-
1Academic Journal
Authors: Кирилл Андреевич Демин, Степан Сергеевич Агнаев, Саян Дмитриевич Дондуков, Андрей Николаевич Хаглеев
Source: Вестник Сибирского государственного индустриального университета, Vol 2 (52), Pp 17-26 (2025)
Subject Terms: плазменная модификация, полимеры, полипропилен, адгезия, плазма, краевой угол смачивания, атомно-силовая микроскопия, Physics, QC1-999, Economics as a science, HB71-74
File Description: electronic resource
-
2Academic Journal
Source: Научно-технический вестник информационных технологий, механики и оптики, Vol 23, Iss 4, Pp 703-710 (2024)
Subject Terms: поле температурного градиента, тонкая газовая зона, соединения iii–v, ga1–xinxas, рамановская спектроскопия, атомно-силовая микроскопия, Information technology, T58.5-58.64
File Description: electronic resource
-
3Academic Journal
Source: Eurasian Journal of Academic Research; Vol. 5 No. 8 (2025): Eurasian Journal of Academic Research; 43-48 ; Евразийский журнал академических исследований; Том 5 № 8 (2025): Евразийский журнал академических исследований; 43-48 ; Yevrosiyo ilmiy tadqiqotlar jurnali; Jild 5 Nomeri 8 (2025): Евразийский журнал академических исследований; 43-48 ; 2181-2020
Subject Terms: Наночастицы оксида цинка (ZnO-NPs), вагинальные суппозитории, атомно-силовая микроскопия, нанотехнологии, локальная терапия, гинекологические инфекции, морфофизические характеристики, структурный анализ, Zinc oxide nanoparticles (ZnO-NPs), vaginal suppositories, atomic force microscopy, nanotechnology, local therapy, gynecological infections, morphophysical characteristics, structural analysis
File Description: application/pdf
Availability: https://in-academy.uz/index.php/ejar/article/view/58902
-
4Academic Journal
Authors: V. A. Lapitskaya, R. E. Trukhan, A. V. Khabarova, T. A. Kuznetsova, S. S. Chizhik, J. A. Solovjov, V. A. Pilipenko, K. S. Liutsko, A. A. Nasevich, Yu Guangbin, В. А. Лапицкая, Р. Э. Трухан, А. В. Хабарова, Т. А. Кузнецова, С. А. Чижик, Я. А. Соловьёв, В. А. Пилипенко, К. С. Люцко, А. А. Насевич, Ю Гуанбин
Contributors: the work was supported by the Belarusian Republican Foundation for Fundamental Research (grants no. Т23ME-010 and no. Т17КIG-009)., работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (гранты № Т23МЭ-010 и № Т17КИГ-009).
Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 69, № 4 (2024); 271-278 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 69, № 4 (2024); 271-278 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2024-69-4
Subject Terms: наноиндентирование, nickel and chrome silicides, silicon substrate, rapid thermal treatment, grain size, mechanical properties, atomic force microscopy, nanoindentation, силициды никеля и хрома, кремниевая подложка, быстрая термическая обработка, размер зерна, механические свойства, атомно-силовая микроскопия
File Description: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/862/679; Shishido T., Okada S., Ishizawa Y., Kudou K., Iizumi K., Sawada Y., Horiuchi H. [et al.]. Molten metal flux growth and properties of CrSi2. Journal of Alloys and Compounds, 2004, vol. 383, iss. 1–2, pp. 319–321. https://doi.org/10.1016/j.jallcom.2004.04.037; Murarka Sh. P. Silicides for VLIC. Moscow, Mir Publ., 1986. 176 p. (in Russian).; Kumar K. S. Intermetallics: Silicides. Encyclopedia of Materials: Science and Technology. 2nd ed. Elsevier, 2001, pp. 4243–4246. https://doi.org/10.1016/B0-08-043152-6/00744-0; Zhu J., Barbier D., Mayet L., Gavand M., Chaussemy G. Interstitial chromium behaviour in silicon during rapid thermal annealing. Applied Surface Science, 1989, vol. 36, iss. 1–4, pp. 413–420. https://doi.org/10.1016/0169-4332(89)90937-9; D’Anna E., Leggieri G., Luches A., Majni G., Ottaviani G. Chromium silicide formation under pulsed heat flow. Thin Solid Films, 1986, vol. 136, iss. 1, pp. 93–104. https://doi.org/10.1016/0040-6090(86)90112-4; Liu C. M., Liu W. L., Hsieh S. H., Tsai T. K., Chen W. J. Interfacial reactions of electroless nickel thin films on silicon. Applied Surface Science, 2005, vol. 243, iss.1–4, pp. 259–264. https://doi.org/10.1016/j.apsusc.2004.09.110; Deneb Menda U., Özdemir O., Tatar B., Ürgen M., Kutlu K. Transport and storage properties of CrSi2/Si junctions made using the CAPVD technique. Materials Science in Semiconductor Processing, 2010, vol. 13, iss. 4, pp. 257–266. https:// doi.org/10.1016/j.mssp.2010.12.002; Zhao F. F., Zheng J. Z., Shen Z. X., Osipowicz T., Gao W. Z., Chan L. H. Thermal stability study of NiSi and NiSi2 thin films. Microelectronic Engineering, 2004, vol. 71, iss. 1, pp. 104–111. https://doi.org/10.1016/j.mee.2003.08.010; Okubo K., Tsuchiya Y., Nakatsuka O., Sakai A., Zaima S., Yasuda Y. Influence of structural variation of Ni silicide thin films on electrical property for contact materials. Japanese Journal of Applied Physics, 2004, vol. 43, pp. 1896. https://doi.org/10.1143/JJAP.43.1896; Waidmann S., Kahlert V., Streck C., Press P., Kammler T., Dittmar K., Rinderknecht J. Tuning nickel silicide properties using a lamp based RTA, a heat conduction based RTA or a furnace anneal. Microelectronic Engineering, 2006, vol. 83, iss. 11–12, pp. 2282–2286. https://doi.org/10.1016/j.mee.2006.10.020; Ren B., Lu D. H., Zhou R., Ji D. P., Hu M. Y., Feng J. First principles study of stability, mechanical, and electronic properties of chromium silicides. Chinese Physics B, 2018, vol. 27, art. ID 107102. http://dx.doi.org/10.1088/1674-1056/27/10/107102; Wang L., Gao Y., Xue Q. A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 2006, vol. 99, iss. 1, pp. 96–103. https://doi.org/10.1016/j.matchemphys.2005.10.014; Laptev A. A., Belomyttsev M. Yu., Laptev A. I. Mechanical properties of nickel-silicon alloys. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2014, vol. 57, no. 5, pp. 47–50 (in Russian) https://doi.org/10.17073/0368-0797-2014-5-47-50; Chu F., Lei M., Maloy S.A., Petrovic J. J., Mitchell T. E. Elastic properties of C40 transition metal disilicides. Acta Materialia, 1996, vol. 44, iss. 8, pp. 3035–3048. https://doi.org/10.1016/1359-6454(95)00442-4; Pan Y. Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations. ACS Sustainable Chemistry & Engineering, 2020, vol. 8, iss. 29, pp. 11024–11030. https://doi.org/10.1021/acssuschemeng.0c04737; Golovin Yu. I. Nanoindentation and Its Capabilities. Moscow, Mashinostroenie Publ., 2009. 312 p. (in Russian).; Kuznetsova T., Lapitskaya V., Solovjov J., Chizhik S., Pilipenko V., Aizikovich S. Properties of CrSi2 Layers Obtained by Rapid Heat Treatment of Cr Film on Silicon. Nanomaterials, 2021, vol. 11, iss. 7, art. ID 1734. https://doi.org/10.3390/nano11071734; Lapitskaya V., Trukhan R., Kuznetsova T., Solovjov J., Chizhik S., Pilipenko V., Liutsko K. [et al.]. Microstructure and Properties of Thin-Film Submicrostructures Obtained by Rapid Thermal Treatment of Nickel Films on Silicon. Surfaces, 2024, vol. 7, iss. 2, pp. 196–207. https://doi.org/10.3390/surfaces7020013; Gül F. Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Physics, 2019, vol. 12, pp. 1091–1096. https://doi.org/10.1016/j.rinp.2018.12.092; Galkin N. G., Astashynski V. M., Chusovitin E. A., Galkin K. N., Dergacheva T. A., Kuzmitski A. M., Kostyukevich E. A. Ultra high vacuum growth of CrSi2 and β-FeSi2 nanoislands and Si top layers on the plasma modified monocrystalline silicon surfaces. Physics Procedia, 2011, vol. 11, pp. 39–42. https://doi.org/10.1016/j.phpro.2011.01.009; Adusumilli P., Seidman D. N., Murray C. E. Silicide-phase evolution and platinum redistribution during silicidation of Ni0.95Pt0.05/Si(100) specimens. Journal of Applied Physics, 2012, vol. 112, iss. 6, p. 11. http://doi.org/10.1063/1.4751023; Peter A. P., Meersschaut J., Richard O., Moussa A., Steenbergen J., Schaekers M., Adelmann C. Phase formation and morphology of nickel silicide thin films synthesized by catalyzed chemical vapor reaction of nickel with silane. Chemistry of Materials, 2015, vol. 27, iss. 1, pp. 245–254. http://doi.org/10.1021/cm503810p; Meyers М. А., Mishra A., Benson D. J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, vol. 51, pp. 427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003; Suzdalev I. P. Nanotechnology. Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials. Moscow, KomKniga Publ., 2006. 592 p. (in Russian).; Pilipenko V. A., Solovjov J. A., Gaiduk P. I. Nickel silicide formation with rapid thermal treatment in the heat balance mode. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 111–118 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-111-118; Solovjov J. A., Pilipenko V. A., Gaiduk P. I. Structure and morphology of CrSi2 layers formed by rapid thermal treatment. Doklady BGUIR, 2020, vol. 18, no. 4, pp. 71–79 (in Russian). https://doi.org/10.35596/1729-7648-2020-18-4-71-79; https://vestift.belnauka.by/jour/article/view/862
-
5Academic Journal
Source: Интегративная физиология, Vol 5, Iss 4 (2024)
-
6Academic Journal
Source: Конденсированные среды и межфазные границы, Vol 26, Iss 3 (2024)
-
7Conference
Subject Terms: ПОЛИ-N-КСИЛИЛЕН, ОПТИЧЕСКИЕ И ИК-СПЕКТРЫ ПОГЛОЩЕНИЯ, АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ, РЕНТГЕНОВСКАЯ ДИФРАКЦИЯ, ПОЛИМЕРНЫЕ НАНОКОМПОЗИТЫ, СУЛЬФИД КАДМИЯ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/135320
-
8Conference
Subject Terms: АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ, ТОНКИЕ НАНОКОМПОЗИЦИОННЫЕ ПЛЕНКИ, ПОЛИМЕРИЗАЦИЯ ИЗ ГАЗОВОЙ ФАЗЫ, ПОЛИ-П-КСИЛИЛЕН, МОРФОЛОГИЯ И СТРУКТУРА
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/135349
-
9Conference
Subject Terms: ТВЕРДОФАЗНЫЙ КРИОХИМИЧЕСКИЙ СИНТЕЗ, ПОЛИ-ПКСИЛИЛЕН, АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ, ТОНКИЕ НАНОКОМПОЗИЦИОННЫЕ ПЛЕНКИ, МОРФОЛОГИЯ И СТРУКТУРА
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/135348
-
10Academic Journal
Source: Интегративная физиология, Vol 5, Iss 1 (2024)
Subject Terms: каналы Piezo1, Physiology, атомно-силовая микроскопия, фибробласты, органотипическая культура ткани, QP1-981, Jedi2
-
11Conference
-
12Conference
Subject Terms: atomic force microscopy, sp3-гибридизация, атомно-силовая микроскопия, functional sublayers, sp2-hybridization, sp3-hybridization, алмазоподобный углерод, diamond-like carbon, функциональные подслои, Raman spectroscopy, Рамановская спектроскопия, spectrophotometry, спектрофотометрия, sp2-гибридизация
-
13Academic Journal
Source: Конденсированные среды и межфазные границы, Vol 26, Iss 2 (2024)
-
14Academic Journal
Subject Terms: микроструктура бумаги, качество печатной продукции, атомно-силовая микроскопия, шероховатость, фрактальная размерность, профилометрия
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/64574
-
15Academic Journal
Source: Труды БГТУ Серия 4. :5-13
Subject Terms: качество цветовоспроизведения, атомно-силовая микроскопия, контрастность, шероховатость, оптическая плотность, мелованная глянцевая бумага, свойства бумаги
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/47348
-
16Academic Journal
Authors: V. A. Lapitskaya, T. A. Kuznetsova, S. A. Chizhik, A. A. Rogachev, В. А. Лапицкая, Т. А. Кузнецова, С. А. Чижик, А. А. Рогачёв
Contributors: the work was supported by the Belarusian Republican Foundation for Fundamental Research (grant no. Т22M-006), работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Т22М-006)
Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 68, № 4 (2023); 271-279 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 4 (2023); 271-279 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-4
Subject Terms: вязкость разрушения, sublayer, atomic force microscopy, nanoindentation, fracture toughness, подслой, атомно-силовая микроскопия, наноиндентирование
File Description: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/816/643; Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 2002, vol. 37, iss. 4–6, pp. 129–281. https://doi.org/10.1016/S0927-796X(02)00005-0; Kumar S., Dwivedi N., Rauthan C. M. S., Panwar O. S. Properties of nitrogen diluted hydrogenated amorphous carbon (n-type a-C:H) films and their realization in n-type a-C:H/p-type crystalline silicon heterojunction diodes. Vacuum, 2010, vol. 84, iss. 7, pp. 882–889. http://doi.org/10.1016/j.vacuum.2009.12.003; Godet C., Kumar S., Chu V. Field-enhanced electrical transport mechanisms in amorphous carbon films. Philosophical Magazine, 2003, vol. 83, no. 29, pp. 3351–3365. https://doi.org/10.1080/14786430310001605010; Zhou Z. B., Cui R. Q., Pang Q. J., Hadi G. M., Ding Z. M., Li W. Y. Schottky solar cells with amorphous carbon nitride thin films prepared by ion beam sputtering technique. Solar Energy Materials and Solar Cells, 2002, vol. 70, iss. 4, pp. 487–493. https://doi.org/10.1016/S0927-0248(01)00086-1; Dwivedi N., Kumar S., Rauthan C. M. S., Panwar O. s., Siwach P. K. Photoluminescence and electrical conductivity of silicon containing multilayer structures of diamond like carbon. Journal of Optoelectronics and Advanced Materials, 2009, vol. 11, pp. 1618–1626.; Weiser P. S., Prawer S., Manory R. R., Hoffman A., Evans P. J., Paterson P. J. K. Chemical vapour deposition of diamond onto steel: the effect of a Ti implant layer. Surface and Coatings Technology, 1995, vol. 71, iss. 2, pp. 167–172. https://doi.org/10.1016/0257-8972(94)01016-C; Chen J. J. Indentation-based methods to assess fracture toughness for thin coatings. Journal of Physics D: Applied Physics, 2012, vol. 45, no. 20, art. ID 203001. https://doi.org/10.1088/0022-3727/45/20/203001; Chen J. J., Bull S. J. Indentation Fracture and Toughness Assessment for Thin Optical Coatings on Glass. Journal of Physics D: Applied Physics, 2007, vol. 40, no. 18, pp. 5401–5417. https://doi.org/10.1088/0022-3727/40/18/S01; Xinjie Chen, Yao Du, Yip-Wah Chung. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films, 2019, vol. 688, art. ID 137265. https://doi.org/10.1016/j.tsf.2019.04.040; Faisal N. H., Ahmed R., Prathuru A. K., Spence S., Hossain M., Steel J. A. An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings. Engineering Fracture Mechanics, 2014, vol. 128, pp. 189–204. https://doi.org/10.1016/j.engfracmech.2014.07.015; Jiefang Wang, Tiantian Shao, Xiaolong Cai, Lisheng Zhong, Nana Zhao, Yunhua Xu. Study on Microstructure and Fracture Toughness of TaC Ceramic Coating on HT300. Advanced Materials Research, 2015, vols. 1120–1121, pp. 740–744. https://doi.org/10.4028/www.scientific.net/AMR.1120-1121.740; Zhaoliang Qu, Kai Wei, Qing He, Rujie He, Yongmao Pei, Shixing Wang, Daining Fanga. High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method. Ceramics International, 2018, vol. 44, iss. 7, pp. 7926–7929. https://doi.org/10.1016/j.ceramint.2018.01.230; Kataria S., Srivastava S. K., Kumar P., Srinivas G., Siju, Khan J., Sridhar Rao D. V., Barshilia H. C. Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surface and Coatings Technology, 2012, vol. 206, iss. 19–20, pp. 4279–4286. https://doi.org/10.1016/j.surfcoat.2012.04.040; Jianning Ding, Yonggang Meng, Shizhu Wen. Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation. Thin Solid Films, 2000, vol. 371, iss. 1–2, pp. 178–182. https://doi.org/10.1016/S00406090(00)01004-X; Malzbender J., With G. Energy dissipation, fracture toughness and the indentation load-displacement curve of coated materials. Surface and Coatings Technology, 2000, vol. 135, iss. 1, pp. 60–68. https://doi.org/10.1016/S02578972(00)00906-3; Schiffmann K. I. Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models. Philosophical Magazine, 2011, vol. 91, iss. 7–9, pp. 1163–1178. https://doi.org/10.1080/14786435.2010.487984; Schwan J., Ulrich S., Batori V., Ehrhardt H., Silva S. R. P. Raman spectroscopy on amorphous carbon films. Journal of Applied Physics, 1996, vol. 80, pp. 440–447. https://doi.org/10.1063/1.362745; Ferrari A. C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, vol. 61, iss. 20, pp. 4095–4107. https://doi.org/10.1103/PhysRevB.61.14095; Cloutier M., Harnagea C., Hale P., Seddiki O., Rosei F., Mantovani D. Long-term stability of hydrogenated DLC coatings: Effects of aging on the structural, chemical and mechanical properties. Diamond and Related Materials, 2014, vol. 48, pp. 65–72. https://doi.org/10.1016/j.diamond.2014.07.002; Robertson J., O’Reilly E. P. Electronic and atomic structure of amorphous carbon. Physical Review B, 1987, vol. 35, iss. 6, pp. 2946–2957. https://doi.org/10.1103/PhysRevB.35.2946; Tuinstra F., Koenig J. L. Raman spectrum of graphite. Journal of Chemical Physics, 1970, vol. 53, iss. 3, pp. 1126–1130. https://doi.org/10.1063/1.1674108; Salvadori M. C., Martins D. R., Cattani M. DLC coating roughness as a function of film thickness. Surface and Coatings Technology, 2006, vol. 200, iss. 16–17, pp. 5119–5122. https://doi.org/10.1016/j.surfcoat.2005.05.030; Meng W. J., Gillispie B. A. Mechanical properties of Ti-containing and W-containing diamondlike carbon coatings. Journal of Applied Physics, 1998, vol. 84, iss. 8, pp. 4314–4321. https://doi.org/10.1063/1.368650; Li X., Bhushan B. Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films, 1999, vol. 355–356, pp. 330–336. http://dx.doi.org/10.1016/S0040-6090(99)00446-0; https://vestift.belnauka.by/jour/article/view/816
-
17Academic Journal
Authors: D. V. Sapsaliou, G. B. Melnikova, A. V. Aksiuchyts, T. N. Tolstaya, D. A. Kotov, S. A. Chizhik, Д. В. Сапсалёв, Г. Б. Мельникова, А. В. Аксючиц, Т. Н. Толстая, Д. А. Котов, С. А. Чижик
Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 1 (2024); 81-88 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 1 (2024); 81-88 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-1
Subject Terms: анализ качества воды, poly(methyl methacrylate), atomic force microscopy, spin coating, water quality analysis, полиметилметакрилат, атомно-силовая микроскопия, спин-коутинг
File Description: application/pdf
Relation: https://vestichem.belnauka.by/jour/article/view/865/733; Ferrari, V. Printed thick-film capacitive sensors / V. Ferrari, M. Prudenziati // Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics. – Woodhead Publishing Limited, 2012. – P. 193–220. https://doi.org/10.1533/9780857096210.2.193; Capacitive sensor system for measurement of temperature and humidity / B. Oertel [et al.] // Fresenius J. Anal. Chem. – 1994. – Vol. 349. – P. 391–393. https://doi.org/10.1007/BF00326605; Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water / S. El-Akaad [et al.] // Sci. Rep. – 2020. – Vol. 10. – P. 14479. https://doi.org/10.1038/s41598-020-71325-y; Paper-based capacitive sensors for identification and quantification of chemicals at the point of care / J. Hu [et al.] // Talanta. – 2017. – Vol. 165. – P. 419–428. https://doi.org/10.1016/j.talanta.2016.12.086; Bindra, P. Capacitive gas and vapor sensors using nanomaterials / P. Bindra, A. Hazra // J. Mater. Sci.: Mater. Electron. – 2018. – Vol. 29. – P. 6129–6148. https://doi.org/10.1007/s10854-018-8606-2; Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review / N. Leibl [et al.] // Chemosensors. – 2021. – Vol. 9, № 6. – P. 123–141. https://doi.org/10.3390/chemosensors9060123; Jin Mei, C. A review on the determination heavy metals ions using calixarene-based electrochemical sensors / C. Jin Mei, S. Ainliah Alang Ahmad // Arab. J. Chem. – 2021. – Vol. 14, iss. 9. – P. 103303. https://doi.org/10.1016/j.arabjc.2021.103303; Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection / I. Bontidean [et al.] // Biosens. and Bioelectron. – 2003. – Vol. 18, N 5-6. – P. 547–553. https://doi.org/10.1016/s0956-5663(03)00026-5; Flexible sensors platform for determination of cadmium concentration in soil samples / M. Radovanović [et al.] // Comput. Electron. Agr. – 2019. – Vol. 166. – P. 105001. https://doi.org/10.1016/j.compag.2019.105001; Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection / H. Yu [et al.] // Sens. Actuators, B. – 2021. – Vol. 346. – P. 130488. https://doi.org/10.1016/j.snb.2021.130488; Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate / K. Hammarling [et al.] // Chemosensors. – 2018. – Vol. 6, № 3. – P. 30. https://doi.org/10.3390/chemosensors6030030; A dielectric coating for improved performance of capacitive sensors in all-polymer microfluidic devices / C. Offenzeller [et al.] // Microelectron. Eng. – 2020. – Vol. 223. – P. 111220. https://doi.org/10.1016/j.mee.2020.111220; Igreja, R. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness / R. Igreja, C. J. Dias // Sens. Actuators, B. – 2006. – Vol. 115, № 1. – P. 69–78. https://doi.org/10.1016/j.snb.2005.08.019; Sensitive detection of heavy metal ions: An electrochemical approach / H. Patil [et al.] // Int. J. Mod. Phys. B. – 2018. – Vol. 32, № 19. – P. 1840042. https://doi.org/10.1142/s0217979218400428; A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions / T. Chabbah [et al.] // Chemosensors. – 2020. – Vol. 8, № 2. – P. 34. https://doi.org/10.3390/chemosensors8020034; Kholimatussadiah, S. A portable and low-cost parallel-plate capacitor sensor for alkali and heavy metal ions detection / S. Kholimatussadiah, T. A. Prijo // J. Adv. Dielectr. – 2018. – Vol. 8, № 4. – Art no. 1850026. https://doi.org/10.1142/s2010135x18500261; Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films / N. K. L. Wiziack [et al.] // Sens. Actuators, B. – 2007. – Vol. 122, iss. 2. – P. 484–492. https://doi.org/10.1016/j.snb.2006.06.016; Тонкие композиционные пленки полиметилметакрилата с наночастицами диоксида кремния / Д. В. Сапсалёв [и др.] // Журн. Белорус. гос. ун-та. Химия. – 2021. – № 2. – С. 36–49. https://doi.org/10.33581/2520-257X-2021-2-36-49; https://vestichem.belnauka.by/jour/article/view/865
-
18Academic Journal
Authors: V. A. Lapitskaya, T. A. Kuznetsova, S. A. Chizhik, В. А. Лапицкая, Т. А. Кузнецова, С. А. Чижик
Contributors: This research was supported by the grant of Belarusian Republican Foundation for Fundamental Research BRFFR No. Т22М-006, as part of the assignment No. 2.3 SPSR “Energy and nuclear processes and technologies”.
Source: Devices and Methods of Measurements; Том 15, № 1 (2024); 60-67 ; Приборы и методы измерений; Том 15, № 1 (2024); 60-67 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2024-15-1
Subject Terms: атомно-силовая микроскопия, slide glass, crack resistance, indentation method, atomic force microscopy, предметное стекло, трещиностойкость, метод индентирования
File Description: application/pdf
Relation: https://pimi.bntu.by/jour/article/view/859/684; Yingtian Yu, Mengyi Wang, N.M. Anoop Krishnan, Morten M. Smedskjaer, K. Deenamma Vargheese, John C. Mauro, Magdalena Balonis, Mathieu Bauchy. Hardness of silicate glasses: Atomic-scale origin of the mixed modifier effect. Journal of Non-Crystalline Solids. 2018;489:16-21. DOI:10.1016/j.jnoncrysol.2018.03.015; Sellappan P, Rouxel T, Celarie F, Becker E, Houizot P, Conradt R. Composition dependence of indentation deformation and indentation cracking in glass. Acta Materialia. 2013;61:5949–5965. DOI:10.1016/j.actamat.2013.06.034; Tanguy Rouxel, Satoshi Yoshida. The fracture toughness of inorganic glasses. Journal of the American Ceramic Society. 2017;100(10):4374-4396. DOI:10.1111/jace.15108; Robert F. Cook, George M. Phar. Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics. Journal of the American Ceramic Society. 1990;73(4):787-817. DOI:10.1111/j.1151-2916.1990.tb05119.x; Ishikawa H, Shink N. Critical Load for Median Crack Initiation in Vickers Indentation of Glasses. Communications of the American Ceramic Society. 1982;65(8):c124-c127. DOI:10.1111/j.1151-2916.1982.tb10496.x; Chuchai Anunmana, Kenneth J. Anusavice, John J. Mecholsky Jr. Residual stress in glass: Indentation crack and fractography approaches. Dental Materials. 2009;25: 1453-1458. DOI:10.1016/j.dental.2009.07.001; Satoshi Yoshida, Mitsuo Kato, Akiko Yokota, Shohei Sasaki, Akihiro Yamada, Jun Matsuoka, Naohiro Soga, Charles R. Kurkjian. Direct observation of indentation deformation and cracking of silicate glasses. Journal of Materials Research. 2015;30(15):2291-2299. DOI:10.1557/jmr.2015.214; Jingjing Chen, Jun Xu, Bohan Liu, Xuefeng Yao, Yibing Li. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology, PLoS ONE. 2014;9(7):e98196 р. DOI:10.1371/journal.pone.0098196; Hagan JT. Cone cracks around Vickers indentations in fused silica glass. Journal of Materials Science. 1979;14:462-466. DOI:10.1007/BF00589840; Tanguy Rouxel. Fracture surface energy and toughness of inorganic glasses. Scripta Materialia. 2017;137:109-113. DOI:10.1016/j.scriptamat.2017.05.005; Lapitskaya VA, Kuznetsova TA, Chizhik SA, Warcholinski B. Methods for Accuracy Increasing of Solid Brittle Materials Fracture Toughness Determining. Devices and Methods of Measurements. 2022;13(1):4049. DOI:10.21122/2220-9506-2022-13-1-40-49; Lapitskaya VA, Kuznetsova TA, Khudoley AL, Khabarava AV, Chizhik SA, Aizikovich SM, Sadyrin EV. Influence of polishing technique on crack resistance of quartz plates. International Journal of Fracture. 2021;231(1):61–77. DOI:10.1007/s10704-021-00564-5; Lapitskaya VA, Kuznetsova TA, Khabarava AV, Chizhik SA, Aizikovich SM, Sadyrin EV, Mitrin BI, Weifu Sun. The use of AFM in assessing the crack resistance of silicon wafers of various orientations. Engineering Fracture Mechanics. 2022;259:107926. DOI:10.1016/j.engfracmech.2021.107926; Lapitskaya VA, Kuznetsova TA, Chizhik SA. Influence of Temperature from 20 to 100 °C on Specific Surface Energy and Fracture Toughness of Silicon Wafers. Devices and Methods of Measurements. 2023;14(4):161172. DOI:10.21122/2220-9506-2023-14-4-161-172; Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004;19(1):3-20.; Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method: ISO 14577-1:2015. – Introduct. 29.07.2015. Dublin: The National Standards Authority of Ireland, 2015. – 54 p.; Golovin YuI. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review. Physics of the Solid State, 2008;50(12):2205-2236.; Niihara K, Morena R, Hasselman DPH. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters. 1982;1:13-16.; Niihara K. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters. 1983;2:221-223.; Keryvin V, Hoang VH, Shen J. Hardness, toughness, brittleness and cracking systems in an ironbased bulk metallic glass by indentation. Intermetallics. 2009;17:211-217. DOI:10.1016/j.intermet.2008.08.017 211–217; Yoshinari Kato, Hiroki Yamazaki, Satoshi Yoshida, Jun Matsuoka. Effect of densification on crack initiation under Vickers indentation test. Journal of NonCrystalline Solids. 2010;356:1768-1773. DOI:10.1016/j.jnoncrysol.2010.07.015; Akio Koike, Shusaku Akiba, Takahiro Sakagami, Kazutaka Hayashi, Setsuro Ito. Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses. Journal of Non-Crystalline Solids. 2012; 358:3438-3444. DOI:10.1016/j.jnoncrysol.2012.02.020; Yoshinari Kato, Hiroki Yamazaki, Satoru Itakura, Satoshi Yoshida, Jun Matsuoka. Load dependence of densification in glass during Vickers indentation test. Journal of the Ceramic Society of Japan. 2011;119(2):110115. DOI:10.2109/jcersj2.119.110; https://pimi.bntu.by/jour/article/view/859
-
19Academic Journal
Authors: M. S. Afanasyev, E. I. Goldman, A. I. Stogniy, G. V. Chucheva, М. С. Афанасьев, Е. И. Гольдман, А. И. Стогний, Г. В. Чучева
Contributors: The study was carried out at the expense of the grant of the Russian Science Foundation, No. 22-19-00493, https://rscf.ru/project/22-19-00493/, Исследование выполнено за счет гранта Российского научного фонда № 22-19-00493, https://rscf.ru/project/22-19-00493/
Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024); 96-102 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024); 96-102 ; 2413-6387 ; 1609-3577
Subject Terms: энергодисперсионная спектроскопия, membranes, ferromagnetic films, ion-beam deposition, high-frequency sputtering, atomic force microscopy, energy-dispersive spectroscopy, мембраны, ферромагнитные пленки, ионно-лучевое осаждение, ВЧ-распыление, атомно-силовая микроскопия
File Description: application/pdf
Relation: https://met.misis.ru/jour/article/view/561/464; Стогний А.И., Серов А.А., Корякин С.В., Паньков В.В. Газоразрядный источник ионов низкого давления с полым катодом и диаметром выходной апертуры 420 мм. Приборы и техника эксперимента. 2008; 2: 162—165.; Ponds J.M., Kirchoefer S.W., Chang W., Horwitz J.S., Chrisey D.B. Microwave properties of ferroelectric thin films. Integrated Ferroelectrics. 1998; 22: 317—323. https://doi.org/10.1080/10584589808208052; Baniecki J.D., Laibowitz R.B., Shaw T.W., Duncombe P.R., Neumayer D.A., Kotecki D.E., Shen H., Ma Q.Y. Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1mHz to 20 GHz. Applied Physics Letters. 1998; 72: 498—500. https://doi.org/10.1063/1.120796; Kozyrev A.B., Ivanov A.V., Samoilova T.B., Soldatenkov O.I., Sengupta L.C., Rivkin T.V. Microwave properties of ferroelectric (Ba,Sr)TiO3 varactors at high microwave power Integrated Ferroelectrics. 1999; 24: 297—307. https://doi.org/10.1080/10584589908215599; Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006; 442: 759—765. https://doi.org/10.1038/nature05023; Ma J., Hu J., Li Z., Nan C.W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Advanced Materials. 2011; 23: 1062—1087. https://doi.org/10.1002/adma.201190024; Özgür Ü., Alivov Y., Morkoç H. Microwave ferrites. Part 1: Fundamental properties. Journal of Materials Science: Materials in Electronics. 2009; 20: 789—834. https://doi.org/10.1007/s10854-009-9923-2; Johnson K.M. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. Journal of Applied Physics. 1962; 33: 2826—2831. https://doi.org/10.1063/1.1702558; Kuylenstierna D., Vorobiev A., Linner P., Gevorgian S. Ultrawide-band tunable true-time delay lines using ferroelectric varactors. IEEE Transactions on Microwave Theory and Techniques. 2005; 53(6): 2164—2170. https://doi.org/10.1109/TMTT.2005.848805; Suherman P.M., Jackson T.J., Tse Y.Y., Jones I.P., Chakalova R.I., Lancaster M.J., Porch A. Microwave properties of Ba0.5Sr0.5TiO3 thin film coplanar phase shifters Journal of Applied Physics. 2006; 99(10): 104101. https://doi.org/10.1063/1.2198933; Balinskiy M., Ojha Sh., Chiang H., Ranjbar M., Ross C.A., Khitun A. Spin wave excitation in sub-micrometer thick Y3Fe5O12 films fabricated by pulsed laser deposition on garnet and silicon substrates: A comparative study. Journal of Applied Physics. 2017; 122(12): 123904. https://doi.org/10.1063/1.4990565; Sokolov, N.S. Fedorov V.V., Korovin A.M., Suturin S.M., Baranov D.A., Gastev S.V., Krichevtsov B.B., Maksimova K.Yu., Grunin A.I., Bursian V.E., Lutsev L.V., Tabuchi M. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties. Journal of Applied Physics. 2016; 119(2): 023903. https://doi.org/10.1063/1.4939678; Serga A.A., Chumak A.V., Hillebrands B. YIG magnonics. Journal of Physics D: Applied Physics. 2010; 43(26): 264002. https://doi.org/10.1088/0022-3727/43/26/264002; Pirro P., Bracher T., Chumak A.V., Lagel B., Dubs C., Surzhenko O., Gornert P., Leven B., Hillebrands B. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers. Applied Physics Letters. 2014; 104(1): 012402. https://doi.org/10.1063/1.4861343; Das J., Song Y.-Y., Mo N., Krivosik P., Patton C.E. Electric-field-tunable low loss multiferroic ferromagnetic-ferroelectric heterostructures. Advanced Materials. 2009; 21(20): 2045—2049. https://doi.org/10.1002/adma.200803376; Özgür Ü., Alivov Y., Morkoç H. Microwave ferrites. Part 2: Passive components and electrical tuning. Journal of Materials Science: Materials in Electronics. 2009; 20: 911—952. https://doi.org/10.1007/s10854-009-9924-1; Yang L., Ponchel F., Wang G., Rémiens D., Légier J.-F., Chateigner D., Dong X. Microwave properties of epitaxial (111)-oriented Ba0.6Sr0.4TiO3 thin films on Al2O3(0001) up to 40 GHz. Applied Physics Letters. 2010; 97(16): 162909. https://doi.org/10.1063/1.3478015; Ponchel F., Lei X., Rémiens D., Wang G. Dong X. Microwave evaluation of Pb0.4Sr0.6TiO3 thin films prepared by magnetron sputtering on silicon: Performance comparison with Ba0.3Sr0.7TiO3 thin films. Applied Physics Letters. 2011; 99(17): 172905. https://doi.org/10.1063/1.3656065; Guo X., Chen Yi., Wang G., Rémiens D., Ponchel Fr., Zhang W., Lian J., Dong X. Investigation of novel ferroelectric/gyromagnetic ferrite (Pb,Sr)TiO3/Y3Fe5O12 layered thin films with potential applications in magnetically and electrically tuning devices. Materials Letters. 2017; 195: 182—185. https://doi.org/10.1016/j.matlet.2017.02.126; https://met.misis.ru/jour/article/view/561
-
20Academic Journal
Authors: D. V. Sapsaliou, G. B. Melnikova, A. V. Aksiuchyts, T. N. Tolstaya, D. A. Kotov, S. A. Chizhik, Д. В. Сапсалёв, Г. Б. Мельникова, А. В. Аксючиц, Т. Н. Толстая, Д. А. Котов, С. А. Чижик
Contributors: The investigation was performed within the state program of scientific research for 2021–2025 «Energy and nuclear processes and technologies», subprogram «Energy processes and technologies» (assignment 2.25)., Работа выполнена в рамках государственной программы научных исследований на 2021– 2025 гг. «Энергетические и ядерные процессы и технологии», подпрограммы «Энергетические процессы и технологии» (задание 2.25).
Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 247-254 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 247-254 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3
Subject Terms: спин-коатинг, poly(methyl methacrylate), nanocomposites, atomic force microscopy, spin coating, полиметилметакрилат, нанокомпозиты, атомно-силовая микроскопия
File Description: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1197/1198; Recent advances in portable heavy metal electrochemical sensing platforms / A. Garcia-Miranda Ferrari [et al.] // Environmental Science: Water Research & Technology. – 2020. – Vol. 6, N 10. – P. 2676–2690. https://doi.org/10.1039/d0ew00407c; A review on detection of heavy metals from aqueous media using nanomaterial-based sensors / J. A. Buledi [et al.] // Environmental Science and Pollution Research. – 2021. – Vol. 28. – Р. 58994–59002. https://doi.org/10.1007/s11356-020-07865-7; Detection of heavy metals using fully printed three electrode electrochemical sensor / S. G. R. Avuthu [et al.] // IEEE SENSORS 2014 Proceedings. – Valencia, Spain, 2014. – P. 669–672. https://doi.org/10.1109/icsens.2014.6985087; Nanostructured Sensors for Detection of Heavy Metals: A Review / Li Ming [et al.] // ACS Sustainable Chemistry & Engineering. – 2013. – Vol. 1, N 7. – P. 713–723. https://doi.org/10.1021/sc400019a; A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring / O. Kanoun [et al.] // Sensors. – 2021. – Vol. 21, N 12. – Art. 4131. https://doi.org/10.3390/s21124131; Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices / A. Shakeel [et al.] // Chemosphere. – 2022. – Vol. 303, part 1. – Art. 134923. https://doi.org/10.1016/j.chemosphere.2022.134923; A Portable Sensor System with Ultramicro Electrode Chip for the Detection of Heavy-Metal Ions in Water / Y. Wang [et al.] // Micromachines. – 2021. – Vol. 12, N 12. – Art. 1468. https://doi.org/10.3390/mi12121468; Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water / P. Pathak [et al.] // Sensors and Actuators B: Chemical. – 2021. – Vol. 344. – Art. 130263. https://doi.org/10.1016/j.snb.2021.130263; Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films / N. K. L. Wiziack [et al.] // Sensors and Actuators B: Chemical. – 2007. – Vol. 122, N 2. – P. 484–492. https://doi.org/10.1016/j.snb.2006.06.016; Heavy metal ion detection using a capacitive micromechanical biosensor array for environmental monitoring / G. Tsekenis [et al.] // Sensors and Actuators B: Chemical. – 2015. – Vol. 208. – P. 628–635. https://doi.org/10.1016/j.snb.2014.10.093; Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and amino-functionalized graphene quantum dots / B. Tian [et al.] // Microchimica Acta. – 2020. – Vol. 187. – Art. 210. https://doi.org/10.1007/s00604-020-4191-1; Selective Hg2+ sensor performance based various carbon‐nanofillers into CuO‐PMMA nanocomposites / D. F. Katowah [et al.] // Polymers for Advanced Technologies. – 2020. – Vol. 31, N 9. – P. 1946–1962. https://doi.org/10.1002/pat.4919; Eltayeb, N. E. Preparation and properties of newly synthesized Polyaniline@Graphene oxide/Ag nanocomposite for highly selective sensor application / N. E. Eltayeb, A. Khan // Journal of Materials Research and Technology. – 2020. – Vol. 9, N 5. – P. 10459–10467. https://doi.org/10.1016/j.jmrt.2020.07.031; Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water / M. Echabaane [et al.] // Journal of Solid State Electrochemistry. – 2021. – Vol. 25. – P. 1797–1806. https://doi.org/10.1007/s10008-021-04949-3; Сенсорные слои полиметилметакрилата для емкостных датчиков анализа содержания катионов тяжелых металлов в воде / Д. В. Сапсалёв [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2024. – Т. 60, № 1. – С. 81–88. https://doi.org/10.29235/1561-8331-2024-60-1-81-88; https://doklady.belnauka.by/jour/article/view/1197