-
1Academic Journal
Συγγραφείς: Veronika V. Osipova, Galina L. Osipova, Elena A. Zaryanova, Dmitry V. Terekhov, В. В. Осипова, Г. Л. Осипова, Е. А. Зарянова, Д. В. Терехов
Πηγή: PULMONOLOGIYA; Том 31, № 5 (2021); 663-670 ; Пульмонология; Том 31, № 5 (2021); 663-670 ; 2541-9617 ; 0869-0189
Θεματικοί όροι: вакцина, COVID-19, SARS-CoV-2, type 2 immune response, phenotype, endotype, type II angiotensin-converting enzyme, interferon-β, eosinophils, allergen-specific immunotherapy, vaccine, иммунный ответ 2-го типа, фенотип, эндотип, ангиотензинпревращающий фермент II типа, интерферон-β, эозинофилы, аллерген-специфическая иммунотерапия
Περιγραφή αρχείου: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2886/2290; Masoli M., Fabian D., Holt S., Beasley R.; Global Initiative for Asthma (GINA) Program. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004; 59 (5): 469–478. DOI:10.1111/j.1398-9995.2004.00526.x.; GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5 (9): 691–706. DOI:10.1016/S2213-2600(17)30293-X.; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396 (10258): 1204–1222. DOI:10.1016/S0140-6736(20)30925-9.; Jackson D.J., Busse W.W., Bacharier L.B. et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020; 146 (1): 203–206.e3. DOI:10.1016/j.jaci.2020.04.009.; Edwards M.R., Bartlett N.W., Hussell T. et al. The microbiology of asthma. Nat. Rev. Microbiol. 2012; 10 (7): 459–471. DOI:10.1038/nrmicro2801.; Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966: 1 (7428): 76–77. DOI:10.1016/s0140-6736(66)92364-6.; Jonsdottir H.R., Dijkman R. Coronaviruses and the human airway: a universal system for virus‐host interaction studies. Virol. J. 2016; 13: 24. DOI:10.1186/s12985-016-0479-5.; Chałubiński M, Gajewski A, Kowalski ML. The relationship between human coronaviruses, asthma and allergy – an unresolved dilemma. Clin. Exp. Allergy. 2020; 50 (10): 1122–1126. DOI:10.1111/cea.13718.; Shaker M.S., Oppenheimer J., Grayson M. et al. COVID-19: pandemic contingency planning for the allergy and immunology clinic. J. Allergy Clin. Immunol. Pract. 2020; 8 (5): 1477–1488e5. DOI:10.1016/j.jaip.2020.03.012.; Global Initiative for Asthma. GINA: Interim Guidance about COVID-19 and Asthma – Updated 26 April 2021. Available at: https://ginasthma.org; Министерство здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): Временные методические рекомендации. Версия 11 (07.05.21). Доступно на: https://стопкоронавирус.рф/ai/doc/872/attach/Bmr_COVID-19_compressed.pdf.; Halpin D.M.G., Faner R., Sibila O. et al. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir. Med. 2020; 8 (5): 436–438. DOI:10.1016/S2213-2600(20)30167-3.; Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes. Infect. 2020; 9 (1): 601–604. DOI:10.1080/22221751.2020.1739565.; Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280e278. DOI:10.1016/j.cell.2020.02.052.; Wu C., Zheng M. Single-cell RNA expression profiling shows that ACE2, the putative receptor of COVID-2019, has significant expression in nasal and mouth tissue, and is co-expressed with TMPRSS2 and not co-expressed with SLC6A19 in the tissues. Res. Square. 2020 [Preprint. Posted: March 12, 2020]. DOI:10.21203/rs.3.rs-16992/v1.; Ziegler C.G.K., Allon S.J., Nyquist S.K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020; 181 (5): 1016–1035.e19. DOI:10.1016/j.cell.2020.04.035.; Wölfel R., Corman V.M., Guggemos W. et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581 (7809): 465–469. DOI:10.1038/s41586-020-2196-x.; Dhand R., Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020; 202 (5): 651–659. DOI:10.1164/rccm.202004-1263PP.; Asthma and Allergy Foundation of America (AAFA). Allergens and Allergic Asthma. Available at: https://www.aafa.org/allergic-asthma; Wark P.A.B., Johnston S.L., Bucchieri F. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 2005; 201 (6): 937–947. DOI:10.1084/jem.20041901.; Jacobsen E.A., Helmers R.A., Lee J.J., Lee N.A. The expanding role(s) of eosinophils in health and disease. Blood. 2012; 120 (19): 3882–3890. DOI:10.1182/blood-2012-06-330845.; Min A., Lee Y.A., Kim K.A. et al. NOX2‐derived ROS‐mediated surface translocation of BLT1 is essential for exocytosis in human eosinophils induced by LTB4. Int. Arch. Allergy Immunol. 2014; 165 (1): 40–51. DOI:10.1159/000366277.; Jaquet V., Bedard K. Editorial: Genetic mapping – the path of discovery for novel functions of the NOX NADPH oxidases. J. Leukoс. Biol. 2009; 86 (3): 461–463. DOI:10.1189/jlb.0409243.; Nakagome K., Nagata M. Involvement and possible role of eosinophils in asthma exacerbation. Front. Immunol. 2018; 9: 2220. DOI:10.3389/fimmu.2018.02220.; Liu F., Xu A., Zhang Y. et al. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int. J. Infect. Dis. 2020; 95: 183–191. DOI:10.1016/j.ijid.2020.03.013.; Radzikowska U., Ding M., Tan G. et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020; 75 (11): 2829–2845. DOI:10.1111/all.14429.; Brake S.J., Barnsley K., Lu W. et al. Smoking upregulates angiotensin- converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J. Clin. Med. 2020; 9 (3): 841. DOI:10.3390/jcm9030841.; Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI:10.1001/jama.2020.2648.; Bhatraju P.K., Ghassemieh B.J., Nichols M. et al. Covid-19 in critically ill patients in the seattle region – case series. N. Engl. J. Med. 2020; 382 (21): 2012–2022. DOI:10.1056/NEJMoa2004500.; Yang J., Koh H., Moon S. et al. Allergic disorders and susceptibility to and severity of COVID-19: a nationwide cohort study. J. Allergy Clin. Immunol. 2020; 146 (4): 790–798. DOI:10.1016/j.jaci.2020.08.008.; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI:10.1016/S0140-6736(20)30183-5.; Kimura H., Francisco D., Conway M. et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol. 2020; 146 (1): 80–88.e8. DOI:10.1016/j.jaci.2020.05.004.; Dong X., Cao Y.Y., Lu X.X. et al. Eleven faces of coronavirus disease 2019. Allergy. 2020; 75 (7): 1699–1709. DOI:10.1111/all.14289.; Zhu Z., Hasegawa K., Ma B. et al. Association of asthma and its genetic predisposition with the risk of severe COVID-19. J. Allergy Clin. Immunol. 2020; 146 (2): 327–329.e4. DOI:10.1016/j.jaci.2020.06.001.; Skevaki C., Karsonova A., Karaulov A. et al. Asthma-associated risk for COVID-19 development. J. Allergy Clin. Immunol. 2020; 146 (6): 1295–1301. DOI:10.1016/j.jaci.2020.09.017.; Del Rio C., Malani O.N. COVID-19 – new insights on a rapidly changing epidemic. JAMA. 2020; 323 (14): 1339–1340. DOI:10.1001/jama.2020.3072.; Bloom C.I., Drake T.M., Docherty A.B. et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir. Med. 2021; 9 (7): 699–711. DOI:10.1016/S2213-2600(21)00013-8.; Morais-Almeida М., Aguiar R., Martin B. et al. COVID-19, asthma, and biological therapies: What we need to know. World Allergy Organ. J. 2020; 13 (5): 100126. DOI:10.1016/j.waojou.2020.100126.; Abrams E., Jong G., Yang C. Paediatric asthma and COVID-19. Ottawa: Canadian Paediatric Society; 2020. Available at: https://www.cps.ca/en/documents/position/paediatric-asthma-and-covid-19; Liu S., Zhi Y., Ying S. COVID-19 and asthma: reflection during the pandemic. Clin. Rev. Allergy Immunol. 2020; 59 (1): 78–88. DOI:10.1007/s12016-020-08797-3.; Klimek L., Jutel M., Akdis C. et al. Handling of allergen immunotherapy in the COVID‐19 pandemic: An ARIA‐EAACI statement. Allergy. 2020; 75 (7): 1546–1554. DOI:10.1111/all.14336.; Pfaar O., Klimek L., Jutel M. et al. COVID-19 pandemic: practical considerations on the organization of an allergy clinic an EAACI/ ARIA position paper. Allergy. 2021; 76 (3): 648–676. DOI:10.1111/all.14453.; Klimek L., Pfaar O., Worm M. et al. Allergen immunotherapy in the current COVID-19 pandemic: a position paper of AeDA, ARIA, EAACI, DGAKI and GPA. Allergol. Select. 2020; 4 (1): 44–52. DOI:10.5414/ALX02147E.; https://journal.pulmonology.ru/pulm/article/view/2886