;44(4):237–42.; Godder K., Pati A. R., Abhyankar S. H. et al. De novo chronic graft-versus-host disease presenting as hemolytic anemia following partially mismatched related donor bone marrow transplant. Bone Marrow Transplant 1997;19(8):813–7.; Iuchi Y., Kibe N., Tsunoda S. et al. Implication of oxidative stress as a cause of autoimmune hemolytic anemia in NZB mice. Free Radic Biol Med 2010;48(7):935–44.; Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia: an update. Expert Rev Hematol 2011;4(6):607–18.; O’Brien T. A., Eastlund T., Peters C. et al. Autoimmune haemolytic anaemia complicating haematopoietic cell transplantation in paediatric patients: high incidence and significant mortality in unrelated donor transplants for non-malignant diseases. Br J Haematol 2004;127(1):67–75.; O’Connell N., Goodyer M., Gleeson M. et al. Successful treatment with rituximab and mycophenolate mofetil of refractory autoimmune hemolytic anemia post-hematopoietic stem cell transplant for dyskeratosis congenita due to TINF2 mutation. Pediatr Transplant 2014;18(1):E22–4.; Perez-Andres M., Paiva B., Nieto W. G. et al.; Primary Health Care Group of Salamanca for the Study of MBL. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom 2010;78 Suppl 1:S47–60.; Reddy P., Ferrara J. L. Immunobiology of acute graft-versus-host disease. Blood Rev 2003;17:187–94.; Saha M., Ray S., Kundu S., Chakrabarti P. Pure red cell aplasia following autoimmune hemolytic anemia: an enigma. J Postgrad Med 2013;59(1):51–3.; Sanz J., Arriaga F., Montesinos P. et al. Autoimmune hemolyticanemia following allogeneic hematopoietic stem cell transplantation in adult patients. Bone Marrow Transplant 2007:39(9):555–61.; Sevilla J., González-Vicent M., Madero L., Díaz M. A. Acute autoimmune hemolytic anemia following unrelated cord blood transplantation as an early manifestation of chronic graft-versus-host disease. Bone Marrow Transplant 2001;28(1):89–92.; Shlomchik W. D. Antigen presentation in graft-vs-host disease. Exp Hematol 2003;31(12):1187–97.; Stussi G., Halter J., Schanz U., Seebach J. D. ABO-histo blood group incompatibility in hematopoietic stem cell and solid organ transplantation. Transfus Apher Sci 2006;35(1):59–69.; Toriani-Terenzi C., Pozzetto U., Bianchi M., Fagiolo E. Cytokine network in autoimmune haemolytic anaemia: new probable targets for therapy. Cancer Detect Prev 2002;26(4):292–8.; Xu L., Zhang T., Liu Z. et al. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol 2012;40(12):994–1004.; Zecca M., Nobili B., Ramenghi U. et al. Rituximab for the treatment of refractory autoimmune hemolytic anemia in children. Blood 2003;101(10):3857–61.; https://journal.nodgo.org/jour/article/view/17