-
1Academic Journal
Subject Terms: крытые лагуны, системы анаэробного сбраживания, биогазовые комплексы, анаэробное сбраживание, отходы животноводческих комплексов, осадки очистных сооружений
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/71270
-
2Academic Journal
Subject Terms: направления использования осадков, анаэробное сбраживание, технологии обработки осадков, осадки очистных сооружений канализации, охрана окружающей среды, механическое обезвоживание
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/71274
-
3Academic Journal
Authors: A. A. Kovalev, E. R. Mikheeva, I. V. Katraeva, D. A. Kovalev, A. M. Kozlov, Yu. V. Litti, А. А. Ковалев, Э. Р. Михеева, И. В. Катраева, Д. А. Ковалев, А. М. Козлов, Ю. В. Литти Ю.В
Contributors: Исследование выполнено за счет гранта Российского научного фонда № 21-79-10153, https://rscf.ru/project/21-79-10153/. Работа Ковалев Д.А. и Литти Ю.В. финансировалась Министерством науки и высшего образования Российской Федерации.
Source: Alternative Energy and Ecology (ISJAEE); № 6 (2022); 50-65 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2022); 50-65 ; 1608-8298
Subject Terms: теплота сгорания, two-stage anaerobic digestion, biohythane, mesophilic-thermophilic mode, heating value, двухстадийное анаэробное сбраживание, биогитан, мезофильно- термофильный режим
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2571/2088; Lunprom, S.; Phanduang, O.; Salakkam, A.; Liao, Q.; Imai, T.; Reungsang, A. Bio-Hythane Production from Residual Biomass of Chlorella Sp. Biomass through a Two-Stage Anaerobic Digestion. International Journal of Hydrogen Energy 2019, 44 (6), 3339–3346. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.09.064.; Antonopoulou, G.; Gavala, H. N.; Skiadas, I. V; Angelopoulos, K.; Lyberatos, G. Biofuels Generation from Sweet Sorghum: Fermentative Hydrogen Production and Anaerobic Digestion of the Remaining Biomass. Bioresource Technology 2008, 99 (1), 110–119. https://doi.org/https://doi.org/10.1016/j.biortech.2006.11.048.; Roy, S.; Das, D. Biohythane Production from Organic Wastes: Present State of Art. Environmental Science and Pollution Research 2016, 23 (10), 9391– 9410. https://doi.org/10.1007/s11356-015-5469-4.; Ghimire, A.; Kumar, G.; Sivagurunathan, P.; Shobana, S.; Saratale, G. D.; Kim, H. W.; Luongo, V.; Esposito, G.; Munoz, R. Bio-Hythane Production from Microalgae Biomass: Key Challenges and Potential Opportunities for Algal Bio-Refineries. Bioresource Technology 2017, 241, 525–536. https://doi.org/https://doi.org/10.1016/j.biortech.2017.05.156.; Шайкин А.П., Галиев И.Р. Влияние химического состава hythane на давление в камере сгорания двигателя. Альтернативная энергетика и экология (ISJAEE). 2019;(10-12):36-42. https://doi.org/10.15518/isjaee.2019.10-12.036-042.; Иванникова, Е. М., Систер В. Г., Чирков В. Г. Альтернативные топлива для двигателей внутреннего сгорания. Альтернативная энергетика и экология (ISJAEE). 2014;13(153):35-44. https://doi.org/10.15518/ISJAEE.1.20140601006.; Бризицкий О.Ф., Терентьев В.Я., Барелко В.В., Кириллов В.А., Собянин В.А., Снытников П.В., Бурцев В.А., Быков Л.А., Кузнецов М.В. О перспективах перевода двигателестроения на водородсодержащее топливо. Альтернативная энергетика и экология (ISJAEE). 2014;(20):95-102. https://doi.org/10.15518/isjaee.2014.20.008.; Столяревский А.Я. Технология производства водородометановой смеси для автотранспорта и энергетики. Альтернативная энергетика и экология (ISJAEE). 2009;5:8-16.; Liu, Z.; Si, B.; Li, J.; He, J.; Zhang, C.; Lu, Y.; Zhang, Y.; Xing, X.-H. Bioprocess Engineering for Biohythane Production from Low-Grade Waste Biomass: Technical Challenges towards Scale Up. Current Opinion in Biotechnology 2018, 50, 25–31. https://doi.org/https://doi.org/10.1016/j.copbio.2017.08.014.; Dahiya, S.; Joseph, J. High Rate Biomethanation Technology for Solid Waste Management and Rapid Biogas Production: An Emphasis on Reactor Design Parameters. Bioresource Technology 2015, 188, 73–78. https://doi.org/https://doi.org/10.1016/j.biortech.2015.01.074.; Cavinato, C.; Bolzonella, D.; Fatone, F.; Cecchi, F.; Pavan, P. Optimization of Two-Phase Thermophilic Anaerobic Digestion of Biowaste for Hydrogen and Methane Production through Reject Water Recirculation. Bioresource Technology 2011, 102 (18), 8605– 8611. https://doi.org/https://doi.org/10.1016/j.biortech.2011.03.084.; Kumari, S.; Das, D. Biohythane Production from Sugarcane Bagasse and Water Hyacinth: A Way towards Promising Green Energy Production. Journal of Cleaner Production 2018, 207. https://doi.org/10.1016/j.jclepro.2018.10.050.; Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Process Biochemistry 2005, 40 (3), 989–995. https://doi.org/10.1016/j.procbio.2004.03.007.; Tunçay, E. G.; Erguder, T. H.; Eroğlu, İ.; Gündüz, U. Dark Fermentative Hydrogen Production from Sucrose and Molasses. International Journal of Energy Research 2017, 41 (13), 1891–1902. https://doi.org/10.1002/er.3751.; Cheng, J.; Lin, R.; Ding, L.; Song, W.; Li, Y.; Zhou, J.; Cen, K. Fermentative Hydrogen and Methane Cogeneration from Cassava Residues: Effect of Pretreatment on Structural Characterization and Fermentation Performance. Bioresource Technology 2015, 179, 407–413. https://doi.org/https://doi.org/10.1016/j.biortech.2014.12.050.; Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Kim, S.-H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose Biohydrogen: Practical Challenges and Recent Progress. Renewable and Sustainable Energy Reviews 2015, 44, 728–737. https://doi.org/10.1016/j.rser.2015.01.042.; Ghimire, A.; Luongo, V.; Frunzo, L.; Pirozzi, F.; Lens, P. N. L.; Esposito, G. Continuous Biohydrogen Production by Thermophilic Dark Fermentation of Cheese Whey: Use of Buffalo Manure as Buffering Agent. International Journal of Hydrogen Energy 2017, 42, 4861–4869.; Cota-Navarro, C. B.; Carrillo-Reyes, J.; Davila-Vazquez, G.; Alatriste-Mondragón, F.; Razo-Flores, E. Continuous Hydrogen and Methane Production in a Two-Stage Cheese Whey Fermentation System. Water Science and Technology 2011, 64 (2), 367–374. https://doi.org/10.2166/wst.2011.631.; Venetsaneas, N.; Antonopoulou, G.; Stamatelatou, K.; Kornaros, M.; Lyberatos, G. Using Cheese Whey for Hydrogen and Methane Generation in a Two-Stage Continuous Process with Alternative PH Controlling Approaches. Bioresource Technology 2009, 100 (15), 3713–3717. https://doi.org/https://doi.org/10.1016/j.biortech.2009.01.025.; Ramos, L. R.; de Menezes, C. A.; Soares, L. A.; Sakamoto, I. K.; Varesche, M. B. A.; Silva, E. L. Controlling Methane and Hydrogen Production from Cheese Whey in an EGSB Reactor by Changing the HRT. Bioprocess and Biosystems Engineering 2020, 43 (4), 673– 684. https://doi.org/10.1007/s00449-019-02265-9.; Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2). https://doi.org/10.3390/app11020510.; Ta, D. T.; Lin, C.-Y.; Ta, T. M. N.; Chu, C.-Y. Biohythane Production via Single-Stage Anaerobic Fermentation Using Entrapped Hydrogenic and Methanogenic Bacteria. Bioresource Technology 2020, 300, 122702. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122702.; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Zhuravleva, E. A.; Katraeva, I. V; Grigoriev, V. S.; Litti, Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process. International Journal of Hydrogen Energy 2021, 46 (80), 39688–39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.; ГОСТ 31369-2008 (ИСО 6976:1995) Газ природный Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.; Srisowmeya, G.; Chakravarthy, M.; Bakshi, A.; Nandhini Devi, G. Improving Process Stability, Biogas Production and Energy Recovery Using Two-Stage Mesophilic Anaerobic Codigestion of Rice Wastewater with Cow Dung Slurry. Biomass and Bioenergy 2021, 152, 106184. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106184.; Engineering ToolBox (https://www.engineeringtoolbox.com/).; Harrison, K. W.; Remick, R. J.; Hoskin, A. J.; Martin, G. Hydrogen Production: Fundamentals and Case Study Summaries; Preprint; 2010 (To be presented at the 18th World Hydrogen Energy Conference Essen, Germany May 16-21, 2010).; Синха П., Гаурав К., Рой Ш., Балахандар Г., Дас Д. Повышение выработки биоводорода с помощью новой стратегии аугментации с использованием различных органических остатков. Альтернативная энергетика и экология (ISJAEE). 2019;(34-36):26-40. https://doi.org/10.15518/isjaee.2019.34-36.026-040.; Дас Д., Везироглу Т.Н. Достижения в области получения водорода биологическим путем. Альтернативная энергетика и экология (ISJAEE). 2017;(22-24):83-98. https://doi.org/10.15518/isjaee.2017.22-24.083-098.; Ali, M. M.; Mustafa, A. M.; Zhang, X.; Lin, H.; Zhang, X.; Abdulbaki Danhassan, U.; Zhou, X.; Sheng, K. Impacts of Molybdate and Ferric Chloride on Biohythane Production through Two-Stage Anaerobic Digestion of Sulfate-Rich Hydrolyzed Tofu Processing Residue. Bioresource Technology 2022, 355, 127239. https://doi.org/https://doi.org/10.1016/j.biortech.2022.127239.; Khongkliang, P.; Kongjan, P.; O-Thong, S. Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. Energy Procedia 2015, 79, 827–832. https://doi.org/https://doi.org/10.1016/j.egypro.2015.11.573.; Kabir, S. Bin; Khalekuzzaman, M.; Hossain, N.; Jamal, M.; Alam, M. A.; Abomohra, A. E.-F. Progress in Biohythane Production from Microalgae-Wastewater Sludge Co-Digestion: An Integrated Biorefinery Approach. Biotechnology Advances 2022, 57, 107933. https://doi.org/https://doi.org/10.1016/j.biotechadv.2022.107933. ion in Biotechnology 2018, 50, 25–31. https://doi.org/https://doi.org/10.1016/j.copbio.2017.08.0; https://www.isjaee.com/jour/article/view/2571
-
4Academic Journal
Source: Экономика и предпринимательство. :568-574
Subject Terms: anaerobic digestion, альтернативные источники энергии, биогаз, анаэробное сбраживание, отходы птицеводства, 7. Clean energy, сброженный субстрат, 12. Responsible consumption, alternative energy sources, digested substrate, 13. Climate action, 11. Sustainability, biogas, биогазовые установки, biogas plants, poultry waste
-
5Academic Journal
-
6Academic Journal
Authors: Efremova, Sania, POLITAEVA, Natalya, VELMOZHINA, Ksenia, SHINKEVICH, Polina, BONDARENKO, Kristina
Subject Terms: 13. Climate action, 11. Sustainability, АНАЭРОБНОЕ СБРАЖИВАНИЕ, БИОГАЗ, ВЫСШИЕ ВОДНЫЕ РАСТЕНИЯ, МЕТАН, АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ, МАКРОФИТЫ, 14. Life underwater, 15. Life on land, 7. Clean energy, 6. Clean water, ANAEROBIC DIGESTION, BIOGAS, HIGHER AQUATIC PLANTS, METHANE, ALTERNATIVE ENERGY SOURCES, MACROPHYTES, 12. Responsible consumption
-
7Academic Journal
Subject Terms: биогаз, анаэробное сбраживание, расчет метантенка, переработка активного ила, активный ил, очистные сооружения
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/61957
-
8Academic Journal
Source: Журнал «Агропанорама». :39-44
Subject Terms: анаэробное сбраживание, электролизные процессы, аквакультура
File Description: application/pdf
Access URL: https://rep.bsatu.by/handle/doc/17118
-
9Academic Journal
Authors: V. A. Panchenko, S. P. Chirsky, A. A. Kovalev, Yu. V. Litti, Yu. V. Karaeva, I. V. Katraeva, В. А. Панченко, С. П. Чирский, А. А. Ковалёв, Ю. В. Литти, Ю. В. Караева, И. В. Катраева
Contributors: Исследование выполнено за счёт средств гранта Российского научного фонда № 22-49-02002, https://rscf.ru/project/22-49-02002/
Source: Alternative Energy and Ecology (ISJAEE); № 2 (2024); 12-36 ; Альтернативная энергетика и экология (ISJAEE); № 2 (2024); 12-36 ; 1608-8298
Subject Terms: метод конечных элементов, biogas plant, green hydrogen, biohydrogen, biomethane, anaerobic bioconversion, energy supply, photovoltaic module, solar collector, photovoltaic thermal module, modeling, finite element method, биогазовая установка, зелёный водород, биоводород, биометан, анаэробное сбраживание, энергоснабжение, фотоэлектрический модуль, солнечный коллектор, теплофотоэлектрический модуль, моделирование
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2351/1902; Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition. Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.; Lowe, R. J., Drummond, P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications. Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.; Maestre V. M., Ortiz, A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.; Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.; Arsad, A. Z., Hannan M. A., Al-Shetwi, Ali Q., Mansur, M., Muttaqi, K. M., Dong, Z. Y., Blaabjerg, F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.; Torbjørn Egeland-Eriksen, Amin Hajizadeh, SabrinaSartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.; Zhijie Chen, Wei Wei, Lan Song, Bing-Jie Ni (2022). Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production. Sustainable Horizons, 1, 100002. https://doi.org/10.1016/j.horiz.2021.100002.; Fei-Yue Gao, Peng-Cheng Yu, Min-Rui Gao (2022). Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Current Opinion in Chemical Engineering, 36, 100827. https://doi.org/10.1016/j.coche.2022.100827.; Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet (2022). Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective. Current Opinion in Electrochemistry, 31, 100879. https://doi.org/10.1016/ j.coelec.2021.100879.; Ernesto Amores, Margarita Sánchez-Molina, MónicaSánchez (2021). Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production. Results in Engineering, 10, 100235. https://doi.org/10.1016/j.rineng.2021.100235.; Shams Anwar, Faisal Khan, Yahui Zhang, Abdoulaye Djire (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 46(63), 32284-32317. https://doi.org/10.1016/ j.ijhydene.2021.06.191.; Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown. Green hydrogen investments: Investigating the option to wait. Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.; Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.; Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality. Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.; Piyali Chatterjee, Mounika Sai KrishnaAmbati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.; International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf; Friedman, S. J., Fan, Z., Tang, K. (2019). «Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today». New York: Columbia University, Center on Global Energy Policy. https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.; Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». https://www.woodmac.com/our-expertise/focus/ transition/green-hydrogen-production-2019/.; Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China. Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.; Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compressionexpansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.; Norhidayah Mat Taib, Mohd Radzi Abu Mansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine. Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.; Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook. Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.; Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea. Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.; Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells. International Journal of Hydrogen Energy, 46(76), 38051-38072. https://doi.org/10.1016/ j.ijhydene.2021.09.047.; Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/ j.ijhydene.2021.07.127.; Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea. Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-819727-1.00005-4.; Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping. International Journal of Hydrogen Energy, 47(13), 8565- 8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.; Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development. Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.; Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.; Kovalev A. A., Kovalev D. A., Panchenko V., Kharchenko V. (2021). Intellectualized Control System for Anaerobic Bioconversion of Liquid Organic Waste. International Journal of Energy Optimization and Engineering, Volume 10, Issue 1, 56-81, DOI:10.4018/IJEOE.2021010104.; Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko (2022). Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates. International Journal of Energy Optimization and Engineering. Volume 11 Issue 1, 1-17, DOI:10.4018/IJEOE.298693.; Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh. Energy Procedia, V. 160, 277-284. https://doi.org/10.1016/j.egypro.2019.02.147.; Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, V. 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas. International Journal of Hydrogen Energy, V. 45, I. 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.; Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Applied Energy, V. 169, 138-149. https://doi.org/10.1016/j.apenergy.2016.02.037. [37]. P. Axaopoulos, P. Panagakis, A. Tsavdaris, D. Georgakakis (2001). Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy, V. 70, I. 2, 2001, 155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.; Hamed M. El-Mashad, Wilko K. P. van Loon, Grietje Zeeman, Gerard P. A. Bot, Gatze Lettinga (2004). Design of A Solar Thermophilic Anaerobic Reactor for Small Farms. Biosystems Engineering, V. 87, I. 3, 345-353.https://doi.org/10.1016/j.biosystemseng.2003.11.013.; Badr Ouhammou, Aggour Mohammed, Smouh Sliman, Abdelmajid Jamil, Bakraoui Mohammed, Fadoua Karouach, Hassan El Bari, Tarik Kousksou (2022). Experimental conception and thermo-energetic analysis of a solar biogas production system. Case Studies in Thermal Engineering, V. 30, 101740. https://doi.org/10.1016/j.csite.2021.101740.; M. R. Darwesh, M. S. Ghoname (2021). Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, V. 7, 1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014. [41]. B. Ouhammou, M. Naciri, M. Aggour, M. Bakraoui, F. Karouach, H. El Bari (2017). Design and Analysis of Integrating the Solar Thermal energy in Anaerobic Digester using TRNSYS: Application kenitra-Morocco. Energy Procedia, V. 141, 13-17. https://doi.org/10.1016/j.egypro.2017.11.004.; Rong Feng, Jinping Li, Ti Dong, Xiuzhen Li (2016). Performance of a novel household solar heating thermostatic biogas system. Applied Thermal Engineering, V. 96, 519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.; Yong Lu, Ye Tian, Haowei Lu, Lei Wu, Xianlin Li (2015). Study of solar heated biogas fermentation system with a phase change thermal storage device. Applied Thermal Engineering, V. 88, 418-424. https://doi.org/10.1016/j.applthermaleng.2014.12.065.; Jinping Li, Shirong Jin, Dandan Wan, Hui Li, Shuyuan Gong, Vojislav Novakovic (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management, V. 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626.; Yuan Zhong, Mauricio Bustamante Roman, Yingkui Zhong, Steve Archer, Rui Chen, Lauren Deitz, Dave Hochhalter, Katie Balaze, Miranda Sperry, Eric Werner, Dana Kirk, Wei Liao (2015). Using anaerobic digestion of organic wastes to biochemically store solar thermal energy. Energy, V. 83, 638-646. https://doi.org/10.1016/j.energy.2015.02.070.; Eid S. Gaballah, Tarek Kh Abdelkader, Shuai Luo, Qiaoxia Yuan, Abd El-Fatah Abomohra (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy, V. 193, 116758. https://doi.org/10.1016/j.energy.2019.116758.; Vikram P. Rathod, Jotiprasad Shete, Purnanand V. Bhale (2016). Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. International Journal of Hydrogen Energy, V. 41, I. 1, 132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.; Bosheng Su, Wei Han, Hongguang Jin (2017). Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy. Applied Energy, V. 206, 1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.; Bosheng Su, Wei Han, Xiaosong Zhang, Yi Chen, Zefeng Wang, Hongguang Jin (2018) Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy. Applied Energy, V. 229, 922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.; A. S. Mehr, M. Gandiglio, M. Mosaye Nezhad, A. Lanzini, S.M.S. Mahmoudi, M. Yari, M. Santarelli (2017). Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis. Applied Energy, V. 191, 620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.; G. Zhang, Y. Li, Y. J. Dai, R. Z. Wang (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Applied Thermal Engineering, V. 109, Part A, 423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.; Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.; Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.; Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, V. 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.; Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, V. 36, I. 2, 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.; Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading. Journal of Cleaner Production, V. 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.; Shanfei Fu, Irini Angelidaki, Yifeng Zhang (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, V. 39, I. 4, 336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.; Ansys. Engineering Simulation Software. https://www.ansys.com/; Panchenko V., Chirskiy S., KharchenkoV. V. Application of the Software System of Finite Element Analysis for the Simulation and Design Optimization of Solar Photovoltaic Thermal Modules. Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering, 2019, 106-131, DOI:10.4018/978-1-7998-1216-6.ch005.; Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. International Journal of Energy Optimization and Engineering, Volume 9, Issue 2, 74-94. DOI:10.4018/IJEOE.2020040106.; Panchenko V. A., Daus Yu. V., Kovalev A. A., Litty Yu. V., Katraeva I. V. Modeling the energy supply of a biogas plant based on solar modules of various designs. International Journal of Hydrogen Energy, Volume 51, Part D, 2023, 119-129. https://doi.org/10.1016/j. ijhydene.2023.09.320.; Wong H. Y. Handbook of essential formulae and data for Heat Transfer for Engineers (1977). London, New York: Longman, 236 pp.; https://www.isjaee.com/jour/article/view/2351
-
10Academic Journal
Subject Terms: ECONOMIC SECURITY, WASTEWATER TREATMENT, CIRCULAR ECONOMY, PYROLYSIS, ЦИРКУЛЯРНАЯ ЭКОНОМИКА, ОЦЕНКА, SEWAGE SLUDGE, ANAEROBIC DIGESTION, АНАЭРОБНОЕ СБРАЖИВАНИЕ, DRYING, KEY PERFORMANCE INDICATORS, ASSESSMENT, ОСАДОК СТОЧНЫХ ВОД, SUSTAINABLE DEVELOPMENT, ТЕРМИЧЕСКАЯ СУШКА, ОТХОДЫ В ЭНЕРГИЮ, ПИРОЛИЗ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/122331
https://journalaer.ru/ru/arkhiv/journal/208/article/2440/ -
11Academic Journal
Authors: N. E. Gutorova, O. V. Dymnikova
Source: Безопасность техногенных и природных систем, Vol 0, Iss 4, Pp 50-55 (2020)
Subject Terms: осадки сточных вод, биогаз, метантенк, Industrial safety. Industrial accident prevention, T55-55.3, 11. Sustainability, анаэробная стабилизация, 7. Clean energy, 6. Clean water, анаэробное сбраживание осадка, 12. Responsible consumption
-
12Academic Journal
Subject Terms: переработка молочной сыворотки, утилизация молочной сыворотки, анаэробное сбраживание, экологическая безопасность, сточные воды молокозаводов, молочные предприятия
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/55625
-
13Academic Journal
Subject Terms: осадки очистных сооружений канализации, охрана окружающей среды, направления использования осадков, механическое обезвоживание, анаэробное сбраживание, технологии обработки осадков
File Description: application/pdf
Relation: https://elib.belstu.by/handle/123456789/71274; 628.381.1
Availability: https://elib.belstu.by/handle/123456789/71274
-
14Academic Journal
Authors: Марцуль, Владимир Николаевич
Subject Terms: крытые лагуны, отходы животноводческих комплексов, анаэробное сбраживание, биогазовые комплексы, системы анаэробного сбраживания, осадки очистных сооружений
File Description: application/pdf
Relation: https://elib.belstu.by/handle/123456789/71270; 628.336:631.147
Availability: https://elib.belstu.by/handle/123456789/71270
-
15Academic Journal
Authors: Golub, Nataliia, Potapova, Mariana
Contributors: ELAKPI
Source: Innovative Biosystems and Bioengineering, Vol 2, Iss 2 (2018)
Innovative Biosystems and Bioengineering; Том 2, № 2 (2018); 125-134Subject Terms: 0106 biological sciences, 0301 basic medicine, фертигація, anaerobic digestion, анаеробне зброджування, fertigation, послеспиртовая барда, QH301-705.5, utilization, 0211 other engineering and technologies, Післяспиртова барда, Утилізація, Переробка, Фертигація, Сушка, Аеробне зброджування, Кормові дріжджі, Анаеробне зброджування, Біогаз, кормові дріжджі, 02 engineering and technology, aerobic digestion, 01 natural sciences, Distillery spent wash, Utilization, Processing, Fertigation, Drying, Aerobic digestion, Fodder yeast, Anaerobic digestion, Biogas, утилизация, 7. Clean energy, 12. Responsible consumption, утилізація, 03 medical and health sciences, аеробне зброджування, кормовые дрожжи, сушка, fodder yeast, biogas, drying, Biology (General), переробка, Біотехнології, післяспиртова барда, фертигация, анаэробное сбраживание, биогаз, біогаз, переработка, distillery spent wash, 04 agricultural and veterinary sciences, аэробное сбраживание, Послеспиртовая барда, Утилизация, Переработка, Фертигация, Аэробное сбраживание, Кормовые дрожжи, Анаэробное сбраживание, Биогаз, 6. Clean water, 0401 agriculture, forestry, and fisheries, processing
File Description: application/pdf
Access URL: http://ibb.kpi.ua/article/download/125733/pdf_22
https://doaj.org/article/24c628999a0d4b49a0392923f916b5dd
https://doaj.org/article/24c628999a0d4b49a0392923f916b5dd
http://ibb.kpi.ua/article/view/125733
http://ibb.kpi.ua/article/download/125733/pdf_22
https://ela.kpi.ua/handle/123456789/24006
http://ibb.kpi.ua/article/view/125733 -
16Academic Journal
Source: Vestnik of Brest State Technical University; No. 1(127) (2022): Vestnik of Brest State Technical University; 6-12
Вестник Брестского государственного технического университета; № 1(127) (2022): Вестник Брестского государственного технического университета; 6-12Subject Terms: уплотнение, удаление биогенных элементов, sewage sludge, анаэробное сбраживание, метантенк, удаление фосфора, digester, purification of return flows from nitrogen compounds, struvite mineral fertilizer, активный ил, очистка возвратных потоков от соединений азота, aerobic stabilization, active sludge, осадки сточных вод, струвит, pressure flotation, dephosphatation, минеральное удобрение, compaction, аэробная стабилизация, напорная флотация, removal of biogenic elements
File Description: application/pdf
-
17Academic Journal
Authors: Скляр, Олександр Григорович, Скляр, Александр Григорьевич, Skliar, Oleksandr, Скляр, Радміла Вікторівна, Скляр, Радмила Викторовна, Skliar, Radmila
Subject Terms: анаеробне зброджування, біоконверсні технології, компостування, органічне добриво, відходи, технологічна схема, anaerobic fermentation, bioconversion technologies, composting, organic fertilizer, waste, technological scheme, анаэробное сбраживание, биоконверсные технологии, компостирование, органическое удобрение, отходы, технологическая схема
File Description: application/pdf
Relation: Науковий вісник Таврійського державного агротехнологічного університету: електронне наукове фахове видання;Вип. 11, т. 2; http://elar.tsatu.edu.ua/handle/123456789/16047
Availability: http://elar.tsatu.edu.ua/handle/123456789/16047
-
18Academic Journal
Subject Terms: сушка, анаэробное сбраживание, сжигание, канализация, избыточный активный ил, компостирование, осадки очистных сооружений, механическое обезвоживание
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/41773
-
19Academic Journal
Subject Terms: анаэробное сбраживание, биогаз, осадки очистных сооружений
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/40235
-
20Academic Journal
Subject Terms: осадки сточных вод, очистка сточных вод, анаэробное сбраживание, анаэробная стабилизация, расчет энергетического баланса
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/40062