Showing 1 - 20 results of 124 for search '"антибиотикочувствительность"', query time: 0.69s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 90-98
    Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 90-98

    File Description: text/html

  5. 5
  6. 6
    Academic Journal

    Source: Aktualʹnaâ Infektologiâ, Vol 5, Iss 5, Pp 217-222 (2017)
    ACTUAL INFECTOLOGY; Том 5, № 5 (2017); 217-222
    Актуальная инфектология-Aktualʹnaâ Infektologiâ; Том 5, № 5 (2017); 217-222
    Актуальна інфектологія-Aktualʹnaâ Infektologiâ; Том 5, № 5 (2017); 217-222

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Epidemiology and Vaccinal Prevention; Том 23, № 3 (2024); 27-37 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 3 (2024); 27-37 ; 2619-0494 ; 2073-3046

    File Description: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/2011/1033; Pechere J.C. Macrolide resistance mechanisms in Gram-positive cocci // International Journal of Antimicrobial Agents. 2001. Vol. 18. Suppl. 1. P. 25–28.; Bartkus J.M., Juni B.A., Ehresmann K., et al. Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: implications for surveillance of antimicrobial resistance // Journal of Clinical Microbiology. 2003. Vol. 41, № 3. P. 1167–1172.; Menninger J.R. Functional consequences of binding macrolides to ribosomes // The Journal of Antimicrobial Chemotherapy. 1985. Vol. 16. Suppl. A. P. 23–34.; Бакулина Н. А., Ефимова О. Г., Высотский В. В. и др. Ультраструктура свежевыделенных штаммов B. Pertussis. Журнал микробиологии, эпидемиологии и иммунобиологии. 1984. Т. 61, № 11. С. 24–26.; Wang Z., Han R., Liu Y., et al. Direct detection of erythromycin-resistant Bordetella pertussis in clinical specimens by PCR. Journal of Clinical Microbiology. 2015. Vol. 53, № 11. P. 3418–3422.; Waters V., Halperin S.A. Bordetella pertussis. In: Bennett J.E., Dolin R., Blaser M.J., editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th edition. Philadelphia: Elsevier Science; 2014. P. 2619–2628.; Lewis K., Saubolle M.A., Tenover F.C., et al. Pertussis caused by an erythromycin-resistant strain of Bordetella pertussis. The Pediatric Infectious Disease Journal. 1995. Vol. 14, № 5. P. 388–391.; Korgenski K., Daly J.A. Surveillance and detection of erythromycin resistance in Bordetella pertussis isolates recovered from a pediatric population in the Intermountain West Region of the United States. Journal of Clinical Microbiology. 1997. Vol. 35, № 11. P. 2989–2991.; Mirzaei B., Bameri Z., Babaei R., et al Isolation of high level macrolide resistant Bordetella pertussis without transition mutation at domain V in Iran. Jundishapur Journal of Microbiology. 2015. Vol. 8, № 7. P. e18190.; Guillot S., Descours G., Gillet Y., et al. Macrolide resistant Bordetella pertussis infection in newborn girl, France. Emerging Infectious Diseases. 2012. Vol. 18, № 6. P. 966–968.; Kamachi K., Duong H.T., Dang A.D., et al. Macrolide-resistant Bordetella pertussis, Vietnam, 2016–2017. Emerging Infectious Diseases. 2020. Vol. 26, № 10. P. 2511–2513.; Wilson K.E., Cassiday P.K., Popovic T., et al. Bordetella pertussis isolates with a heterogeneous phenotype for erythromycin resistance. Journal of Clinical Microbiology. 2002. Vol. 40, № 8. P. 2942–2944.; Xu Z., Wang Z., Luan Y., et al. Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China. Emerging Microbes & Infections. 2019. Vol. 8, № 1. P. 461–470.; Li L., Deng J., Ma X., et al. High prevalence of macrolide-resistant Bordetella pertussis and ptxP1 genotype, mainland China, 2014–2016. Emerging Infectious Diseases. 2019. Vol. 25, № 12. P. 2205–2214.; Wang Z., Cui Z., Li Y., et al. High prevalence of erythromycin-resistant Bordetella pertussis in Xi’an, China. Clinical Microbiology and Infection. 2014. Vol. 20, № 11. P. O825–O830.; Yang Y., Yao K., Ma X., et al. Variation in Bordetella pertussis susceptibility to erythromycin and virulence-related genotype changes in China (1970–2014). PLoS One. 2015. Vol. 10, № 9. P. e0138941.; Feng Y., Chiu C.H., Heininger U., et al. Emerging macrolide resistance in Bordetella pertussis in mainland China: findings and warning from the global pertussis initiative. The Lancet regional health. Western Pacific. 2021. Vol. 8. P. 100098.; Dinu S., Guillot S., Dragomirescu C.C., et al. Whooping cough in South-East Romania: a 1-year study. Diagnostic Microbiology and Infectious Disease. 2014. Vol. 78, № 3. P. 302–306.; Fry N.K., Duncan J., Vaghji L., et al. Antimicrobial susceptibility testing of historical and recent clinical isolates of Bordetella pertussis in the United Kingdom using the Etest method. European Journal of Clinical Microbiology & Infectious Diseases. 2010. Vol. 29, № 9. P. 1183–1185.; Galanakis E., Englund J.A., Abe P., et al. Antimicrobial susceptibility of Bordetella pertussis isolates in the state of Washington. International Journal of Antimicrobial Agents. 2007. Vol. 29, № 5. P. 609–611.; Horiba K., Nishimura N., Gotoh K., et al. Clinical manifestations of children with microbiologically confirmed pertussis infection and antimicrobial susceptibility of isolated strains in a regional hospital in Japan, 2008–2012. Japanese Journal of Infectious Diseases. 2014. Vol. 67, № 5. P. 345–348.; Jakubu V., Zavadilova J., Fabianova K., et al. Trends in the minimum inhibitory concentrations of erythromycin, clarithromycin, azithromycin, ciprofloxacin, and trimethoprim / sulfamethoxazole for strains of Bordetella pertussis isolated in the Czech Republic in 1967–2015. Central European Journal of Public Health. 2017. Vol. 25, № 4. P. 282–286.; Marchand-Austin A., Memari N., Patel S.N., et al. Surveillance of antimicrobial resistance in contemporary clinical isolates of Bordetella pertussis in Ontario, Canada. International Journal of Antimicrobial Agents. 2014. Vol. 44, № 1. P. 82–84.; Sintchenko V., Brown M., Gilbert G.L. Is Bordetella pertussis susceptibility to erythromycin changing? MIC trends among Australian isolates 1971–2006. The Journal of Antimicrobial Chemotherapy. 2007. Vol. 60, № 5. P. 1178–1179.; Souder E., Vodzak J., Evangelista A.T., et al. Antimicrobial susceptibility and molecular detection of pertactin-producing and pertactin-deficient Bordetella pertussis. The Pediatric Infectious Disease Journal. 2017. Vol. 36, № 1. P. 119–121.; Yao S.M., Liaw G.J., Chen Y.Y., et al. Antimicrobial susceptibility testing of Bordetella pertussis in Taiwan prompted by a case of pertussis in a paediatric patient. Journal of Medical Microbiology. 2008. Vol. 57. Pt. 12. P. 1577–1580.; Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 31st edition. USA: Clinical and Laboratory Standards Institute; 2021.; European Committee on Antimicrobial Susceptibility Testing. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST, Version 11.0. Basel: EUCAST; 2021.; Hill B.C., Baker C.N., Tenover F.C. A simplified method for testing Bordetella pertussis for resistance to erythromycin and other antimicrobial agents. Journal of Clinical Microbiology. 2000. Vol. 38, № 3. P. 1151–1155.; Gordon K.A., Fusco J., Biedenbach D.J., et al. Antimicrobial susceptibility testing of clinical isolates of Bordetella pertussis from northern California: report from the SENTRY Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy. 2001. Vol. 45, № 12. P. 3599–3600.; https://www.epidemvac.ru/jour/article/view/2011

  8. 8
  9. 9
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 26, № 5 (2022); 458-466 ; Вавиловский журнал генетики и селекции; Том 26, № 5 (2022); 458-466 ; 2500-3259 ; 10.18699/VJGB-22-50

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3438/1634; Gugliucci A. Polyamines as clinical laboratory tools. Clin. Chim. Acta. 2004;344(1-2):23-35. DOI 10.1016/j.cccn.2004.02.022.; Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 1972;36(4):478-503. DOI 10.1128/br.36.4. 478-503.1972.; Hölscher T., Kovács Á.T. Sliding on the surface: bacterial spreading without an active motor. Environ. Microbiol. 2017;19(7):2537-2545. DOI 10.1111/1462-2920.13741.; Kurihara S., Suzuki H., Tsuboi Y., Benno Y. Dependence of swarming in Escherichia coli K-12 on spermidine and the spermidine importer. FEMS Microbiol. Lett. 2009;294(1):97-101. DOI 10.1111/j.1574-6968.2009.01552.x.; Martínez A., Torello S., Kolter R. Sliding motility in mycobacteria. J. Bacteriol. 1999;181(23):7331-7338. DOI 10.1128/JB.181.23.7331-7338.1999.; Nolan L.M., Cavaliere R., Turnbull L., Whitchurch C.B. Extracellular ATP inhibits twitching motility-mediated biofilm expansion by Pseudomonas aeruginosa. BMC Microbiol. 2015;15:55. DOI 10.1186/s12866-015-0392-x.; Recht J., Martínez A., Torello S., Kolter R. Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 2000;182(15):4348-4351. DOI 10.1128/JB.182.15.4348-4351.2000.; Sarkar N.K., Shankar S., Tyagi A.K. Polyamines exert regulatory control on mycobacterial transcription: a study using RNA polymerase from Mycobacterium phlei. Biochem. Mol. Biol. Int. 1995;35:1189-1198.; Strollo S.E., Adjemian J., Adjemian M.K., Prevots D.R. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann. Am. Thorac. Soc. 2015;12(10):1458-1464. DOI 10.1513/AnnalsATS.201503-173OC.; Tkachenko A.G., Kashevarova N.M., Sidorov R.Y., Nesterova L.Y., Akhova A.V., Tsyganov I.V., Vaganov V.Y., Shipilovskikh S.A., Rubtsov A.E., Malkov A.V. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p) ppGpp synthetases. Cell Chem. Biol. 2021;28(10):1420-1432.e9. DOI 10.1016/j.chembiol.2021.01.018.; Tran T., Bonham A.J., Chan E.D., Honda J.R. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb). 2019;115:96-107. DOI 10.1016/j.tube.2019.02.008.; Tsyganov I.V., Nesterova L.Yu., Tkachenko A.G. Involvement of polyamines in the regulation of “behavioral” reactions of microorganisms. In: History and Methodology of Physiological, Biochemical and Soil Research: Proceedings of the Conference dedicated to the 100th anniversary of the Department of Plant Physiology and Microorganisms, Perm State National Research University, Perm, October 18–19, 2017. Perm: Perm State University, 2017;111-112. (in Russian); Zamakhayev M.V., Grigorov A.S., Kaprel’yants A.S., Shumkov M.S. Mycobacterium smegmatis posesses active genes of polyamine metabolism. Vestnik Permskogo Universiteta. Biologiya = Bulletin of the Perm University. Series: Biology. 2018;3:284-291. DOI 10.17072/1994-9952-2018-3-284-291. (in Russian); Zamakhaev M., Tsyganov I., Nesterova L., Akhova A., Grigorov A., Bespyatykh J., Azhikina T., Tkachenko A., Shumkov M. Mycolicibacterium smegmatis possesses operational agmatinase but contains no detectable polyamines. Int. J. Mycobacteriol. 2020;9(2):138-143. DOI 10.4103/ijmy.ijmy_48_20.; https://vavilov.elpub.ru/jour/article/view/3438

  10. 10
    Academic Journal

    Source: Russian Journal of Infection and Immunity; Vol 12, No 6 (2022); 1156-1162 ; Инфекция и иммунитет; Vol 12, No 6 (2022); 1156-1162 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  11. 11
    Academic Journal

    Source: Cancer Urology; Том 17, № 1 (2021); 126-133 ; Онкоурология; Том 17, № 1 (2021); 126-133 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1334/1260; Петухова И.Н., Соколовский А.В., Григорьевская З.В. и др. Инфекции, связанные с установкой инородных материалов (протезы, сетки, импланты). Злокачественные опухоли 2017;(3s1):57-60. DOI:10.18027/2224-5057-2017-3s1-57-60.; Mulvey M.A., Klumpp D.J., Stapleton A.E. Urinary tract infections: molecular pathogenesis and clinical management. 2nd edn. 2017. 675 p.; Tancheva S., Micheva I., Marinova I. et al. Infections in urinary tract of patients with haematological malignancies undergoing antineoplastic therapy. J IMAB-Ann Proc (Sci Papers) 2009;15(3):95-7. DOI:10.5272/jimab.1512009_95.; Дмитриева Н.В., Эйдельштейн М.В., Агинова В.В. и др. Нозокомиальные инфекции, вызванные Pseudomonas aeruginosa, в онкологической клинике. Сибирский онкологический журнал 2019;18(2):28-34. DOI:10.21294/1814-4861-2019-18-2-28-34.; Землянко О.М., Рогоза Т.М., Журавлева Г.А. Механизмы множественной устойчивости бактерий к антибиотикам. Экологическая генетика 2018;16(3):4-17. DOI:10.17816/ecogen1634-17.; Гончаров А.Е. Молекулярно-генетический мониторинг за эпидемическими клонами Staphylococcus aureus и Acinetobacter baumannii в системе эпидемиологического надзора за внутрибольничными инфекциями. Дис. . д-ра медицинских наук. 14.02.02. Санкт-Петербург, 2017. 312 с.; Григорьевская З.В., Петухова И.Н., Багирова Н.С. и др. Нозокомиальные инфекции у онкологических больных: проблема нарастающей резистентности грамотрицательных микроорганизмов. Сибирский онкологический журнал 2017;16(1):91-7. DOI:10.21294/1814-4861-2017-16-1-91-97.; Talebi M., Sadeghi J., Pourshafie M.R. Molecular characterization of vancomycin-resistant Enterococcus faecium isolated from intensive care units. Curr Microbiol 2014;68:615-20. DOI:10.1007/s00284-013-0517-0.; Santajit S., Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016;2016: 2475067. DOI:10.1155/2016/2475067.; Агинова В.В. Профилактика нозокомиальных инфекций в онкологической клинике. Днс. канд. биологических наук. М., 2018. 144 с.; Naber K.G., Schito G., Botto H. et al. Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol 2008;54(5):1164-75. DOI:10.1016/j.eururo.2008.05.010.; Bonkat G. (Chair), Bartoletti R., Bruyere F. et al. EUA Guadelines Urological Infections, 2020.; https://oncourology.abvpress.ru/oncur/article/view/1334

  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Hospital Surgery. Journal named by L.Ya. Kovalchuk; No. 1 (2018); 67-72 ; Госпитальная хирургия. Журнал имени Л.А. Ковальчука; № 1 (2018); 67-72 ; Шпитальна хірургія. Журнал імені Л. Я. Ковальчука; № 1 (2018); 67-72 ; 2414-4533 ; 1681-2778 ; 10.11603/2414-4533.2018.1

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20