Showing 1 - 7 results of 7 for search '"ангиотензинпревращающий фермент 2"', query time: 0.54s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 1 (2021); 14-26 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 1 (2021); 14-26 ; 2541-8017 ; 2223-9022 ; 10.23934/2223-9022-2021-10-1

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1069/916; https://www.jnmp.ru/jour/article/view/1069/1012; Ларина В.Н., Головко М.Г., Ларин В.Г. Влияние коронавирусной инфекции (COVID-19) на сердечно-сосудистую систему. Вестник РГМУ. 2020;(2):5–13. https://doi.org/10.24075/vrgmu.2020.020; Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)» 2020. Версия 9(26.10.2020). URL: https://base.garant.ru/74810808/ [Дата обращения 22 января 2021 г.]; To K-W, Hung IF-N, Ip JD, Chu AW-H, Chan WM, Tam AR, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin infect dis. 2020; Aug 25; ciaa1275. PMID: 32840608 https://doi.org/ 10.1093/cid/ciaa1275 Online ahead of print.; Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections. Der Internist. 2019;60(11):1136–1145. https://doi.org/10.1007/s00108-019-00671-5; Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes. 2020;11(2):211. PMID: 32085655 https://doi.org/10.3390/genes11020211; Long B, Brady WJ, Koyfman A, Michael G. Cardiovascular complications in COVID-19. Am J Emerg Med. 38(7):1504–1507. PMID: 32317203 https://doi.org/10.1016/j.ajem.2020.04.048; Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374. PMID: 32048163 https://doi.org/10.1007/s11427-020-1643-8; Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proс Natl Acad Sci USA. 2020;117(40):25018–25025. PMID: 32943538 https://doi.org/10.1073/pnas.2010540117; Kluge KE, Langseth MS, Opstad TB, Pettersen AÅ, Arnesen H, Tønnessen T, et al. Complement Activation in Association with Markers of Neutrophil Extracellular Traps and Acute Myocardial Infarction in Stable Coronary Artery Disease. Mediators Inflamm. 2020;2020:5080743. PMID: 32308555 https://doi.org/10.1155/2020/5080743; Dhont S, Derom E, Braeckel EV, Depuydt P, Lambrecht BN, et al. The pathophysiology of ‘happy’hypoxemia in COVID-19. Respir Res. 2020;21(1):1–9. PMID: 32723327 https://doi.org/10.1186/s12931-020-01462-5; Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 Pneumonia from Acute Respiratory Distress Syndrome (ARDS) and High Altitude Pulmonary Edema (HAPE): Therapeutic Implications. Circulation. 2020;142(2):101–104. PMID: 32369390 https://doi.org/10.1161/circulationaha.120.047915; Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neuroscie. 1997;17(18):7166–7179. PMID: 9278551 https://doi.org/10.1523/JNEUROSCI.17-18-07166.1997; Донина Ж.А., Баранова Е.В., Александрова Н.П. Влияние ингибирования циклооксигеназных путей на резистентность к нарастающей гипоксии у крыс с повышенным уровнем интерлейкина-1 Бета. Российский физиологический журнал им. И.М. Сеченова. 2020; 106(11):1400–1411. https://doi.org/10.31857/s0869813920110047; UR A, Verma K. Pulmonary Edema in COVID-19 - A Neural Hypothesis. ACS Chem Neurosci. 2020;11(14):2048–2050. PMID: 32614178 https://doi.org/10.1021/acschemneuro.0c00370; Dweck MR, Bularga A, Hahn RT, Bing R, Lee KK, Chapman AR, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–958. PMID: 32556199 https://doi.org/10.1093/ehjci/jeaa178; Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry M-Ch, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. PMID: 32968776 https://doi.org/10.1093/eurheartj/ehaa664; Pagnesi M, Baldetti L, Beneduce A, Calvo F, Gramegna M, Pazzaneseet V, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106(17):1324-1331. PMID: 32675217 http://dx.doi.org/10.1136/heartjnl-2020-317355; Замечник Т.В., Рогова Л.Н. Гипоксия как пусковой фактор развития эндотелиальной дисфункции и воспаления сосудистой стенки (обзор литературы). Вестник новых медицинских технологий. 2012;(2):393–394.; Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Baderet M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98(1):505–553. PMID: 29351514 https://doi.org/10.1152/physrev.00023.2016; Петрищев Н.Н., Халепо О.В., Вавиленкова Ю.А., Власов Т.Д. COVID-19 и сосудистые нарушения (обзор литературы). Регионарное кровообращение и микроциркуляция. 2020;19(3):90–98. https://doi.org/10.24884/1682-6655-2020-19-3-90-98; Patel KP, Schultz HD. Angiotensin peptides and nitric oxide in cardiovascular disease. Antioxid Redox Signal. 2013;19(10):1121–1132. PMID: 22462736 https://doi.org/10.1089/ars.2012.4614; Vaughan DE. The renin-angiotensin system and fibrinolysis. Am J Cardiol. 1997;79(5):12–16. PMID: 9127616 https://doi.org/10.1016/S0002-9149(97)00124-0; Porzionato A, Emmi A, Barbon S, Boscolo-Berto R, Stecco C, Stocco E, et al. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J. 2020;287(17):3681–3688. PMID: 32779891 https://doi.org/10.1111/febs.15481; Dendorfer A, Raasch W, Tempel K, Dominiak P. Interactions between the renin-angiotensin system (RAS) and the sympathetic system. Basic Res Cardiol. 1998;93(Suppl 2):024–029. PMID: 9833158 https://doi.org/10.1007/s003950050202; Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(6Pt1):E763-E778. PMID: 1616014 https://doi.org/10.1152/ajpendo.1992.262.6.E763; Лупинская З.А. Эндотелий сосудов – основной регулятор местного кровотока. Вестник Кыргызско-Российского Славянского университета. 2003;3(7):107–114.; Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. PMID: 32546188 https://doi.org/10.1186/s13054-020-03062-7; Gavriilaki E, Anyfanti P, Gavriilaki M, Lazaridis A, Douma S, Gkaliagkousi E. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr Hypertens Rep. 2020;22(9):63. PMID: 32852642 https://doi.org/10.1007/s11906-020-01078-6; Collard CD, Vakeva A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, et al. Complement activation after oxidative stress. Role of the lectin complement pathway. Am J Pathol. 2000;156(5):1549–1556. PMID: 10793066 https://doi.org/10.1016/S0002-9440(10)65026-2; Varga Z, Andreas JF, Peter S, Haberecker M, Rea A, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. PMID: 32325026 https://doi.org/10.1016/S0140-6736(20)30937-5; Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–2109. PMID: 32558075 https://doi.org/10.1111/jth.14975; Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–274. PMID: 32374815 https://doi.org/10.7326/M20-2003; Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity – a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018;180(6):782–798. PMID: 29265338 https://doi.org/10.1111/bjh.15062; Sauter RJ, Sauter M, Obrich M, Emschermann FN, Nording H, Patzelt J, et al. Anaphylatoxin receptor C3aR contributes to platelet function, thrombus formation and in vivo haemostasis. Thromb Haemost. 2019;119(1):179–182. PMID: 30597512 https://doi.org/10.1055/s-0038-1676349; Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben Ch, et al. Platelet Gene Expression and Function in COVID-19 Patients. Blood. 2020;136(11):1317–1329. PMID: 32573711 https://doi.org/10.1182/blood.2020007214; Kwaan HC. Coronavirus Disease 2019: The Role of the Fibrinolytic System from Transmission to Organ Injury and Sequelae. Semin Thromb Hemost. 2020;46(7):841–844. PMID: 32386428 https://doi.org/10.1055/s-0040-1709996; Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S. Fibrinolysis Shutdown Correlates to Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. 2020;231(2):193–203. PMID: 32422349 https://doi.org/10.1016/j.jamcollsurg.2020.05.007; Costa IBSdaS, Bittar CS, Rizk SI, Filho AEdeA, Santos KAQ, Machado TIV, et al. The Heart and COVID-19: What Cardiologists Need to Know. Arq Bras Cardiol. 2020;114(5):805–816. PMID: 32401847 https://doi.org/10.36660/abc.20200279; Kunutsor SK, Laukkanen JA. Cardiovascular complications in COVID-19: A systematic review and meta-analysis. J Infect. 2020;81(2):e1319–e141. PMID: 32504747 https://doi.org/10.1016/j.jinf.2020.05.068; Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. PMID: 31986264 https://doi.org/10.1016/S0140-6736(20)30183-5; Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J. 2020;133(9):1025–1031. PMID: 32044814 https://doi.org/10.1097/CM9.0000000000000744; Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. 2020;8(4):420–422. https://doi.org/10.1016/S2213-2600(20)30076-X; Becker RC. Anticipating the long-term cardiovascular effects of COVID-19. J Thromb Thrombolysis. 2020;50(3):512–524. PMID: 32880795 https://doi.org/10.1007/s11239-020-02266-6; Guo T, Fan Y, Chen M, Wu X, Zhang L, He T , et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. PMID: 32219356 https://doi.org/10.1001/jamacardio.2020.1017; Corrales-Medina VF, Alvarez KN, Weissfeld LA, Angus DC, Chirinos JA, Chang CCH, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. Jama. 2015;313(3):264–274. PMID: 25602997 https://doi.org/10.1001/jama.2014.18229; Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. PMID: 32217556 https://doi.org/10.1136/bmj.m1091; Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist. Basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC Basic Transl Sci. 2020;5(5):518–536. PMID: 32292848 https://doi.org/10.1016/j.jacbts.2020.04.002; Welt FGP, Shah PB, Aronow HD, Bortnick AE, Henry TD, Sherwood MW, et al. (2020). Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020;75(18):2372–2375. PMID: 32199938 https://doi.org/10.1016/j.jacc.2020.03.021; Zhou F, Ting Yu, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. PMID: 32171076 https://doi.org/10.1016/S0140-6736(20)30566-3; Buzon J, Roignot O, Lemoine S, Perez P, Kimmoun A, Levy B, et al. Takotsubo cardiomyopathy triggered by influenza A virus. Intern Med. 2015;54(16):2017–2019. PMID: 26278294 https://doi.org/10.2169/internalmedicine.54.3606; Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020;248:117477. PMID: 32119961 https://doi.org/10.1016/j.lfs.2020.117477; Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371. PMID: 32201335 https://doi.org/10.1016/j.jacc.2020.03.031; Arachchillage DRJ, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(5):1233–1234. PMID: 32291954 https://doi.org/10.1111/jth.14768; Bermejo-Martin JF, Almansa R, Torres A, González-Rivera M, Kelvin DJ. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020;116(10):e132–e133. PMID: 32420587 https://doi.org/10.1093/cvr/cvaa140; Полозова Э.И., Сорокина Н.Н. Кардиоренальный континуум при метаболическом синдроме. Современные проблемы науки и образования. Электронный научный журнал. 2019;(2). URL: https://science-education.ru/ru/article/view?id=28650 [Дата обращения 22 января 2021].; Кобалава Ж.Д., Моисеев B. C. Концепция кардиоренальных и метаболических соотношений в современной профилактической кардиологии. Кардиоваскулярная терапия и профилактика. 2008; 7(4):4–7.; Глыбочко П.В., Фомин В.В., Авдеев С.Н., Моисеев С.В., Яворский А.Г., Бровко М.Ю., и др. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке. Клиническая фармакология и терапия. 2020;29(2):21–29. https://doi.org/10.32756/0869- 5490-2020-2-21-29; Sommerstein R, Gräni C. Preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. Br Med J. 2020;368:m810; https://doi.org/10.1136/bmj.m810; Kuster GM, Pfister O, Burkard T, Zhou Q, Twerenbold R, Haaf P, et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020;41(19):1801–1803. PMID: 32196087 https://doi.org/ 10.1093/eurheartj/ehaa235; Коростовцева Л.С., Ротарь О.П., Конради А.О. COVID-19: каковы риски пациентов с артериальной гипертензией? Артериальная гипертензия. 2020;26(2):124–132. https://doi.org/10.18705/1607-419X-2020-26-2-124-132; Конради A.O., Недошивин A. O. Ангиотензин II и COVID-19. Тайны взаимодействий. Российский кардиологический журнал. 2020;25(4):72–74. https://doi.org/10.15829/1560-4071-2020-3861; Забозлаев Ф.Г., Кравченко Э.В., Галлямова А.Р., Летуновский Н.Н. Патологическая анатомия легких при новой коронавирусной инфекции (COVID-19). предварительный анализ аутопсийных исследований. Клиническая практика. 2020;(2):21–37. https://doi.org/10.17816/clinpract34849; Aghagoli G, Marin BG, Nicole J , Chaves-Sell F, Asaad WF, Murphy SA. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care. 2020;Jul 13;1–10. PMID: 32661794 https://doi.org/10.1007/s12028-020-01049-4; Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1(7):e290–e299. PMID: 33015653 https://doi.org/10.1016/S2666-5247(20)30144-0; Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. PMID: 32314810 https://doi.org/10.1002/jmv.25915; von Weyhern CH, Kaufmann I, Neff F, Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395(10241):e109. PMID: 32505222 https://doi.org/10.1016/S0140-6736(20)31282-4; Maise Aniello, Manetti AC, La Russa R, Di Paolo M, Turillazzi E, Paola Frati, et al. Autopsy findings in COVID-19-related deaths: a literature review. Forensic Sci Med Pathol. 2020; Oct 7:1–18. PMID: 33026628 https://doi.org/10.1007/s12024-020-00310-8; Bösmüller H, Traxler S, Bitzer M, Häberle H, Raiser W, Nann D, et al. The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation. Virchows Archiv. 2020;477(3):349–357. PMID: 32607684 https://doi.org/10.1007/s00428-020-02881-x; Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1-13. PMID: 32299776 https://doi.org/10.1016/j.trsl.2020.04.007; Nienhold R, Ciani Y, Koelzer VH, Tzankov A, Haslbauer JD, Menter T, et al. Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat commun. 2020;11(1):1–13. https://doi.org/10.1038/s41467-020-18854-2; Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Сardiol. 2020;5(11):1281–1285. PMID: 32730555 https://doi.org/10.1001/jamacardio.2020.3551; Freaney PM, Shah SJ, Khan SS. COVID-19 and Heart Failure with Preserved Ejection Fraction. JAMA. 2020;324(15):1499–1500. PMID: 33001179 https://doi.org/10.1001/jama.2020.17445; Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–558. PMID: 32690910 https://doi.org/10.1038/s41569-020-0413-9; Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618–625. PMID: 19453650 https://doi.org/10.1111/j.1365-2362.2009.02153.x; Su H, Yang M, Wan Ch, Yi L-X, Tang F, Zhu H-Y, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227. PMID: 32327202 https://doi.org/10.1016/j.kint.2020.04.003; Santoriello D, Khairallah P, Bomback AS, Xu K, Kudose S, Batal I, et al. Postmortem kidney pathology findings in patients with COVID-19. Am Soc Nephrol. 2020;31(9):2158–2167. PMID: 32727719 https://doi.org/10.1681/asn.2020050744; Yelin D, Wirtheim Eytan, Vetter P, Kalil AC, Bruchfeld J, Runold M, et al. Long-term consequences of COVID-19: research needs. Lancet Infec Dis. 2020;20(10):1115–1117. PMID: 32888409 https://doi.org/10.1016/S1473-3099(20)30701-5; Mitrani RD, Dabas N, Goldberger JJ. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart rhythm. 2020;17(11):1984–1990. PMID: 32599178 https://doi.org/10.1016/j.hrthm.2020.06.026; Del Rio C, Collins LF, Malani P. Long-term health consequences of COVID-19. JAMA. 2020;324(7):1723–1724. PMID: 33031513 https://doi.org/10.1001/jama.2020.19719; https://www.jnmp.ru/jour/article/view/1069

  7. 7