Εμφανίζονται 1 - 20 Αποτελέσματα από 304 για την αναζήτηση '"антикоагулянтная терапия"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Вестник интенсивной терапии, Iss 2 (2025)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/993f5a2405db4d049c534d5b65030ae6

  2. 2
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 5 (2025); 118-123 ; Российский вестник перинатологии и педиатрии; Том 70, № 5 (2025); 118-123 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2277/1647; Lemierre A. «On certain septicemias due to anaerobic organisms». Lancet. 1 1936; 5874: 701–703. DOI:10.1016/S0140-6736(00)57035-4; Elzubeir A., Elzubeir S., Szuszman A., Petkova D., Fletcher T. Lemierre’s Syndrome: The Forgotten Disease? Clin Microbiol 2015; 4: 180. DOI:10.4172/2327-5073.1000180; Farhan A., Shah Y.A., Ali B.T., Mumtaz U., Farooq U. The forgotten disease — Lemierres syndrome. J Pak Med Assoc. 2016; 66(12): 1652–1655; Ramirez S., Hild T.G., Rudolph C.N., Sty J.R., Kehl S.C., Havens P., et al. Increased diagnosis of Lemierre syndrome and other Fusobacterium necrophorum infections at a Children’s Hospital. Pediatrics 2003; 112(5):e380. DOI:10.1542/peds.112.5.e380; Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev 2007; 20(4): 622–659. DOI:10.1128/CMR.00011-07; Yamamoto S., Okamoto K., Okugawa S., Moriya K. Fusobacterium necrophorum septic pelvic thrombophlebitis after intrauterine device insertion. Int J Gynaecol Obstet. 2019; 145(1): 122–123. DOI:10.1002/ijgo.12760.; Kherabi Y., Chevrel G., Roux D., Federici L. Syndrome de Lemierre inversé: à propos d’un cas et revue de la littérature [Gynecological Lemierre’s syndrome: A case report and literature review]. Rev Med Interne. 2020; 41(7): 493–495. French. DOI:10.1016/j.revmed.2020.02.012; Mohammadian M., Rath P., Dikhtyar A., Jesani S., Alyacoub R. Portal Vein Thrombosis Associated With Fusobacterium nucleatum Bacteremia: A Rare Abdominal Variant of Lemierre’s Syndrome. Cureus. 2022; 14(8):e27918. DOI:10.7759/cureus.27918.; Sukkul P., Kasemsap N. Lemierre’s syndrome with cavernous sinus thrombosis caused by dental infection. BMJ Case Rep. 2021; 14(3):e238521. DOI:10.1136/bcr-2020-238521; Dasari S.P., Gill H., Bodette H., Brandes E., Jha P. A Challenging Case of Lemierre’s Syndrome With Central Nervous System Involvement and a Comprehensive Review. Cureus. 2020; 12(8):e10131. DOI:10.7759/cureus.10131.; Habert P., Tazi-Mezalek R., Guinde J., Martinez S., Laroumagne S., Astoul P., Dutau H. Pleuro-pneumopathie révélant une thrombophlébite septique de la veine jugulaire: pensez au syndrome de Lemierre [Pleuro-pneumonia revealing septic thrombophlebitis of the jugular vein: Think about the Lemierre’s syndrome]. Rev Mal Respir. 2016; 33(1): 72–77. French. DOI:10.1016/j.rmr.2015.05.006.; Olivier J.B., Al-Hourani K., Bolland B. Lemierre’s syndrome; a rare cause of septic arthritis. BMJ Case Rep. 2017; 2017:bcr2017220110. DOI:10.1136/bcr-2017-220110; Held M.R., Kotler H., Sneller H., Sullivan C.B. Lemierre’s Syndrome Presenting as Multifocal Pyomyositis in a Young Child. Pediatr Infect Dis J. 2018; 37(5):e142-e144. DOI:10.1097/INF.0000000000001776.; Апостилиди К.Г., Савчук О.В., Епифанов С.А., Исаева М.Л. «Забытый» синдром Лемьера. Вестник Национального медико-хирургического центра им. Н.И. Пирогова 2019; 14(1): 153–157. DOI:10.25881/BPNMSC.2019.96.35.029; Хаертынов Х.С., Анохин В.А., Николаева И.В., Хамидуллина З.Л., Идрисова И.Р. Редкий клинический случай синдрома Лемьера. Казанский медицинский журнал. 2022; 103(3): 504–508. DOI:10.17816/KMJ2022-504; Чипигина Н.С., Карпова Н.Ю., Винокуров А.С., Котова Д.П., Гаспарян А.А., Кашковская П.А. и др. Синдром Лемьера как редкая причина септической эмбологенной пневмонии (клинический случай). Клиницист, 2024; 18(1): 59–69 DOI: org/10.17650/1818-8338-2024-18-1-K708; Михайлов Ю.Х., Михайлова И.В. Синдром Лемьера. Российская оториноларингология. 2015; 6 (79):103–105 DOI:10.18692/1810-4800-2015-6-103-105; Lee M.H., Perl D.P., Steiner J., Pasternack N., Li W., Maric D. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022; 145(7): 2555–2568. DOI:10.1093/brain/awac151; COVID-19, тромбовоспаление и тромбозы: руководство для врачей. Под общ. ред. акад. РАН Макацария А.Д. Москва: ГЭОТАР-Медиа, 2023; 184. (Серия «COVID-19: от диагноза до реабилитации. Опыт профессионалов»). DOI:10.33029/9704-8160-8-COV-2023-1-184; Turbin R.E., Wawrzusin P.J., Sakla N.M., Traba C.M., Wong K.G., Mirani N. et al. Orbital cellulitis, sinusitis and intracranial abnormalities in two adolescents with COVID-19. Orbit. 2020; 39(4): 305–310. DOI:10.1080/01676830.2020.1768560

  3. 3
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 476-487 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 476-487 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2548/1378; Xu W., Tan X., Li M.L. et al. Von Willebrand factor and hematogenous cancer metastasis under flow. Front Cell Dev Biol. 2024;12:1435718. https://doi.org/10.3389/fcell.2024.1435718.; Rayner S.G., Scholl Z., Mandrycky C.J. et al. Endothelial-derived von Willebrand factor accelerates fibrin clotting within engineered microvessels. J Thromb Haemost. 2022;20(7):1627–37. https://doi.org/10.1111/jth.15714.; Dong J.F., Moake J.L., Nolasco L. et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 20021;100(12):4033–9. https://doi.org/10.1182/blood-2002-05-1401.; Muia J., Zhu J., Gupta G. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A. 2014;111(52):18584–9. https://doi.org/10.1073/pnas.1413282112.; Obermeier H.L., Riedl J., Ay C. et al. The role of ADAMTS-13 and von Willebrand factor in cancer patients: Results from the Vienna Cancer and Thrombosis Study. Res Pract Thromb Haemost. 2019;3(3):503–14. https://doi.org/10.1002/rth2.12197.; Colonne C.K., Favaloro E.J., Pasalic L. The intriguing connections between von Willebrand factor, ADAMTS13 and cancer. Healthcare (Basel). 2022;10(3):557. https://doi.org/10.3390/healthcare10030557.; Ayan D., Bozkurt Polat Ş.B., Bayram E. et al. A comparative analysis of the roles of von Willebrand factor and ADAMTS13 in hepatocellular carcinoma: a bioinformatics and microarray-based study. Curr Issues Mol Biol. 202547(4):270. https://doi.org/10.3390/cimb47040270.; Guo R., Yang J., Liu X. et al. Increased von Willebrand factor over decreased ADAMTS-13 activity is associated with poor prognosis in patients with advanced non-small-cell lung cancer. J Clin Lab Anal. 2018;32(1):e22219. https://doi.org/10.1002/jcla.22219.; Turner N.A., Nolasco L., Ruggeri Z.M., Moake J.L. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood. 2009;114(24):5102–11. https://doi.org/10.1182/blood-2009-07-231597.; Setiawan B., Permatadewi C.O., de Samakto B. et al. Von Willebrand factor:antigen and ADAMTS-13 level, but not soluble P-selectin, are risk factors for the first asymptomatic deep vein thrombosis in cancer patients undergoing chemotherapy. Thromb J. 2020;18(1):33. https://doi.org/10.1186/s12959-020-00247-6.; Pépin M., Kleinjan A., Hajage D. et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost. 2016;14(2):306–15. https://doi.org/10.1111/jth.13205.; Feng Y., Li X., Xiao J. et al. ADAMTS13: more than a regulator of thrombosis. Int J Hematol. 2016;104(5):534–9. https://doi.org/10.1007/s12185-016-2091-2.; Comerford C., Glavey S., Quinn J., O'Sullivan J.M. The role of VWF/FVIII in thrombosis and cancer progression in multiple myeloma and other hematological malignancies. J Thromb Haemost. 2022;20(8):1766–77. https://doi.org/10.1111/jth.15773.; Shahidi M. Thrombosis and von Willebrand Factor. Adv Exp Med Biol. 2017;906:285–306. https://doi.org/10.1007/5584_2016_122.; Sasano T., Gonzalez-Delgado R., Muñoz N.M. et al. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J Thromb Haemost. 2022;20(1):104–14. https://doi.org/10.1111/jth.15544.; Vorobev A., Bitsadze V., Yagubova F. et al. The phenomenon of thrombotic microangiopathy in cancer patients. Int J Mol Sci. 2024;25(16):9055. https://doi.org/10.3390/ijms25169055.; Karampinis I., Nowak K., Koett J. et al. Von Willebrand factor in the plasma and in the tumor tissue predicts cancer-associated thrombosis and mortality. Haematologica. 2023;108(1):261–6. https://doi.org/10.3324/haematol.2022.281315.; Mulder F.I., Candeloro M., Kamphuisen P.W. et al.; CAT-prediction collaborators. The Khorana score for prediction of venous thromboembolism in cancer patients: a systematic review and meta-analysis. Haematologica. 2019;104(6):1277–87. https://doi.org/10.3324/haematol.2018.209114.; Muñoz Martín A.J., Ortega I., Font C. et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056–61. https://doi.org/10.1038/s41416-018-0027-8.; van Es N., Di Nisio M., Cesarman G. et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica. 2017;102(9):1494–501. https://doi.org/10.3324/haematol.2017.169060.; Dickson K., Koom-Dadzie K., Brito-Dellan N., Escalante C. Risks, diagnosis, and management of recurrent cancer-associated thrombosis (CAT): a narrative review. Support Care Cancer. 2022;30(10):8539–45. https://doi.org/10.1007/s00520-022-07160-w.; https://www.gynecology.su/jour/article/view/2548

  4. 4
    Academic Journal

    Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 322-326 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 322-326 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2491/1341; Соловьевская Н.Л., Пряничников С.В. Особенности течения беременности у женщин различных возрастных групп в условиях Кольского Севера. Акушерство, Гинекология и Репродукция. 2025;19(3):327–340. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.576.; Мэлэк М.И., Игнатко И.В., Тимохина Е.В., Кузьмина Т.Е., Федюнина И.А., Самойлова Ю.А., Алиева Ф.Н., Григорьян И.С., Подсекаева С.А. Использование доплерографии глазных артерий в прогнозировании и ранней диагностике преэклампсии. Акушерство, Гинекология и Репродукция. 2025;19(3):341–350. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.609.; Воробьев А.В., Бицадзе В.О., Хизроева Д.Х., Солопова А.Г., Мамчич Д.М., Мун Э.Д., Блинов Д.В., Гри Ж.-К., Элалами И., Геротзиафас Г., Ван Дреден П., Макацария А.Д. Система гемостаза и метастазирование: терапевтический потенциал антикоагулянтов при раке яичников. Акушерство, Гинекология и Репродукция. 2025;19(3):351–359. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.644.; Тормозова А.В., Эракаева А.А., Ибадуллаева Г.А., Галата А.С., Асиновская А.С., Кузюра Д.Э., Ефремова К.Н., Чос В.М., Сварник У.В., Дьяченко А.А., Мавлютова А.Н., Мукосий Л.А., Карпусь Ю.С., Пирожкова Е.Д., Альбекова Ф.А., Сорокина Л.Е. Таксономическое разнообразие микробиомного кишечного ландшафта и его клиническое значение при привычном невынашивании беременности. Акушерство, Гинекология и Репродукция. 2025;19(3):360–368. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.620.; Сьяриф Ш.Д.Р., Ритонга М.А., Анвар Р. Взаимосвязь между индексом массы тела при подростковой беременности и преэклампсией в больнице Хасана Садыкина в 2019–2023 гг. Акушерство, Гинекология и Репродукция. 2025;19(3):369–376. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.603.; Бицадзе В.О., Хизроева Д.Х., Грандоне Э., Габидуллина Р.И., Третьякова М.В., Макацария Н.А., Гашимова Н.Р., Григорьева К.Н., Воробьев А.В., Лазарчук А.В., Муравьёва М.М., Кренделева А.Г., Полякова Т.Е., Зайнулина М.С., Капанадзе Д.Л., Ягубова Ф.Э., Гри Ж.-К., Элалами И., Геротзиафас Г., Ван Дреден П., Макацария А.Д. Венозные и артериальные тромбозы в программах ВРТ: эпидемиология и превентивные стратегии. Акушерство, Гинекология и Репродукция. 2025;19(3):377–388. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.656.; Загидуллина А.А., Джамбулатова Л.А., Шатуева М.А., Донгак Т.Б., Лаубах Я.С., Шакирова Д.С., Голанцев А.С., Пайзулаева Х.Р., Ястребова Д.П., Аксенов А.М., Гончарова Е.С., Ожерельева М.А., Саргсян Д.Г. Методы сохранения фертильности в контексте лечения рака молочной железы: реальность и перспективы. Акушерство, Гинекология и Репродукция. 2025;19(3):389–407. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.607.; Дикке Г.Б., Макацария А.Д., Зиганшин А.М., Шайхиева Э.А., Бицадзе В.О. Анатомия и функция мышечного комплекса, замыкающего влагалище, в норме и при пролапсе тазовых органов. Акушерство, Гинекология и Репродукция. 2025;19(3):408–422. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.615.; Лебина В.А., Шихалахова О.Х., Кохан А.А., Рашидов И.Ю., Тажев К.А., Филиппова А.В., Мышинская Е.П., Сымолкина Ю.В., Ибуев Ю.И., Матаева А.А., Сиротенко А.Н., Габараева Т.Т., Аскерова А.И. Возможности и ограничения внедрения технологий искусственного интеллекта репродуктивную медицину. Акушерство, Гинекология и Репродукция. 2025;19(3):423–442. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.591.; Антонова А.С., Хизроева Д.Х., Калашникова И.С., Третьякова М.В., Попёнова Ю.А., Кунешко Н.Ф., Фаткуллина Л.С. Система комплемента у беременных с тяжелой преэклампсией. Акушерство, Гинекология и Репродукция. 2025;19(3):443–452. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.626.; Гасанов М.Г., Тугушева Р.А., Карапетян М.У., Воробьев А.В. Патрик Кристофер Стептоу: хирург, без которого не было бы ЭКО. Акушерство, Гинекология и Репродукция. 2025;19(3):453–457. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.636.; https://www.gynecology.su/jour/article/view/2491

  5. 5
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 2 (2025); 168-179 ; Акушерство, Гинекология и Репродукция; Vol 19, No 2 (2025); 168-179 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2426/1318; Becattini C., Di Nisio M., Franco L. et al. Treatment of venous thromboembolism in cancer patients: the dark side of the moon. Cancer Treat Rev. 2021;96:102190. https://doi.org/10.1016/j.ctrv.2021.102190.; Cohen A., Lim C.S., Davies A.H. Venous thromboembolism in gynecological malignancy. Int J Gynecol Cancer. 2017;27(9):1970–8. https://doi.org/10.1097/IGC.0000000000001111.; Salinaro J.R., McQuillen K., Stemple M. et al. Incidence of venous thromboembolism among patients receiving neoadjuvant chemotherapy for advanced epithelial ovarian cancer. Int J Gynecol Cancer. 2020;30(4):491–7. https://doi.org/10.1136/ijgc-2019-000980.; Moufarrij S., Sassine D., Basaran D., Jewell E.L. Assessing the need for venous thromboembolism prophylaxis at the time of neoadjuvant chemotherapy for ovarian cancer: a literature review. Gynecol Oncol. 2023;170:167–71. https://doi.org/10.1016/j.ygyno.2023.01.012.; Marques I.S., Tavares V., Savva-Bordalo J. et al. Long non-coding RNAs: bridging cancer-associated thrombosis and clinical outcome of ovarian cancer patients. Int J Mol Sci. 2023;25(1):140. https://doi.org/10.3390/ijms25010140.; Дерябина В.А., Матухин В.И., Рухляда Н.Н. и др. Риски тромботических осложнений у пациентов с раком яичников и некоторые аспекты безопасности применения антифибринолитических гемостатических средств. Акушерство и гинекология. 2023;(10):60–9. https://doi.org/10.18565/aig.2023.107.; Han L., Chen Y., Zheng A., Chen H. Incidence and risk factors for venous thromboembolism in patients with ovarian cancer during neoadjuvant chemotherapy: a meta-analysis. Am J Cancer Res. 2023;13(5):2126–34.; Григорьева К.Н., Гашимова Н.Р., Цибизова В.И. Коррекция гемостаза в лечении и реабилитации пациентов с COVID-19. Реабилитология. 2023;1(1):49–59. https://doi.org/10.17749/2949-5873/rehabil.2023.3.; Levi M. Disseminated intravascular coagulation in cancer: an update. Semin Thromb Hemost. 2019;45(4):342–7. https://doi.org/10.1055/s-0039-1687890.; Khorana A.A., Kuderer N.M., Culakova E. et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902–7. https://doi.org/10.1182/blood-2007-10-116327.; Khorana A.A., Mackman N., Falanga A. et al. Cancer-associated venous thromboembolism. Nat Rev Dis Primers. 2022;8(1):11. https://doi.org/10.1038/s41572-022-00336-y.; Ay C., Dunkler D., Marosi C. et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24): 377–82. https://doi.org/10.1182/blood-2010-02-270116.; Martin A.J.M., Ortega I., Font C. et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056–61. https://doi.org/10.1038/s41416-018-0027-8.; Шульман C., Макацария А.Д., Воробьев А.В. и др. Злокачественные новообразования и тромбозы. Акушерство и гинекология. 2019;(7):14–23. https://doi.org/10.18565/aig.2019.7.14-23.; Петриков А.С., Вавилова Т.В., Варданян А.В. и др. Первичная профилактика венозных тромбоэмболических осложнений низкомолекулярными гепаринами у хирургических пациентов – 2024: резолюция Совета экспертов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024;17(2):251–78. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.250.; Fujisaki T., Sueta D., Yamamoto E. et al. Comparing anticoagulation strategies for venous thromboembolism associated with active cancer: a systematic review and meta-analysis. JACC CardioOncol. 2024;6(1):99–113. https://doi.org/10.1016/j.jaccao.2023.10.009.; Talmor-Barkan Y., Yacovzada N.-S., Rossman H. et al. Head-to-head efficacy and safety of rivaroxaban, apixaban, and dabigatran in an observational nationwide targeted trial. Eur Heart J Cardiovasc Pharmacother. 2022;9(1):26–37. https://doi.org/10.1093/ehjcvp/pvac063.; Cohen A.T., Hamilton M., Mitchell S.A. et al. Comparison of the novel oral anticoagulants apixaban, dabigatran, edoxaban, and rivaroxaban in the initial and long-term treatment and prevention of venous thromboembolism: systematic review and network meta-analysis. PLoS One. 2015;10(12):e0144856. https://doi.org/10.1371/journal.pone.0144856.; Farge D., Frere C., Connors J.M. et al.; International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23(7):e334–e347. https://doi.org/10.1016/S1470-2045(22)00160-7.; Key N.S., Khorana A.A., Kuderer N.M. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Guideline update. J Clin Oncol. 2023;41(16):3063–71. https://doi.org/10.1200/JCO.23.00294.; Barca-Hernando M., Lopez-Ruz S., Marin-Romero S. et al. Comparison of long-term complications in cancer patients with incidental and acute symptomatic venous thromboembolism. Front Cardiovasc Med. 2023;10:1118385. https://doi.org/10.3389/fcvm.2023.1118385.; Lanting V.R., Takada T., Bosch F.T.M. et al. Risk of recurrent venous thromboembolism in patients with cancer: an individual patient data meta-analysis and development of a prediction model. Thromb Haemost. 2024 Oct 16. https://doi.org/10.1055/a-2418-3960.; Khorana A.A., McCrae K.R., Milentijevic D. et al. Duration of anticoagulant therapy and VTE recurrence in patients with cancer. Support Care Cancer. 2019;27(10):3833–40. https://doi.org/10.1007/s00520-019-4661-3.; Dave H.M., Khorana A.A. Management of venous thromboembolism in patients with active cancer. Cleve Clin J Med. 2024;91(2):109–17. https://doi.org/10.3949/ccjm.91a.23017.; Moik F., Colling M., Mah? I. et al. Extended anticoagulation treatment for cancer-associated thrombosis-Rates of recurrence and bleeding beyond 6 months: a systematic review. J Thromb Haemost. 2022;20(3):619–34. https://doi.org/10.1111/jth.15599.; Хизроева Д.Х., Асланова З.Д., Солопова А.Г. и др. Роль внеклеточных ловушек нейтрофилов в прогрессии рака и развитии тромбозов. Акушерство, Гинекология и Репродукция. 2024;18(1):55–67. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.475.; Воробьев А.В., Эйнуллаева С.Э., Бородулин А.С. и др. Влияние COVID-19 на тромботические осложнения у онкологических больных. Акушерство, Гинекология и Репродукция. 2024;18(3):286–99. Https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.519.; Воробьев А.В., Солопова А.Г., Бицадзе В.О. и др. Сравнение эффективности шкал Khorana, Vienna CATS, TiC-Onco и соотношения vWF/ADAMTS13 в выявлении высокого риска тромботических осложнений у больных злокачественными новообразованиями. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2025;18(1): 71–9. https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.308.; Bertoletti L., Girard P., Elias A. et al., INNOVTE CAT Working Group. Recurrent venous thromboembolism in anticoagulated cancer patients: diagnosis and treatment. Arch Cardiovasc Dis. 2024;117(1):84–93. https://doi.org/10.1016/j.acvd.2023.11.006.; Федоткина Ю.А., Панченко Е.П. Современные подходы к профилактике венозных тромбоэмболических осложнений у пациентов с активным раком. Атеротромбоз. 2022;12(2):44–62. https://doi.org/10.21518/2307-1109-2022-12-2-44-62.; Patell R., Hsu C., Shi M. et al. Impact of mild thrombocytopenia on bleeding and recurrent thrombosis in cancer. Haematologica. 2024;109(6):1849–56. https://doi.org/10.3324/haematol.2023.284192.; https://www.gynecology.su/jour/article/view/2426

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Tuberculosis and Lung Diseases; Том 102, № 1 (2024); 66-71 ; Туберкулез и болезни легких; Том 102, № 1 (2024); 66-71 ; 2542-1506 ; 2075-1230

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.tibl-journal.com/jour/article/view/1796/1805; Aghayev A., Furlan A., Patil A., Gumus S., Jeon K.N., Park B., Bae K.T. The rate of resolution of clot burden measured by pulmonary CT angiography in patients with acute pulmonary embolism // AJR Am J Roentgenol. – 2013. – Vol. 200. – № 4. – Р. 791–797. https://doi.org/10.2214/AJR.12.8624; Bompard F., Monnier H., Saab I., Tordjman M., Abdoul H., Fournier L., Sanchez O., Lorut Ch., Chassagnon G., Revel M. P. Pulmonary embolism in patients with COVID-19 pneumonia // European Respiratory Journal. – 2020. – Vol. 56. – № 1. – Р. 2001365. https://doi.org/10.1183/13993003.01365-202; Cao Y., Geng C., Li Y., Zhang Y. In situ pulmonary artery thrombosis: a previously overlooked disease// Frontiers in Pharmacology. – 2021. – Vol. 12. – Р. 1762. https://doi.org/10.3389/fphar.2021.671589; Cavagna E., Muratore F., Ferrari F. Pulmonary thromboembolism in COVID-19: venous thromboembolism or arterial thrombosis? // Radiology: Cardiothoracic Imaging. – 2020. – Vol. 2, № 4. – Р. e200289. https://doi.org/10.1148/ryct.2020200289; Choi K. J., Cha S. I., Shin K. M., Lim J. K., Yoo S. S., Lee, J., Shin-Yup, Chang-Ho K., Jae-Yong P., Lee, W. K. Factors determining clot resolution in patients with acute pulmonary embolism // Blood Coagulation & Fibrinolysis. – 2016. – Vol. 27, № 3. – P. 294-300. https://doi.org/110.1097/MBC.0000000000000425; den Exter P.L, van Es J., Kroft L.J., Erkens P.M., Douma R.A., Mos I.C., Jonkers G., Hovens M.M., Durian M.F., ten Cate H., Beenen L.F., Kamphuisen P.W., Huisman M.V.; Prometheus Follow-Up Investigators. Thromboembolic resolution assessed by CT pulmonary angiography after treatment for acute pulmonary embolism // Thromb Haemost. – 2015. – Vol.114, № 1. – P. 26–34. https://doi.org/10.1160/TH14-10-0842; Gong X., Yuan B., Yuan Y. Incidence and prognostic value of pulmonary embolism in COVID-19: A systematic review and meta-analysis // PLoS One. – 2022. – Vol.17, No. 3 – Р. e0263580. https://doi.org/10.1371/journal.pone.0263580; Graziani A., Domenicali M., Zanframundo G., Palmese F., Caroli B., Graziani, L. Pulmonary artery thrombosis in COVID-19 patients // Pulmonology. – 2021. – Vol. 27, № 3. – P. 261-263. https://doi.org/10.1016/j.pulmoe.2020.07.013; Kho J., Ioannou A., Van den Abbeele K., Mandal A.K.J., Missouris C.G. Pulmonary embolism in COVID-19: Clinical characteristics and cardiac implications. // Am J Emerg Med. – 2020. – Vol. 38, № 10. – P. 2142-2146. https://doi.org/10.1016/j.ajem.2020.07.054; Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 // Thromb Res. – 2020. – Vol. 191. – P. 145-147. https://doi.org/10.1016/j.thromres.2020.04.013; Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T., Kucher N., Studt J.D., Sacco C., Bertuzzi A., Sandri M.T., Barco S; Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy // Thromb Res. – 2020. – Vol. 191. – P. 9-14. https://doi.org/10.1016/j.thromres.2020.04.024; Miró Ò., Jiménez S., Mebazaa A., Freund, Y., Burillo-Putze, G., Martín, A., Martín-Sánchez F.J., García-Lamberechts E.J., Alquézar-Arbé A., Jacob J., Llorens P., Piñera P., Gil V., Guardiola J., Cardozo C., Mòdol Deltell J.M., Tost J., Aguirre Tejedo A., Palau-Vendrell A., LLauger García L., Adroher Muñoz M., Del Arco Galán C., Agudo Villa T., López-Laguna N., López Díez M.P., Beddar Chaib F., Quero Motto E., González Tejera M., Ponce M.C., González Del Castillo J; Spanish Investigators on Emergency Situations TeAm (SIESTA) network. Pulmonary embolism in patients with COVID-19: incidence, risk factors, clinical characteristics, and outcome // Eur Heart J. – 2021. – Vol. 24, № 33. – P. 3127-3142. https://doi.org/10.1093/eurheartj/ehab314; Mueller-Peltzer K., Krauss T., Benndorf M., Lang C.N., Bamberg F., Bode C., Duerschmied D., Staudacher D.L., Zotzmann V. Pulmonary artery thrombi are co-located with opacifications in SARS-CoV2 induced ARDS // Respir Med. – 2020. – Vol. 172. – Р.106135. https://doi.org/10.1016/j.rmed.2020.106135; Nichols L. Pulmonary arterial thrombosis in COVID-19 with fatal outcome // Annals of internal medicine. – 2021. – Vol. 174, № 1. – Р.139. https://doi.org/10.7326/L20-1275; Remy-Jardin M., Duthoit L., Perez T., Felloni P., Faivre J.B., Fry S., Bautin N., Chenivesse C., Remy J., Duhamel A. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: Dual-energy CT (DECT) angiographic study in 55 patients // EClinicalMedicine. – 2021. – Vol. 34. – Р.100778. https://doi.org/110.1016/j.eclinm.2021.100778; Roncon L., Zuin M., Barco S., Valerio L., Zuliani G., Zonzin P., Konstantinides S.V. Incidence of acute pulmonary embolism in COVID-19 patients: Systematic review and meta-analysis // Eur J Intern Med. – 2020. – Vol. 82. – P. 29-37. https://doi.org/10.1016/j.ejim.2020.09.006; Sakr Y., Giovini M., Leone M., Pizzilli G., Kortgen A., Bauer M., Tonetti T., Duclos G., Zieleskiewicz L., Buschbeck S., Ranieri V.M., Antonucci E. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review // Annals of intensive care. – 2020. – Vol.10. – Р. 124. https://doi.org/10.1186/s13613-020-00741-0.; Suh Y.J., Hong H., Ohana M., Bompard F., Revel M.P., Valle C., Gervaise A., Poissy J., Susen S., Hékimian G., Artifoni M., Periard D., Contou D., Delaloye J., Sanchez B., Fang C., Garzillo G., Robbie H., Yoon S.H. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis// Radiology. – 2021. – Vol. 298, № 2. – Р. E70-E80. https://doi.org/10.1148/radiol.2020203557; van Dam L.F., Kroft L.J.M., van der Wal L.I., Cannegieter S.C., Eikenboom J., de Jonge E., Huisman M.V., Klok F.A. Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? // Thromb Res. – 2020. – Vol. 193. – P. 86-89. https://doi.org/10.1016/j.thromres.2020.06.010; Zanframundo G., Graziani A., Barbara C., Francesco P., Teresa M.M., Cristian C., Pierluigi G., Ludovico D. Resolution of pulmonary artery thrombosis in patients with moderate COVID-19 disease // J Community Hosp Intern Med Perspect. – 2021. – Vol. 11, № 4 – P. 470-472. https://doi.org/110.1080/20009666.2021.1921908

  12. 12
    Academic Journal

    Συνεισφορές: Not specified., Отсутствует.

    Πηγή: Pediatric pharmacology; Том 21, № 2 (2024); 142-146 ; Педиатрическая фармакология; Том 21, № 2 (2024); 142-146 ; 2500-3089 ; 1727-5776

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2440/1584; Leong R, Patel J, Samji N, et al. Use of thrombolytic ag ents to treat neonatal thrombosis in clinical practice. Blood Coagul Fibrinolysis. 2022;33(4):193–200. doi: https://doi.org/10.1097/MBC.0000000000001134; Makatsariya A, Bitsadze V, Khizroeva J, et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2022;35(6):1169–1177. doi: https://doi.org/10.1080/14767058.2020.1743668; Robinson V, Achey MA, Nag UP, et al. Thrombosis in infants in the neonatal intensive care unit: analysis of a large national database. J Thromb Haemost. 2021;19(2):400–407. doi: https://doi.org/10.1111/jth.15144; Bacciedoni V, Attie M, Donato H. Thrombosis in newborn infants. Arch Argent Pediatr. 2016;114(2):159–166. doi: https://doi.org/10.5546/aap.2016.eng.159; Guenthard J, Wyler F, Nars PW. Neonatal aortic thrombosis mimicking coarctation of the aorta. Eur J Pediatr. 1995;154(2):163– 164. doi: https://doi.org/10.1007/bf01991925; Nagel K, Tuckuviene R, Paes B, Chan AK. Neonatal aortic thrombosis: a comprehensive review. Klin Padiatr. 2010;222(3):134– 139. doi: https://doi.org/10.1055/s-0030-1249662; Zenz W, Arlt F, Sodia S, et al. Intracerebral hemorrhage during fibrinolytic therapy in children: a review of the literature of the last thirty years. Sem Thromb Hemost. 1997;23(3):321–332. doi: https://doi.org/10.1055/s-2007-996104; https://www.pedpharma.ru/jour/article/view/2440

  13. 13
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 771–772 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 771–772 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

  14. 14
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 382-400 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 382-400 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2104/1225; Haley K.M. Neonatal venous thromboembolism. Front Pediatr. 2017;5:136. https://doi.org/10.3389/fped.2017.00136.; Bhat R., Kumar R., Kwon S. et al. Risk factors for neonatal venous and arterial thromboembolism in the neonatal intensive care unit – a case control study. J Pediatr. 2018;195:28–32. https://doi.org/10.1016/j.jpeds.2017.12.015.; van Ommen C.H., Heijboer H., Büller H.R. et al. Venous thromboembolism in childhood: a prospective two-year registry in the Netherlands. J Pediatr. 2001;139(5):676–81. https://doi.org/10.1067/mpd.2001.118192.; Chalmers E.A. Neonatal thrombosis. J Clin Pathol. 2000;53(6):419–23. https://doi.org/10.1136/jcp.53.6.419.; Robinson V., Achey M.A., Nag U.P. et al. Thrombosis in infants in the neonatal intensive care unit: analysis of a large national database. J Thromb Haemost. 2021;19(2):400–7. https://doi.org/10.1111/jth.15144.; Saracco P., Bagna R., Gentilomo C. et al.; Neonatal Working Group of Registro Italiano Trombosi Infantili (RITI). Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60–66.e1. https://doi.org/10.1016/j.jpeds.2015.12.035.; Levy-Mendelovich S., Cohen O., Klang E., Kenet G. 50 years of pediatric hemostasis: knowledge, diagnosis, and treatment. Semin Thromb Hemost. 2023;49(3):217–24. https://doi.org/10.1055/s-0042-1756704.; Makatsariya A., Bitsadze V., Khizroeva J. et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2022;35(6):1169–77. https://doi.org/10.1080/14767058.2020.1743668.; Song S., Li Z., Zhao G. et al. Epidemiology and risk factors for thrombosis in children and newborns: systematic evaluation and meta-analysis. BMC Pediatr. 2023;23(1):292. https://doi.org/10.1186/s12887-023-04122-x.; Andrew M., David M., Adams M. et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83:1251–7.; Schmidt B., Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics. 1995;96(5 Pt 1):939–43.; Nowak-Göttl U., von Kries R., Göbel U. Neonatal symptomatic thromboembolism in Germany: two-year survey. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F163–7. https://doi.org/10.1136/fn.76.3.f163.; Tuckuviene R., Christensen A.L., Helgestad J. et al. Pediatric venous and arterial noncerebral thromboembolism in Denmark: a nationwide population-based study. J Pediatr. 2011;159(4):663–9. https://doi.org/10.1016/j.jpeds.2011.03.052.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.; Achey M.A., Nag U.P., Robinson V.L. et al. The developing balance of thrombosis and hemorrhage in pediatric surgery: clinical implications of age-related changes in hemostasis. Clin Appl Thromb Hemost. 2020;26;1076029620929092. https://doi.org/10.1177/1076029620929092.; Del Vecchio A., Latini G., Henry E., Christensen R.D. Template bleeding times of 240 neonates born at 24 to 41 weeks gestation. J Perinatol. 2008;28(6):427–31. https://doi.org/10.1038/jp.2008.10.; Andrew M., Paes B., Bowker J., Vegh P. Evaluation of an automated bleeding time device in the newborn. Am J Hematol. 1990;35(4):275–7. https://doi.org/10.1002/ajh.2830350411.; Boudewijns M., Raes M., Peeters V. et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr. 2003;162(3):212–3. https://doi.org/10.1007/s00431-002-1093-7.; Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.; Cvirn G., Gallistl S., Leschnik B., Muntean W. Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb Haemost. 2003;1(2):263–8. https://doi.org/10.1046/j.1538-7836.2003.00081.x.; Cvirn G., Gallistl S., Rehak T. et al. Elevated thrombin-forming capacity of tissue factor-activated cord compared with adult plasma. J Thromb Haemost. 2003;1(8):1785–90. https://doi.org/10.1046/j.1538-7836.2003.00320.x.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651–7.; Neary E., McCallion N., Kevane B. et al. Coagulation indices in very preterm infants from cord blood and postnatal samples. J Thromb Haemost. 2015;13(11):2021–30. https://doi.org/10.1111/jth.13130.; Nako Y., Ohki Y., Harigaya A. et al. Plasma thrombomodulin level in very low birthweight infants at birth. Acta Paediatr. 1997;86(10):1105–9. https://doi.org/10.1111/j.1651-2227.1997.tb14817.x.; Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130–6. https://doi.org/10.1038/jp.2008.141.; Sillers L., Van Slambrouck C., Lapping-Carr G. Neonatal thrombocytopenia: etiology and diagnosis. Pediatr Ann. 2015;44(7):e175– 80. https://doi.org/10.3928/00904481-20150710-11.; Bednarek F.J., Bean S., Barnard M.R. et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res. 2009;124(1):42–5. https://doi.org/10.1016/j.thromres.2008.10.004.; Waller A.K., Lantos L., Sammut A. et al. Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res. 2019;85():874–84. https://doi.org/10.1038/s41390-019-0316-9.; Sitaru A.G., Holzhauer S., Speer C.P. et al. Neonatal platelets from cord blood and peripheral blood. Platelets. 2005;16(3–4):203–10. https://doi.org/10.1080/09537100400016862.; Andres O., Schulze H., Speer C.P. Platelets in neonates: Central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost. 2015;113(1):3–12. https://doi.org/10.1160/TH14-05-0476.; Davenport P., Sola-Visner M. Platelets in the neonate: not just a small adult. Res Pract Thromb Haemost. 2022;6(3):e12719. https://doi.org/10.1002/rth2.12719.; Israels S.J., Cheang T., Roberston C. et al. Impaired signal transduction in neonatal platelets. Pediatr Res. 1999;45(5 Pt 1):687–91. https://doi.org/10.1203/00006450-199905010-00014.; Hardy A.T., Palma-Barqueros V., Watson S.K. et al. Significant hyporesponsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost. 2018;118(6):1009–20. https://doi.org/10.1055/s-0038-1646924.; Schlagenhauf A., Schweintzger S., Birner-Grünberger R. et al. Comparative evaluation of PAR1, GPIb-IX-V, and integrin αIIbβ3 levels in cord and adult platelets. Hamostaseologie. 2010;30 Suppl 1:S164–7.; Palma-Barqueros V., Torregrosa J.M., Caparrós-Pérez E. et al. Developmental differences in platelet inhibition response to prostaglandin E1. Neonatology. 2020;117(1):15–23. https://doi.org/10.1159/000504173.; Pelizza M.F., Martinato M., Rosati A. et al. The new Italian registry of infantile thrombosis (RITI): a reflection on its journey, challenges and pitfalls. Front Pediatr. 2023;11:1094246. https://doi.org/10.3389/fped.2023.1094246.; Martinez-Biarge M., Ferriero D.M., Cowan F.M. Perinatal arterial ischemic stroke. Handb Clin Neurol. 2019;162:239–66. https://doi.org/10.1016/B978-0-444-64029-1.00011-4.; Lynch J.K., Hirtz D.G., DeVeber G., Nelson K.B. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics. 2002;109(1):116–23. https://doi.org/10.1542/peds.109.1.116.; Hunt R.W., Inder T.E. Perinatal and neonatal ischaemic stroke: a review. Thromb Res. 2006;118(1):39–48. https://doi.org/10.1016/j.thromres.2004.12.021.; Gacio S., Muñoz Giacomelli F., Klein F. Presumed perinatal ischemic stroke: a review. Arch Argent Pediatr. 2015;113(5):449–55. (English, Spanish). https://doi.org/10.5546/aap.2015.eng.449.; Elbers J., Viero S., MacGregor D. et al. Placental pathology in neonatal stroke. Pediatrics. 2011;127(3):e722–9. https://doi.org/10.1542/peds.2010-1490.; Günther G., Junker R., Sträter R. et al.; Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke. 2000;31(10):2437–41. https://doi.org/10.1161/01.str.31.10.2437.; Dlamini N., Billinghurst L., Kirkham F.J. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21(3):511–27. https://doi.org/10.1016/j.nec.2010.03.006.; deVeber G., Andrew M., Adams C. et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345():417–23. https://doi.org/10.1056/NEJM200108093450604.; Wasay M., Dai A.I., Ansari M. et al. Cerebral venous sinus thrombosis in children: A multicenter cohort from the United States. J Child Neurol. 2008;23(1):26–31. https://doi.org/10.1177/0883073807307976.; Manco-Johnson M.J. How I treat venous thrombosis in children. Blood. 2006;107(1):21–9. https://doi.org/10.1182/blood-2004-11-4211.; Moharir M.D., Shroff M., Pontigon A.M. et al. A prospective outcome study of neonatal cerebral sinovenous thrombosis. J Child Neurol. 2011;26(9):1137–44. https://doi.org/10.1177/0883073811408094.; Zhu W., Zhang H., Xing Y. Clinical characteristics of venous thrombosis associated with peripherally inserted central venous catheter in premature infants. Children (Basel). 2022;9(8):1126. https://doi.org/10.3390/children9081126.; Ulloa-Ricardez A., Romero-Espinoza L., Estrada-Loza Mde J. et al. Risk factors for intracardiac thrombosis in the right atrium and superior vena cava in critically ill neonates who required the installation of a central venous catheter. Pediatr Neonatol. 2016;57(4):288–94. https://doi.org/10.1016/j.pedneo.2015.10.001.; Cholette J.M., Rubenstein J.S., Alfieris G.M. et al. Elevated risk of thrombosis in neonates undergoing initial palliative cardiac surgery. Ann Thorac Surg. 2007;84(4):1320–5. https://doi.org/10.1016/j.athoracsur.2007.05.026.; Fenton K.N., Siewers R.D., Rebovich B., Pigula F.A. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg. 2003;76(1):152–6. https://doi.org/10.1016/s0003-4975(03)00168-1.; Messinger Y., Sheaffer J.W., Mrozek J. et al. Renal outcome of neonatal renal venous thrombosis: review of 28 patients and effectiveness of fibrinolytics and heparin in 10 patients. Pediatrics. 2006;118(5):e1478–84. https://doi.org/10.1542/peds.2005-1461.; Moon C.J., Kwon T.H., Lee H.S. Portal vein thrombosis and food proteininduced allergic proctocolitis in a premature newborn with hypereosinophilia: a case report. BMC Pediatr. 2021;21(1):49. https://doi.org/10.1186/s12887-021-02510-9.; Tsonis O., Gouvias T., Gkrozou F. et al. Neonatal femoral artery thrombosis at the time of birth: a case report. J Pediatr Neonatal Individ Med. 2020;9(2):e090214. https://doi.org/10.7363/090214.; Mahasandana C., Suvatte V., Marlar R.A. et al. Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet. 1990;335(8680):61–2. https://doi.org/10.1016/0140-6736(90)90201-f.; Hattenbach L.O., Beeg T., Kreuz W., Zubcov A. Ophthalmic manifestation of congenital protein C deficiency. J AAPOS. 1999;3(3):188–90. https://doi.org/10.1016/s1091-8531(99)70066-2.; Chalmers E., Cooper P., Forman K. et al. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96(11):1066–71. https://doi.org/10.1136/adc.2010.199919.; Marlar R.A., Montgomery R.R., Broekmans A.W. Diagnosis and treatment of homozygous protein C deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. J Pediatr. 1989;114(4 Pt 1):528–34. https://doi.org/10.1016/s0022-3476(89)80688-2.; van Ommen C.H., Sol J.J. Developmental hemostasis and management of central venous catheter thrombosis in neonates. Semin Thromb Hemost. 2016;42(7):752–9. https://doi.org/10.1055/s-0036-1592299.; Thornburg C.D., Smith P.B., Smithwick M.L. et al. Association between thrombosis and bloodstream infection in neonates with peripherally inserted catheters. Thromb Res. 2008;122(6):782–5. https://doi.org/10.1016/j.thromres.2007.10.001.; Bhatt M.D., Chan A.K. Venous thrombosis in neonates. Fac Rev. 2021;10;20. https://doi.org/10.12703/r/10-20.; Dubbink-Verheij G.H., Pelsma I.C.M., van Ommen C.H. et al. Femoral vein catheter is an important risk factor for catheter-related thrombosis in (near-)term neonates. J Pediatr Hematol Oncol. 2018;40(2):e64–e68. https://doi.org/10.1097/MPH.0000000000000978.; Amankwah E.K., Atchison C.M., Arlikar S. et al. Risk factors for hospitalassociated venous thromboembolism in the neonatal intensive care unit. Thromb Res. 2014;134(2):305–9. https://doi.org/10.1016/j.thromres.2014.05.036.; Tuckuviene R., Christensen A.L., Helgested J. et al. Infant, obstetrical and maternal characteristics associated with thromboembolism in infancy: a nationwide population-based case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F417–22. https://doi.org/10.1136/archdischild-2011-300665.; Bhat R., Kwon S., Zaniletti I. et al. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: a multicentre casecontrol study. Lancet Haematol. 2022;9(3):e200–e207. https://doi.org/10.1016/S2352-3026(21)00399-9.; Vorobev A.V., Bitsadze V.O., Khizroeva J.Kh. et al. Neonatal thrombosis: risk factors and principles of prophylaxis. Obstetrics, Gynecology and Reproduction. 2021;15(4):390–403. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.233.; Walker S.C., Creech C.B., Domenico H.J. et al. A real-time risk-prediction model for pediatric venous thromboembolic events. Pediatrics. 2021;147(6):e2020042325. https://doi.org/10.1542/peds.2020-04232.; Ovesen P.G., Jensen D.M., Damm P. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nationwide study. J Matern Fetal Neonatal Med. 2015;28(14):1720–4. https://doi.org/10.3109/14767058.2014.966677.; Simchen M.J., Goldstein G., Lubetsky A. et al. Factor v Leiden and antiphospholipid antibodies in either mothers or infants increase the risk for perinatal arterial ischemic stroke. Stroke. 2009;40(1):65–70. https://doi.org/10.1161/STROKEAHA.108.527283.; Kenet G., Lütkhoff L.K., Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121(16):1838–47. https://doi.org/10.1161/CIRCULATIONAHA.109.913673.; Campos L.M., Kiss M.H., D'Amico E.A., Silva C.A. Antiphospholipid antibodies and antiphospholipid syndrome in 57 children and adolescents with systemic lupus erythematosus. Lupus. 2003;12(11):820–6. https://doi.org/10.1191/0961203303lu471oa.; Kenet G., Aronis S., Berkun Y. et al. Impact of persistent antiphospholipid antibodies on risk of incident symptomatic thromboembolism in children: a systematic review and meta-analysis. Semin Thromb Hemost. 2011;37(7):802–9. https://doi.org/10.1055/s-0031-1297171.; Avcin T., Cimaz R., Meroni P.L. Recent advances in antiphospholipid antibodies and antiphospholipid syndromes in pediatric populations. Lupus. 2002;11(1):4–10. https://doi.org/10.1191/0961203302lu146rr.; Berkun Y., Padeh S., Barash J. et al. Antiphospholipid syndrome and recurrent thrombosis in children. Arthritis Rheum. 2006;55(6):850–5. https://doi.org/10.1002/art.22360.; Berkun Y., Simchen M.J., Strauss T. et al. Antiphospholipid antibodies in neonates with stroke--a unique entity or variant of antiphospholipid syndrome? Lupus. 2014;23(10):986–93. https://doi.org/10.1177/0961203314531842.; Boffa M.C., Lachassinne E. Infant perinatal thrombosis and antiphospholipid antibodies: a review. Lupus. 2007;16(8):634–41. https://doi.org/10.1177/0961203307079039.; Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295– 306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.; Young G., Albisetti M., Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and metaanalysis of observational studies. Circulation. 2008;118(13):1373–82. https://doi.org/10.1161/CIRCULATIONAHA.108.789008.; Nowak-Göttl U., Junker R., Kreuz W. et al.; Childhood Thrombophilia Study Group. Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. Blood. 2001;97(4):858–62. https://doi.org/10.1182/blood.v97.4.858.; Limperger V., Kenet G., Goldenberg N.A. et al. Impact of high-risk thrombophilia status on recurrence among children with a first non-centralvenous-catheter-associated VTE: an observational multicentre cohort study. Br J Haematol. 2016;175(1):133–40. https://doi.org/10.1111/bjh.14192.; Fletcher-Sandersjöö A., Bellander B.M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36–41. https://doi.org/; Gashimova N.R., Pankratyeva L.L., Bitsadze V.O. et al. Intrauterine activation of the fetal immune system in response to maternal COVID-19. Obstetrics, Gynecology and Reproduction. 2023;17(2):188–201. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.404.; Bitsadze V.O., Grigoreva K.N., Khizroeva J.K. et al. Novel coronavirus infection and Kawasaki disease. J Matern Fetal Neonatal Med. 2022;35(16):3044–8. https://doi.org/10.1080/14767058.2020.1800633.; Barrero-Castillero A., Beam K.S., Bernardini L.B. et al.; Harvard NeonatalPerinatal Fellowship COVID-19 Working Group. COVID-19: neonatalperinatal perspectives. J Perinatol. 2021;41(5):940–51. https://doi.org/10.1038/s41372-020-00874-x.; Leeman R., Shoag J., Borchetta M. et al. Clinical implications of hematologic and hemostatic abnormalities in children with COVID-19. J Pediatr Hematol Oncol. 2022;44(1):e282–e286. https://doi.org/10.1097/MPH.0000000000002176.; Helms J., Tacquard C., Severac F. et al.; CRICS TRIGGERSEP Group (Clinical research in intensive care and sepsis trial group for global evaluation and research in sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46():1089–98. https://doi.org/10.1007/s00134-020-06062-x.; Campi F., Longo D., Bersani I. et al. Neonatal cerebral venous thrombosis following maternal SARS-CoV-2 infection in pregnancy. Neonatology. 2022;119(2):268–72. https://doi.org/10.1159/00052053.; Baergen R.N., Heller D.S. Placental pathology in COVID-19 positive mothers: preliminary findings. Pediatr Dev Pathol. 2020;23():177–80. https://doi.org/10.1177/1093526620925569.; Dashraath P., Wong J.L.J., Lim M.X.K. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521–31. https://doi.org/10.1016/j.ajog.2020.03.021.; Stephens A.J., Barton J.R., Bentum N.A. et al. General guidelines in the management of an obstetrical patient on the labor and delivery unit during the COVID-19 pandemic. Am J Perinatol. 2020;37(8):829–36. https://doi.org/10.1055/s-0040-1710308.; Monagle P., Chan A.K.C., Goldenberg N.A. et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians EvidenceBased Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S– e801S. https://doi.org/10.1378/chest.11-2308.; Ting J., Yeung K., Paes B. et al.; Thrombosis and Hemostasis in Newborns (THiN) Group. How to use low-molecular-weight heparin to treat neonatal thrombosis in clinical practice. Blood Coagul Fibrinolysis. 2021;32(8):531–8. https://doi.org/10.1097/MBC.0000000000001052.; Kenet G., Cohen O., Bajorat T., Nowak-Göttl U. Insights into neonatal thrombosis. Thromb Res. 2019;181 Suppl 1:S33–S36. https://doi.org/10.1016/S0049-3848(19)30364-0.; Monagle P., Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematol Am Soc Hematol Educ Program. 2018;2018(1):399–404. https://doi.org/10.1182/asheducation-2018.1.399.; Male C., Thom K., O’Brien S.H. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85. https://doi.org/10.1016/j.thromres.2018.06.021.; Pagowska-Klimek I. Perioperative thromboembolism prophylaxis in children – is it necessary? Anaesthesiol Intensive Ther. 2020;52(4):316– 22. https://doi.org/10.5114/ait.2020.97599.; https://www.gynecology.su/jour/article/view/2104

  15. 15
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 46-54 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 46-54 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2051/891; Elliott A.D., Middeldorp M.E., Van Gelder I.C., Albert C.M., Sanders P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023;20(6):404–417. DOI:10.1038/s41569-022-00820-8.; Escudero-Martínez I., Morales-Caba L., Segura T. Atrial fibrillation and stroke: A review and new insights. Trends Cardiovasc. Med. 2023;33(1):23–29. DOI:10.1016/j.tcm.2021.12.001.; Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021;42(5):373-498. DOI:10.1093/eurheartj/ehaa612.; Saw J., Holmes D.R., Cavalcante J.L., Freeman J.V., Goldsweig A.M., Kavinsky C.J. et al. SCAI/HRS expert consensus statement on transcatheter left atrial appendage closure. Heart Rhythm. 2023;20(5):e1– e16. DOI:10.1016/j.hrthm.2023.01.007.; Glikson M., Wolff R., Hindricks G., Mandrola J., Camm A.J., Lip G.Y.H. et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion an update. Europace. 2020;22(2):184. DOI:10.1093/europace/euz258.; January C.T., Wann L.S., Calkins H., Chen L.Y., Cigarroa J.E., Cleveland J.C.Jr. et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ ACC/HRS Guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–e151. DOI:10.1161/CIR.0000000000000665.; Whitlock R.P., Belley-Cote E.P., Paparella D., Healey J.S., Brady K., Sharma M. et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N. Engl. J. Med. 2021;384(22):2081–2091. DOI:10.1056/NEJMoa2101897.; Reddy V.Y., Sievert H., Halperin J., Doshi S.K., Buchbinder M., Neuzil P. et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA. 2014;312(19):1988–1998. DOI:10.1001/jama.2014.15192.; Holmes D.R.Jr., Kar S., Price M.J., Whisenant B., Sievert H., Doshi S.K. et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J. Am. Coll. Cardiol. 2014;64(1):1–12. DOI:10.1016/j.jacc.2014.04.029.; Reddy V.Y., Doshi S.K., Kar S., Gibson D.N., Price M.J., Huber K. et al. 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J. Am. Coll. Cardiol. 2017;70(24):2964–2975. DOI:10.1016/j.jacc.2017.10.021.; Boersma L.V., Ince H., Kische S., Pokushalov E., Schmitz T., Schmidt B. et al. Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation: 1-Year follow-up outcome data of the EWOLUTION trial. Heart Rhythm. 2017;14(9):1302–1308. DOI:10.1016/j.hrthm.2017.05.038.; Berti S., Santoro G., Brscic E., Montorfano M., Vignali L., Danna P. et al. Left atrial appendage closure using AMPLATZER™ devices: A large, multicenter, Italian registry. Int. J. Cardiol. 2017;248:103–107. DOI:10.1016/j.ijcard.2017.07.052.; Landmesser U., Tondo C., Camm J., Diener H.C., Paul V., Schmidt B. et al. Left atrial appendage occlusion with the AMPLATZER Amulet device: one-year follow-up from the prospective global Amulet observational registry. EuroIntervention. 2018;14(5):e590–e597. DOI:10.4244/EIJ-D-18-00344.; Osmancik P., Herman D., Neuzil P., Hala P., Taborsky M., Kala P. et al. 4-year outcomes after left atrial appendage closure versus nonwarfarin oral anticoagulation for atrial fibrillation. J. Am. Coll. Cardiol. 2022;79(1):1–14. DOI:10.1016/j.jacc.2021.10.023.; Busu T., Khan S.U., Alhajji M., Alqahtani F., Holmes D.R., Alkhouli M. Observed versus expected ischemic and bleeding events following left atrial appendage occlusion. Am. J. Cardiol. 2020;125(11):1644–1650. DOI:10.1016/j.amjcard.2020.02.041.; Alkhouli M., Friedman P.A. ischemic stroke risk in patients with nonvalvular atrial fibrillation: JACC review topic of the week. J. Am. Coll. Cardiol. 2019;74(24):3050–3065. DOI:10.1016/j.jacc.2019.10.040.; Lakkireddy D., Thaler D., Ellis C.R., Swarup V., Sondergaard L., Carroll J. et al. Amplatzer Amulet left atrial appendage occluder versus Watchman device for stroke prophylaxis (Amulet IDE): A randomized, controlled trial. Circulation. 2021;144(19):1543–1552. DOI:10.1161/CIRCULATIONAHA.121.057063.; Dukkipati S.R., Kar S., Holmes D.R., Doshi S.K., Swarup V., Gibson D.N. et al. Device-related thrombus after left atrial appendage closure: incidence, predictors, and outcomes. Circulation. 2018;138(9):874–885. DOI:10.1161/CIRCULATIONAHA.118.035090.; Alkhouli M., Busu T., Shah K., Osman M., Alqahtani F., Raybuck B. Incidence and clinical impact of device-related thrombus following percutaneous left atrial appendage occlusion: a meta-analysis. JACC Clin. Electrophysiol. 2018;4(12):1629–1637. DOI:10.1016/j.jacep.2018.09.007.; Kar S., Doshi S.K., Sadhu A., Horton R., Osorio J., Ellis C. et al. Primary Outcome evaluation of a next-generation left atrial appendage closure device: results from the PINNACLE FLX trial. Circulation. 2021;143(18):1754–1762. DOI:10.1161/CIRCULATIONAHA.120.050117.; Simard T., Jung R.G., Lehenbauer K., Piayda K., Pracoń R., Jackson G.G. et al. Predictors of device-related thrombus following percutaneous left atrial appendage occlusion. J. Am. Coll. Cardiol. 2021;78(4):297–313. DOI:10.1016/j.jacc.2021.04.098.; Sedaghat A., Vij V., Al-Kassou B., Gloekler S., Galea R., Fürholz M. et al. Device-related thrombus after left atrial appendage closure: data on thrombus characteristics, treatment strategies, and clinical outcomes from the EUROC-DRT-Registry. Circ. Cardiovasc. Interv. 2021;14(5):e010195. DOI:10.1161/CIRCINTERVENTIONS.120.010195.; Simard T.J., Hibbert B., Alkhouli M.A., Abraham N.S., Holmes D.R.Jr. Device-related thrombus following left atrial appendage occlusion. EuroIntervention. 2022;18(3):224–232. DOI:10.4244/EIJ-D-21-01010.; Asmarats L., Cruz-González I., Nombela-Franco L., Arzamendi D., Peral V., Nietlispach F. et al. recurrence of device-related thrombus after percutaneous left atrial appendage closure. Circulation. 2019;140(17):1441–1443. DOI:10.1161/CIRCULATIONAHA.119.040860.; Tan B.E., Boppana L.K.T., Abdullah A.S., Chuprun D., Shah A., Rao M. et al. Safety and feasibility of same-day discharge after left atrial appendage closure with the WATCHMAN device. Circ. Cardiovasc. Interv. 2021;14(1):e009669. DOI:10.1161/CIRCINTERVENTIONS.120.009669.; Saw J., Nielsen-Kudsk J.E., Bergmann M., Daniels M.J., Tzikas A., Reisman M. et al. Antithrombotic therapy and device-related thrombosis following endovascular left atrial appendage closure. JACC Cardiovasc. Interv. 2019;12(11):1067–1076. DOI:10.1016/j.jcin.2018.11.001.; Saliba W.I., Kawai K., Sato Y., Kopesky E., Cheng Q., Ghosh S.K.B. et al. Enhanced thromboresistance and endothelialization of a novel fluoropolymer-coated left atrial appendage closure device. JACC Clin. Electrophysiol. 2023;9(8Pt2):1555–1567. DOI:10.1016/j.jacep.2023.04.013.; Tan B.E., Wong P.Y., Lee J.Z., Tan N.Y., Rao M., Cheung J.W. Direct oral anticoagulant versus warfarin after left atrial appendage closure with WATCHMAN: updated systematic review and meta-analysis. Curr. Probl. Cardiol. 2022;47(11):101335. DOI:10.1016/j.cpcardiol.2022.101335.; Patti G., Pengo V., Marcucci R., Cirillo P., Renda G., Santilli F. et al. The left atrial appendage: from embryology to prevention of thromboembolism. Eur. Heart J. 2017;38(12):877–887. DOI:10.1093/eurheartj/ehw159.; Hildick-Smith D., Landmesser U., Camm A.J., Diener H.C., Paul V., Schmidt B. et al. Left atrial appendage occlusion with the Amplatzer™ Amulet™ device: full results of the prospective global observational study. Eur. Heart J. 2020;41(30):2894–2901. DOI:10.1093/eurheartj/ehaa169.; Bergmann M.W., Ince H., Kische S., Schmitz T., Meincke F., Schmidt B. et al. Real-world safety and efficacy of WATCHMAN LAA closure at one year in patients on dual antiplatelet therapy: results of the DAPT subgroup from the EWOLUTION all-comers study. EuroIntervention. 2018;13(17):2003–2011. DOI:10.4244/EIJ-D-17-00672.; Duthoit G., Silvain J., Marijon E., Ducrocq G., Lepillier A., Frere C. et al. Circ. Cardiovasc. Interv. 2020;13(7):e008481. DOI:10.1161/CIRCINTERVENTIONS.119.008481.; Della Rocca D.G., Magnocavallo M., Di Biase L., Mohanty S., Trivedi C., Tarantino N. et al. Half-dose direct oral anticoagulation versus standard antithrombotic therapy after left atrial appendage occlusion. JACC Cardiovasc. Interv. 2021;14(21):2353–2364. DOI:10.1016/j.jcin.2021.07.031.; Li X., Zhang X., Jin Q., Xue Y., Lu W., Ge J. et al. clinical efficacy and safety comparison of rivaroxaban and dabigatran for nonvalvular atri al fibrillation patients undergoing percutaneous left atrial appendage closure operation. Front. Pharmacol. 2021;12:614762. DOI:10.3389/fphar.2021.614762.; Patti G., Sticchi A., Verolino G., Pasceri V., Vizzi V., Brscic E. et al. Safety and efficacy of single versus dual antiplatelet therapy after left atrial appendage occlusion. Am. J. Cardiol. 2020;134:83–90. DOI:10.1016/j.amjcard.2020.08.013.; Patti G., Ghiglieno C. Indications, evidence, and controversy in the closure of the left atrial appendage. Eur. Heart J. Suppl. 2023;25(Suppl. B):B126–B130. DOI:10.1093/eurheartjsupp/suad091.; Bing S., Chen R.R. Clinical efficacy and safety comparison of Watchman device versus ACP/Amulet device for percutaneous left atrial appendage closure in patients with nonvalvular atrial fibrillation: A study-level meta-analysis of clinical trials. Clin. Cardiol. 2023;46(2):117–125. DOI:10.1002/clc.23956.; Lakkireddy D., Thaler D., Ellis C.R., Swarup V., Gambhir A., Hermiller J. et al. 3-year outcomes from the amplatzer Amulet left atrial appendage occluder randomized controlled trial (Amulet IDE). JACC Cardiovasc Interv. 2023;16(15):1902–1913. DOI:10.1016/j.jcin.2023.06.022.; https://www.sibjcem.ru/jour/article/view/2051

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20