Showing 1 - 1 results of 1 for search '"баттаррея весёлковая"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Contributors: The authors are grateful to Dr. A.B. Ismailov (Mountain Botanical Garden, DFRC RAS, Makhachkala) for help in the organisation of field studies. This research was carried out within the framework of the institutional research project of the Komarov Botanical Institute RAS (project no. 122011900032‐7, “Herbarium funds of the BIN RAS (history, preservation, study and enrichment)”) using the equipment of the Core Facility Centre “Cell and Molecular Technologies in Plant Science” at the Komarov Botanical Institute, RAS (St. Petersburg, Russia)., Авторы благодарят к.б.н. А.Б. Исмаилова (Горный ботанический сад ДФИЦ РАН, Махачкала) за помощь в организации полевых исследований. Работа выполнена в рамках государственного задания БИН РАН по теме №122011900032‐7 «Гербарные фонды БИН РАН (история, сохранение, изучение и пополнение)» с использованием оборудования Центра коллективного пользования научным оборудованием «Клеточные и молекулярные технологии изучения растений и грибов» Ботанического института им. В.Л. Комарова РАН (Санкт‐Петербург).

    Source: South of Russia: ecology, development; Том 18, № 2 (2023); 44‐52 ; Юг России: экология, развитие; Том 18, № 2 (2023); 44‐52 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2023-2

    File Description: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/2825/1343; Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi // FEMS Microbiology Reviews. 2008. V. 32. N 3. P. 501–521. https://doi.org/10.1111/j.1574‐6976.2008.00106.x; Мухин В.А., Воронин П.Ю. Микогенное разложение древесины и эмиссия углерода в лесных экосистемах // Экология. 2007. N 1. С. 24–29.; Казарцев И.А., Рощин В.И., Соловьев В.А. Разложение углеводов древесины Populus tremula и Picea abies под действием лигнинразрушающих грибов // Микология и фитопатология. 2014. Т. 48. N 2. С. 112–117.; Boddy L., Frankland J.C., van West P. Ecology of saprotrophic basidiomycetes. London, Elsevier Academic Press, 2008, 372 p.; Bahram M., Netherway T. Fungi as mediators linking organisms and ecosystems // FEMS Microbiology Reviews. 2022. V. 46. N 2. Article id: fuab058. https://doi.org/10.1093/femsre/fuab058; Geml J., Leal C.M., Nagy R., Sulyok J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types // Frontiers in Microbiology. 2022. V. 13. Art. 1007935. https://doi.org/10.3389/fmicb.2022.1007935; Mueller G.M., Cunha K.M., May T.W., Allen J.L., Westrip J.R.S., Canteiro C., Costa‐Rezende D.H., Drechsler‐Santos E.R., Vasco‐Palacios A.M., Ainsworth A.M., Alves‐Silva G., Bungartz F., Chandler A., Gonçalves S.C., Krisai‐Greilhuber I., Iršėnaitė R., Jordal J.B., Kosmann T., Lendemer J., McMullin R.T., Mešić A., Motato‐Vásquez V., Ohmura Y., Næsborg R.R., Perini C., Saar I., Simijaca D., Yahr R., Dahlberg A. What do the first 597 Global Fungal Red List assessments tell us about the threat status of fungi? // Diversity. 2022. V. 14. N 9. Art. 736. https://doi.org/10.3390/d14090736; Mace G.M., Collar N.J., Gaston K.J., Hilton‐Taylor C., Akçakaya H.R., Leader‐Williams N., Milner‐Gulland E.J., Stuart S.N. Quantification of extinction risk: IUCN’s system for classifying threatened species // Conservation Biology. 2008. V. 22. N 6. P. 1424–1442. https://doi.org/10.1111/j.1523‐1739.2008.01044.x; Dahlberg A., Genney D.R., Heilmann‐Clausen J. Developing a comprehensive strategy for fungal conservation in Europe: current status and future needs // Fungal Ecology. 2010. V. 3. N 2. P. 50–64. https://doi.org/10.1016/j.funeco.2009.10.004; Красная книга Республики Дагестан. Махачкала: Типография ИП Джамалудинов М.А., 2020. 800 с.; Pegler D.N., Læssøe T., Spooner B.M. British puffballs, earthstars and stinkhorns. Kew, 1995, 255 p.; Volobuev S., Shakhova N. Towards the discovery of active lignocellulolytic enzyme producers: a screening study of xylotrophic macrofungi from the Central Russian Upland // Iranian Journal of Science and Technology, Transactions A: Science. 2022. V. 46. N 1. P. 91–100. https://doi.org/10.1007/s40995‐021‐01245‐7; Benson D.A., Cavanaugh M., Clark K., Karsch‐Mizrachi I., Lipman D.J., Ostell J., Eric W. Sayers E.W. GenBank // Nucleic Acids Research. 2013. V. 41. N D1. P. D36–D42. https://doi.org/10.1093/nar/gks1195; Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. V. 30. N 4. P. 772–780. https://doi.org/10.1093/molbev/mst010; Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization // Briefings in Bioinformatics. 2019. V. 20. N 4. P. 1160–1166. https://doi.org/10.1093/bib/bbx108; Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W‐IQ‐TREE: a fast online phylogenetic tool for maximum likelihood analysis // Nucleic Acids Research. 2016. V. 44. N W1. P. W232–W 235. https://doi.org/10.1093/nar/gkw256; Martín M.P., Johannesson H. Battarea phalloides and B. stevenii, insight into a long‐standing taxonomic puzzle // Mycotaxon. 2000. V. 76. P. 67–75.; Martín M.P., Rusevska K., Dueñas M., Karadelev M. Battarrea phalloides in Macedonia: genetic variability, distribution and ecology // Acta Mycologica. 2013. V. 48. N 1. P. 113–122. https://doi.org/10.5586/am.2013.013; Garrido‐Benavent I. The Battarrea phalloides‐stevenii complex: multiple sources of evidence as a strategy to unveil cryptic species within poorly characterized taxa // Butlletí Societat Micològica Valenciana. 2014. V. 19. P. 17–35.; Shepherd L.D., Cooper J.A. First record of the fungus Battarrea phalloides (Agaricaceae) in New Zealand // New Zealand Journal of Botany. 2018. V. 56. N 1. P. 109–114. http://dx.doi.org/10.1080/0028825X.2017.1385491; iNaturalist contributors, iNaturalist (2022). iNaturalist Research‐grade Observations. iNaturalist.org. Occurrence dataset https://doi.org/10.15468/ab3s5x2022‐12‐20. URL: https://www.gbif.org/occurrence/4034748523 (дата обращения: 20.12.2022); Pilát A. (ed.) Gasteromycetes. Flora ČSR. B. 1. Praha, 1958, 836 p.; Ivančević B, Mešić A, Tkalčec Z, Kušan I, Horjan I. Studies on Croatian Basidiomycota 3: the first record of Battarrea phalloides (Agaricales) with a worldwide taxonomic review of Battarrea species // Nova Hedwigia. 2016. V. 102. N 1–2. P. 197–209. https://doi.org/10.1127/nova_hedwigia/2015/0300; Akata İ., Altuntaş D., Sahin E., Alli H., Kabaktepe Ş. A note on Battarrea phalloides in Turkey // Mantar Dergisi. 2021. V. 12. N 1. P. 1–9. https://doi.org/10.30708.mantar.800585; Fraiture A., Otto P. Distribution, ecology and status of 51 macromycetes in Europe. Results of the ECCF Mapping Programme // Scripta Botanica Belgica. 2015. V. 53. P. 1–247.; Battarrea phalloides. URL: https://redlist.info/iucn/species_view/159853/ (дата обращения: 16.12.2022); Красная книга Республики Калмыкия. В 2‐х томах. Том 2. Редкие и находящиеся под угрозой исчезновения растения и грибы. Элиста: ЗАОр «НПП «Джангар», 2014. 199 с.; Gargano M.L., Venturella G., Ferraro V. Is Battarrea phalloides really an endangered species? // Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology. 2021. V. 155. N 4. P. 759–762. https://doi.org/10.1080/11263504.2020.1779847; https://ecodag.elpub.ru/ugro/article/view/2825