-
1Academic Journal
Συγγραφείς: Zaytseva M.A., Shekhtman A.P., Papusha L.I., Valiakhmetova E.F., Yasko L.A., Druy A.E.
Πηγή: Advances in Molecular Oncology; Vol 7, No 3 (2020); 37-47 ; Успехи молекулярной онкологии; Vol 7, No 3 (2020); 37-47 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: lioblastoma, anaplastic astrocytoma, anaplastic pleomorphic xanthoastrocytoma, diffuse midline glioma, H3 K28M, BRAF V600E, CDKN2A / 2B, ETV6‑NTRK3, глиобластома, анапластическая астроцитома, анапластическая плеоморфная ксантоастроцитома, диффузная срединная глиома
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/285/210; https://umo.abvpress.ru/jour/article/view/285
-
2Academic Journal
Συγγραφείς: M. A. Zaytseva, A. P. Shekhtman, L. I. Papusha, E. F. Valiakhmetova, L. A. Yasko, A. E. Druy, М. А. Зайцева, А. П. Шехтман, Л. И. Папуша, Э. Ф. Валиахметова, Л. А. Ясько, А. Е. Друй
Πηγή: Advances in Molecular Oncology; Том 7, № 3 (2020); 37-47 ; Успехи молекулярной онкологии; Том 7, № 3 (2020); 37-47 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2020-7-3
Θεματικοί όροι: ETV6‑NTRK3, anaplastic astrocytoma, anaplastic pleomorphic xanthoastrocytoma, diffuse midline glioma, H3 K28M, BRAF V600E, CDKN2A / 2B, анапластическая астроцитома, анапластическая плеоморфная ксантоастроцитома, диффузная срединная глиома
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/285/210; Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20. DOI:10.2176/nmc.ra.2017-0010.; Johnson A., Severson E., Gay L. et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 2017;22(12):1478–90. DOI:10.1634/theoncologist.2017-0242.; Зайцева М.А., Ясько Л.А., Папуша Л.И., Друй А.Е. Молекулярно-генетические характеристики глиом у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2019;18(4):109–17.; Gambella A., Senetta R., Collemi G. et al. NTRK fusions in central nervous system tumors: a rare, but worthy target. Int J Mol Sci 2020;21(3):753. DOI:10.3390/ijms21030753.; Toll S.A., Tran H.N., Cotter J. et al. Sustained response of three pediatric BRAFV600E mutated high-grade gliomas to combined BRAF and MEK inhibitor therapy. Oncotarget 2019;10(4):551–7. DOI:10.18632/oncotarget.26560.; Catalogue of somatic mutations in cancer. Available at: https://cancer.sanger.ac.uk/cosmic.; Leske H., Rushing E., Budka H. et al. K27/G34 versus K28/G35 in histone H3-mutant gliomas: a note of caution. Acta Neuropathologica 2018;136(1):175–6. DOI:10.1007/s00401-018-1867-2.; Grigore F.N., Day C., Yang H. et al. Histone H3.3 mutations drive tumorigenesis through chromosomal instability. Neurooncology 2019;21(Suppl_2):ii84. DOI:10.1093/neuonc/noz036.086.; Maeda S., Ohka F., Okuno Y. et al. H3F3A mutant allele specific imbalance in an aggressive subtype of diffuse midline glioma, H3 K27M-mutant. Acta Neuropathol Commun 2020;8(1):8. DOI:10.1186/s40478-020-0882-4.; Solomon D.A., Wood M.D., Tihan T. et al. Diffuse midline gliomas with histone H3 K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016;26(5):569–80. DOI:10.1111/bpa.12336.; Phillips J.J., Gong H., Chen K. et al. The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol 2019;29(1):85–96. DOI:10.1111/bpa.12639.; Vaubel R.A., Caron A.A., Yamada S. et al. Recurrent copy number alterations in lowgrade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol 2018;28(2): 172–82. DOI:10.1111/bpa.12495.; Touat M., Younan N., Euskirchen P. et al. Successful targeting of an ATG7-RAF1 gene fusion in anaplastic pleomorphic xanthoastrocytoma with leptomeningeal dissemination. JCO Precis Oncol 2019;3:1–7. DOI:10.1200/PO.18.00298.; Frazão L., do Carmo Martins M., Nunes V.M. et al. BRAF V600E mutation and 9p21: CDKN2A/B and MTAP co- deletions – markers in the clinical stratification of pediatric gliomas. BMC Cancer 2018;18(1):1259. DOI:10.1186/s12885-018-5120-0.; Rajbhandari R., McFarland B.C., Patel A. et al. Loss of tumor suppressive microRNA- 31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget 2015;6(19):17805–16. DOI:10.18632/oncotarget.4596.; Pollack I.F., Hamilton R.L., Sobol R.W. et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Child’s Nervous System 2011;27(1):87–94. DOI:10.1007/s00381-010-1264-1.; Buccoliero A.M., Castiglione F., Degl’Innocenti D.R. et al. IDH1 mutation in pediatric gliomas: has it a diagnostic and prognostic value? Fetal Pediatr Pathol 2012;31:278–82. DOI:10.3109/15513815.2012.659383.; Antonelli M., Buttarelli F.R., Arcella A. et al. Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol 2010;99:209–15. DOI:10.1007/s11060-010-0129-5.; Guerreiro Stucklin A.S., Ryall S., Fukuoka K. et al. Alterations in ALK/ ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019;10(1):4343. DOI:10.1038/s41467-019-12187-5.; Desai A.V., Robinson G.W., Basu E.M. et al. Updated entrectinib data in children and adolescents with recurrent or refractory solid tumors, including primary CNS tumors. J Clin Oncol ;38(15_suppl):107. DOI:10.1200/JCO.2020.38.15_suppl.107.; https://umo.abvpress.ru/jour/article/view/285