Εμφανίζονται 1 - 6 Αποτελέσματα από 6 για την αναζήτηση '"блокаторы β-адренорецепторов"', χρόνος αναζήτησης: 0,62δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: G. V. Mokrov, Г. В. Мокров

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 3 (2023); 3-11 ; Фармакокинетика и Фармакодинамика; № 3 (2023); 3-11 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/376/339; Fisker FY, Grimm D, Wehland M. Third-generation beta-adrenoceptor antagonists in the treatment of hypertension and heart failure. Basic Clin Pharmacol Toxicol. 2015 Jul;117(1):5–14. DOI:10.1111/bcpt.12396.; Velmurugan BK, Baskaran R, Huang CY. Detailed insight on β-adrenoceptors as therapeutic targets. Biomed Pharmacother. 2019 Sep;117:109039. DOI:10.1016/j.biopha.2019.109039.; Black JW, Crowther AF, ShankS RG, et al. A NEW ADRENERGIC BETARECEPTOR ANTAGONIST. Lancet. 1964 May 16;1(7342):1080–1081. DOI:10.1016/s0140-6736(64)91275-9.; Baker JG, Gardiner SM, Woolard J, et al. Novel selective β1-adrenoceptor antagonists for concomitant cardiovascular and respiratory disease. FASEB J. 2017;31(7):3150–3166. DOI:10.1096/FJ.201601305R; Мокров Г.В. Кардиопротекторные средства с биароматической структурой. Часть 1. Блокаторы кальциевых каналов. Фармакокинетика и Фармакодинамика. 2021;(4):3–17. DOI:10.37489/2587-7836-2021-4-3-17.; Мокров Г.В. Кардиопротекторные средства с биароматической структурой. Часть 2. Блокаторы HCN-каналов. Фармакокинетика и Фармакодинамика. 2022;(2):3–10. DOI:10.37489/2587-7836-2022-2-03-10.; Мокров Г.В. Кардиопротекторные средства с биароматической структурой. Часть 3. Блокаторы натриевых каналов. Фармакокинетика и Фармакодинамика. 2022;(3):3–9. DOI:10.37489/2587-7836-2022-3-3-9; Мокров Г.В. Кардиопротекторные средства с биароматической структурой. Часть 4. Блокаторы и модуляторы калиевых hERG-каналов. Фармакокинетика и Фармакодинамика. 2022;(4):3–19. DOI:10.37489/2587-7836-2022-4-3-19.; Мокров Г.В. Кардиопротекторные средства с биароматической структурой. Часть 5. Блокаторы калиевых каналов Kv1.5. Фармакокинетика и Фармакодинамика. 2023;(2):3–13. DOI:10.37489/2587-7836-2023-2-3-13.; Howe R, Rao BS, Chodnekar MS. Beta-adrenergic blocking agents. VII. 2-(1,4-benzodioxanyl) and 2-chromanyl analogs of pronethalol (2-isopropylamino-1-(2-naphthyl)ethanol). J Med Chem. 1970 Mar;13(2): 169–176. DOI:10.1021/jm00296a001.; Van Lommen GRE, De Bruyn MFL, Schroven MFJ. US Patent 4654362 A. Published online October 12, 1984.; Van de Water A, Janssens W, Van Neuten J, et al. Pharmacological and hemodynamic profile of nebivolol, a chemically novel, potent, and selective beta 1-adrenergic antagonist. J Cardiovasc Pharmacol. 1988 May;11(5):552–563. DOI:10.1097/00005344-198805000-00007.; Mangrella M, Rossi F, Fici F, Rossi F. Pharmacology of nebivolol. Pharmacol Res. 1998 Dec;38(6):419-431. DOI:10.1006/phrs.1998.0387. PMID: 9990650.; Weiss R. Nebivolol: A Novel Beta-Blocker with Nitric Oxide-Induced Vasodilatation. Vasc Health Risk Manag. 2006;2(3):303. DOI:10.2147/VHRM.2006.2.3.303.; Olawi N, Krüger M, Grimm D, et al. Nebivolol in the treatment of arterial hypertension. Basic Clin Pharmacol Toxicol. 2019 Sep;125(3):189-201. DOI:10.1111/bcpt.13248.; Augstein J, Cox DA, Ham AL, et al. Beta-adrenoceptor blocking agents. 1. Cardioselective 1-aryloxy-3-(aryloxyalkylamino)propan-2-ols. J Med Chem. 1973 Nov;16(11):1245-1251. DOI:10.1021/jm00269a007.; Hoefle ML, Hastings SG, Meyer RF, et al. Cardioselective betaadrenergic blocking agents. 1. 1-((3,4-Dimethoxyphenethyl)amino)-3-aryloxy-2-propanols. J Med Chem. 1975 Feb;18(2):148-152. DOI:10.1021/jm00236a007.; Dukes ID, Vaughan Williams EM. Cardiovascular effects of bevantolol, a selective beta 1-adrenoceptor antagonist with a novel pharmacological profile. Br J Pharmacol. 1985 Feb;84(2):365-380. DOI:10.1111/j.1476-5381.1985.tb12921.x.; Frishman WH, Goldberg RJ, Benfield P. Bevantolol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and angina pectoris. Drugs. 1988 Jan;35(1):1–21. DOI:10.2165/00003495-198835010-00001.; Rodrigues EA, Lawrence JD, Dasgupta P, et al. Comparison of bevantolol and atenolol in chronic stable angina. Am J Cardiol. 1988 Jun 1;61(15):1204–1209. DOI:10.1016/0002-9149(88)91155-1.; Warner-lambert pipeline narrowed to 40 active research compounds: accupril (quinapril) nda submitted jan. 25; $80 Mil. budgetted for c-v work in 1989 : Pink Sheet. Published 1989. Accessed October 28, 2021. https://pink.pharmaintelligence.informa.com/ps015015/warnerlambert-pipelinenarrowed-to-40-active-research-compounds-accupril-quinapril-ndasubmitted-jan-25-80-mil-budgetted-for-cv-work-in-1989; Kreighbaum WE, Matier WL, Dennis RD, et al. Antihypertensive indole derivatives of phenoxypropanolamines with beta-adrenergic receptor antagonist and vasodilating activity. J Med Chem. 1980 Mar;23(3):285–289. DOI:10.1021/jm00177a015.; Hershberger RE, Wynn JR, Sundberg L, Bristow MR. Mechanism of action of bucindolol in human ventricular myocardium. J Cardiovasc Pharmacol. 1990;15(6):959–967. DOI:10.1097/00005344-199006000-00014.; Eichhorn EJ. Effects of bucindolol in heart failure. Am J Cardiol. 1993 Mar 25;71(9):65C-70C. DOI:10.1016/0002-9149(93)90089-u.; FDA rejects bucindolol and questions trial integrity. Published 2009. Accessed October 28, 2021. http://www.cardiobrief.org/2009/06/02/fdarejects-bucindolol-and-questions-trial-integrity/; Wiedemann F, Kampe W, Thiel M, Sponer G, Roesch E, Dietmann K. US Patent 4503067. Published online 1985. https://www.uspto.gov/web/offices/com/sol/foia/comm/pte/4503067.pdf; Ruffolo RR, Gellai M, Hieble JP, et al. The pharmacology of carvedilol. Eur J Clin Pharmacol. 1990;38 Suppl 2:S82-8. doi:10.1007/BF01409471.; Mctavish D, Campoli-Richards D, Sorkin EM, Doggrell SA. Carvedilol A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy. Drugs. 1993;45(2):232–258. DOI:10.2165/00003495-199345020-00006.; Book WM. Carvedilol: A Nonselective β Blocking Agent With Antioxidant Properties. Congest Hear Fail. 2002;8(3):173–177, 190. DOI:10.1111/j.1527-5299.2002.00718.x.; Fuhrer W, Ostermayer F, Zimmermann M. US Patent 4559354. Published online 1985.; Dooley DJ, Bittiger H, Reymann NC. CGP 20712 A: a useful tool for quantitating β1- and β2-adrenoceptors. Eur J Pharmacol. 1986;130(1-2): 137–139. DOI:10.1016/0014-2999(86)90193-7.; Louis WJ, Berthold R, Stoll A. US Patent 4816604. Published online 1989.; Louis SNS, Nero TL, Iakovidis D, et al. LK 204–545, a highly selective β1-adrenoceptor antagonist at human β-adrenoceptors. Eur J Pharmacol. 1999;367(2-3):431-5. doi:10.1016/S0014-2999(99)00019-9.; Louis WJ, Jackman GP, Iakovidis D, Louis SN, Drummer OH. WO Patent 97/13744A1. Published online 1997. Accessed October 28, 2021. https://patentimages.storage.googleapis.com/cf/b4/ed/cdbb8d5f1d23dd/WO1997013744A1.pdf; Jackman GP, Iakovidis D, Nero TL, et al. Synthesis, β-adrenoceptor pharmacology and toxicology of S-(−)-1-(4-(2-ethoxyethoxy)phenoxy)-2-hydroxy-3-(2-(3,4-dimethoxyphenyl)ethylamino)propane hydrochloride, a short acting β1-specific antagonist. Eur J Med Chem. 2002;37(9):731-41. DOI:10.1016/S0223-5234(02)01399-5.; Mistry S, Daras E, Fromont C, et al. WO Patent 2021/004549 A1. Published online 2012.; Mistry SN, Baker JG, Fischer PM, et al. Synthesis and in Vitro and in Vivo Characterization of Highly β1-Selective β-Adrenoceptor Partial Agonists. J Med Chem. 2013;56(10):3852–3865. DOI:10.1021/jm400348g.; Baker JG, Fischer PM, Fromont C, et al. WO Patent 2021/104659 A1. Published online 2012.; Ghabbour HA, El-Bendary ER, El-Ashmawy MB, El-Kerdawy MM. Synthesis, Docking Study and β-Adrenoceptor Activity of Some New Oxime Ether Derivatives. Molecules. 2014;19(3):3417–3435. DOI:10.3390/molecules19033417.; https://www.pharmacokinetica.ru/jour/article/view/376

  2. 2
    Academic Journal

    Συνεισφορές: Исследования выполнялись в рамках выполнения НИР (№ 0218-2019-0077) ИБ КарНЦ РАН на научном оборудовании (НО) Центра коллективного пользования Федерального исследовательского центра «Карельский научный центр Российской академии наук»

    Πηγή: Medical Immunology (Russia); Том 24, № 2 (2022); 273-282 ; Медицинская иммунология; Том 24, № 2 (2022); 273-282 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2385/1522; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8693; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8694; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8695; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8696; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8697; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8698; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8699; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8700; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8701; Трушина Э.Н., Мустафина О.К., Хорхе С.С., Богданов А.Р., Сенцова Т.Б., Залетова Е.С., Кузнецов В.Д. Клеточный иммунитет у больных с артериальной гипертонией и ожирением // Вопросы питания, 2012. № 6. С. 19-26.; Фрейдлин И.С. Регуляторные Т-клетки: происхождение и функции // Медицинская иммунология, 2005. Т. 7, № 4. С. 347-354. doi:10.15789/1563-0625-2005-4-347-354.; Agabiti-Rosei C., Trapletti V., Piantoni S., Airò P., Tincani A., de Ciuceis C., Rossini C., Mittempergher F., Titi A., Portolani N., Caletti S., Coschignano M.A., Porteri E., Tiberio G.A.M., Pileri P., Solaini L., Kumar R., Ministrini S., Agabiti Rosei E., Rizzoni D. Decreased circulating T regulatory lymphocytes in obese patients undergoing bariatric surgery. PLoS One, 2018, Vol. 13, no. 5, 0197178. doi:10.1371/journal.pone.0197178.; Ba D., Takeichi N., Kodama T., Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J. Immunol., 1982, Vol. 128, no. 3, pp. 1211-1216.; Barhoumi T., Kasal D.A., Li M.W., Shbat L., Laurant P., Neves M.F., Paradis P., Schiffrin E.L. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension, 2011, Vol. 57, no. 3, pp. 469-476.; Belanger K.M., Crislip G.R., Gillis E.E., Abdelbary M., Musall J.B., Mohamed R., Baban B., Elmarakby A., Brands M.W., Sullivan J.C. Greater T regulatory cells in females attenuate DOCA-salt induced increases in blood pressure versus males. Hypertension, 2020, Vol. 75, no. 6, pp. 1615-1623.; Caillon A., Paradis P., Schiffrin E.L. Role of immune cells in hypertension. Br. J. Pharmacol., 2019, Vol. 176, no. 12, pp. 1818-1828.; Chiasson V.L., Talreja D., Young K.J., Chatterjee P., Banes-Berceli A.K., Mitchell B.M. FK506 binding protein 12 deficiency in endothelial and hematopoietic cells decreases regulatory T cells and causes hypertension. Hypertension, 2011, Vol. 57, no. 6, pp. 1167-1175.; Crislip G.R., Sullivan J.C. T-cell involvement in sex differences in blood pressure control. Clin. Sci. (Lond.), 2016, Vol. 130, no. 10, pp. 773-783.; Crowley S.D., Song Y.S., Lin E.E., Griffiths R., Kim H.S., Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, Vol. 298, no. 4, pp. R1089-R1097.; de Ciuceis C., Rossini C., Airò P., Scarsi M., Tincani A., Tiberio G.A.M., Piantoni S., Porteri E., Solaini L., Duse S., Semeraro F., Petroboni B., Mori L., Castellano M., Gavazzi A., Agabiti Rosei C., Agabiti Rosei E., Rizzoni D. Relationship between different subpopulations of circulating CD4+ T-lymphocytes and microvascular structural alterations in humans. Am. J. Hypertens., 2017, Vol. 30, no. 1, pp. 51-60.; Gackowska L., Michałkiewicz J., Helmin-Basa A., Kłosowski M., Niemirska A., Obrycki Ł., Kubiszewska I., Wierzbicka A., Litwin M. Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J. Hypertens., 2020, Vol. 38, no. 4, pp. 692-700.; Gackowska L., Michałkiewicz J., Niemirska A., Helmin-Basa A., Kłosowski M., Kubiszewska I., Obrycki Ł., Szalecki M., Wierzbicka A., Kułaga Z., Wiese M., Litwin M. Loss of CD31 receptor in CD4+ and CD8+ T-cell subsets in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage J. Hypertens., 2018, Vol. 36, no. 11, pp. 2148-2156.; Harrison D.G., Guzik T.J., Lob H.E., Madhur M.S., Marvar P.J., Thabet S.R., Vinh A., Weyand C.M. Inflammation, Immunity and Hypertension. Hypertension, 2011, Vol. 57, no. 2, pp. 132-140.; Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-cells in sarcoidosis. Int. J. Mol. Sci., 2013, Vol. 14, no. 11, pp. 21463-21473.; Itani H.A., McMaster W.G. Jr., Saleh M.A., Nazarewicz R.R., Mikolajczyk T.P., Kaszuba A.M., Konior A., Prejbisz A., Januszewicz A., Norlander A.E., Chen W., Bonami R.H., Marshall A.F., Poffenberger G., Weyand C.M., Madhur M.S., Moore D.J., Harrison D.G., Guzik T.J. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension, 2016, Vol. 68, no. 1, pp. 123-132.; Ji Q., Cheng G., Ma N., Huang Y., Lin Y., Zhou Q., Que B., Dong J., Zhou Y., Nie S. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis. Markers, 2017, Vol. 2017, 7146290. doi:10.1155/2017/7146290.; Katsuki M., Hirooka Y., Kishi T., Sunagawa K. Decreased proportion of Foxp3+ CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J. Hypertens., 2015, Vol. 33, no. 4, pp. 773-783.; Khan M.M., Sansoni P., Silverman E.D., Engleman E.G., Melmon K.L. Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biochem. Pharmacol., 1986, Vol. 35, no. 7, pp. 1137-1142.; Kim C.H. FOXP3 and its role in the immune system. Adv. Exp. Med. Biol., 2009, Vol. 665, pp. 17-29.; Kim J.Y., Eunjo L., Koo S., Kim C.-W., Kim I. Transfer of Th17 from adult spontaneous hypertensive rats accelerates development of hypertension in juvenile spontaneous hypertensive rats. Biomed Res. Int., 2021, 6633825. doi:10.1155/2021/6633825.; Kohm A.P., Sanders V.M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev., 2001, Vol. 53, no. 4, pp. 487-525.; Koushki K., Shahbaz S. K., Mashayekhi K., MahvashSadeghi M., Zayeri Z.D., Taba M.Y., Banach M., AlRasadi K., Johnston T.P., Amirhossein Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immun., 2020, Vol. 60, no. 2, pp. 175-199.; Lee E., Kim N., Kang J., Yoon S., Lee H.A., Jung H., Kim S.H., Kim I. Activated pathogenic Th17 lymphocytes induce hypertension following high-fructose intake in Dahl salt-sensitive but not Dahl salt-resistant rats. Dis. Model. Mech., 2020, Vol. 13, no. 5, dmm044107. doi:10.1242/dmm.044107.; Li Q., Wang Y., Chen K., Zhou Q., Wei W., Wang Y. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronare syndrome. Biochem. Bioph. Res. Comm., 2010, Vol. 394, no. 3, pp. 836-842.; Liu Z., Zhao Y., Wei F., Ye L., Lu F., Zhang H., Diao Y., Song H., Qi Z. Treatment with telmisartan/ rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis, 2014, Vol. 233, no. 291, e299. doi:10.1016/j.atherosclerosis.2013.12.004.; Marino F., Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids, 2013, Vol. 45, no. 1, pp. 55-71.; Mikolajczyk T.P., Guzik T.J. Adaptive immunity in hypertension. Curr. Hypertens. Rep., 2019, Vol. 21, no. 9, 68. doi:10.1007/s11906-019-0971-6.; Ni X., Wang A., Zhang L., Shan L.-Y., Zhang H.-C., Li L., Si J.-Q., Luo J., Li X.-Z., Ma K.-T. Up-regulation of gap junction in peripheral blood T lymphocytes contributes to the inflammatory response in essential hypertension. PLoS One, 2017, Vol. 12, no. 9, e0184773. doi:10.1371/journal.pone.0184773.; Pinto J.P., Dias V., Zoller H., Porto G., Carmo H., Carvalho F., de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology, 2010, Vol. 130, no. 2, pp. 217-230.; Rai A., Narisawa M., Li P., Pia L., li Y., Yang G., Cheng X.W. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J. Hypertens., 2020, Vol. 38, no. 10, pp. 1878-1889.; Renaudin C., Bataillard A., Sassard J. Partial transfer of genetic hypertension by lymphoid cells in Lyon rats. J. Hypertens., 1995, Vol. 13, no. 12, Pt 2, pp. 1589-1592.; Saxena A., Dobaczewski M., Rai V., Haque Z., Chen W., Li N., Frangogiannis N.G. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol., 2014, Vol. 307, no. 8, pp. H1233-H1242.; Sereti E., Stamatelopoulos K.S., Zakopoulos N.A., Evangelopoulou A., Mavragani C.P., Evangelopoulos M.E. Hypertension: an immune related disorder? Clin. Immunol., 2019, Vol. 212, 108247. doi:10.1016/j.clim.2019.108247.; Tesmer L.A., Lundy S.K., Sarkar S., Fox D.A. Th17 cells in human disease. Immunol. Rev., 2008, Vol. 223, pp. 87-113.; Tipton A.J., Baban B., Sullivan J.C. Female spontaneously hypertensive rats have greater renal antiinflammatory T lymphocyte infiltration than males. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, Vol. 303, no. 4, pp. 359-367.; Trott D.W., Thabet S.R., Kirabo A., Saleh M.A., Itani H., Norlander A.E., Wu J., Goldstein A., Arendshorst W.J., Madhur M.S., Chen W., Li C.I., Shyr Y., Harrison D.G. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension, 2014, Vol. 64, no. 5, pp. 1108-1115.; Wenzel U., Turner J.E., Krebs C., Kurts C., Harrison D.G., Ehmke H. Immune mechanisms in arterial hypertension. J. Am. Nephrol., 2016, Vol. 27, no. 3, pp. 677-686.; Williams B., Mancia G., Spiering W., Agabiti Rosei T., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., Kahan T., Mahfoud F., Redon J., Ruilope L., Zanchetti A., Kerins M., Kjeldsen S.E., Kreutz R., Laurent S., Lip G.Y.H., McManus R., Narkiewicz K., Ruschitzka F., Schmieder R.E., Shlyakhto E., Tsioufis C.,Aboyans V., Desormais I. Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press., 2018, Vol. 27, no. 6, pp. 314-340.; Xu L., Chen G., Liang Y., Zhou C., Zhang F., Fan T., Chen X., Zhou H., Yuan W. T helper 17 cell responses induce cardiac hypertrophy and remodeling in essential hypertension. Pol. Arch. Intern. Med., 2021, Vol. 131, no. 3, pp. 257-265.; Youn J.-C., Yu H.T., Lim B.J., Koh M.J., Lee J., Chang D.-Y., Choi Y.S., Lee S.-H., Kang S.-M., Jang Y., Yoo O.J., Shin E.-C., Park S. Immunosenescent CD8+ T Cells and C-X-C chemokine receptor Type 3 chemokines are increased in human hypertension. Hypertension, 2013, Vol. 62, no. 1, pp. 126-133.; Zhu R., Chen L., Xiong Y., Wang N., Xie X., Hong Y., Meng Z. An upregulation of CD8+CD25+Foxp3+ cells with suppressive function through interleukin 2 pathway in pulmonary arterial hypertension. Exp. Cell Res., 2017, Vol. 358, no. 2, pp. 182-187.; https://www.mimmun.ru/mimmun/article/view/2385

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6