Εμφανίζονται 1 - 20 Αποτελέσματα από 30 για την αναζήτηση '"альвеолярные макрофаги"', χρόνος αναζήτησης: 0,62δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 28, № 6 (2018); 681-692 ; Пульмонология; Том 28, № 6 (2018); 681-692 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2018-28-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/1084/878; Vestbo J., Edwards L.D., Scanlon P.D. et al. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 2011; 365 (13): 1184–1192. DOI:10.1056/NEJMoa1105482.; Calverley P., Pauwels R., Vestbo J. et al. Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2003; 361 (9356): 449–456. DOI:10.1016/S0140-6736(03)12459-2.; Nannini L.J., Poole P., Milan S.J., Kesterton A. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013; (8): CD006826. DOI:10.1002/14651858.CD006826.pub2.; Kew K.M., Seniukovich A. Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev 2014; (3): CD010115. DOI:10.1002/14651858.CD010115.pub2.; Saha S., Brightling C.E. Eosinophilic airway inflammation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2006; 1 (1): 39–47. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706606/; Tashkin D.P., Wechsler M.E. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 335–349. DOI:10.2147/COPD.S152291.; Barnes N.C., Sharma R., Lettis S., Calverley P.M. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur. Respir. J. 2016; 47 (5): 1374–1382. DOI:10.1183/13993003.01370-2015.; Siddiqui S.H., Guasconi A., Vestbo J. et al. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 2015; 192 (4): 523–525. DOI:10.1164/rccm.201502-0235LE.; Selders G.S., Fetz A.E., Radic M.Z., Bowlin G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater. 2017; 4 (1): 55–68. DOI:10.1093/rb/rbw041.; Calandra T., Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 2003; 3 (10): 791–800. DOI:10.1038/nri1200.; Кадушкин А.Г., Таганович А.Д. Молекулярные механизмы формирования стероидорезистентности у пациентов с хронической обструктивной болезнью легких. Пульмонология. 2016; 26 (6): 736–747. DOI:10.18093/0869-0189-2016-26-6-736–747.; Arman M., Payne H., Ponomaryov T., Brill A. Role of platelets in inflammation. In: Kerrigan S.W., Moran N., eds. The Non-Thrombotic Role of Platelets in Health and Disease. Intech Publishers; 2015: 37–53. DOI:10.5772/60536.; Paliogiannis P., Fois A.G., Sotgia S. et al. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur. Respir. Rev. 2018; 27 (147): pii: 170113. DOI:10.1183/16000617.0113-2017.; Kumar P., Law S., Sriram K.B. Evaluation of platelet lymphocyte ratio and 90-day mortality in patients with acute exacerbation of chronic obstructive pulmonary disease. J. Thorac. Dis. 2017; 9 (6): 1509–1516. DOI:10.21037/jtd.2017.05.77.; Jones P.W., Harding G., Berry P. et al. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009; 34 (3): 648–654. DOI:10.1183/09031936.00102509.; Кадушкин А.Г., Таганович А.Д., А.А. Арабей и др. Чувствительность к глюкокортикоидам и гетерогенность ответа клеток in vitro у пациентов с хронической обструктивной болезнью легких. Пульмонология. 2018; 28 (5): 558–566. DOI:10.18093/0869-0189-2018-28-5-558-566.; Lang T. Documenting research in scientific articles: Guidelines for authors: 3. Reporting multivariate analyses. Chest. 2007; 131 (2): 628–632. DOI:10.1378/chest.06-2088.; Youngstrom E.A. A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC. J. Pediatr. Psychol. 2014; 39 (2): 204–221. DOI:10.1093/jpepsy/jst062.; Higham A., Booth G., Lea S. et al. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir. Res. 2015; 16 (1): 98. DOI:10.1186/s12931-015-0260-0.; Hinds D.R., DiSantostefano R.L., Le H.V., Pascoe S. Identification of responders to inhaled corticosteroids in a chronic obstructive pulmonary disease population using cluster analysis. BMJ Open. 2016; 6 (6): e010099. DOI:10.1136/bmjopen-2015-010099.; Calverley P.M.А., Tetzlaff K., Vogelmeier C. et al. Eosinophilia, frequent exacerbations, and steroid response in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017; 196 (9): 1219–1221. DOI:10.1164/rccm.201612-2525LE.; Sørensen A.K., Holmgaard D.B., Mygind L.H. et al. Neutrophil-to-lymphocyte ratio, calprotectin and YKL-40 in patients with chronic obstructive pulmonary disease: correlations and 5-year mortality – a cohort study. J. Inflamm. (Lond). 2015; 12: 20. DOI:10.1186/s12950-015-0064-5.; Lee H., Um S.J., Kim Y.S. et al. Association of the neutrophil-to-lymphocyte ratio with lung function and exacerbations in patients with chronic obstructive pulmonary disease. PLoS One. 2016; 11 (6): e0156511. DOI:10.1371/journal.pone.0156511.; Karadeniz G., Aktoğu S., Erer O.F. et al. Predictive value of platelet-to-lymphocyte ratio in exacerbation of chronic obstructive pulmonary disease. Biomark. Med. 2016; 10 (7): 701–710. DOI:10.2217/bmm-2016-0046.; Kurtipek E., Bekci T.T., Kesli R. et al. The role of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in exacerbation of chronic obstructive pulmonary disease. J. Pak. Med. Assoc. 2015; 65 (12): 1283–1287.; Richard V., Kindt N., Saussez S. Macrophage migration inhibitory factor involvement in breast cancer (Review). Int. J. Oncol. 2015; 47 (5): 1627–1633. DOI:10.3892/ijo.2015.3185.; Daun J.M., Cannon J.G. Macrophage migration inhibitory factor antagonizes hydrocortisone-induced increases in cytosolic IκBα. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 279 (3): R1043–R1049. DOI:10.1152/ajpregu.2000.279.3.R1043.; Roger T., Chanson A.L., Knaup-Reymond M., Calandra T. Macrophage migration inhibitory factor promotes innate immune responses by suppressing glucocorticoid-induced expression of mitogen-activated protein kinase phosphatase-1. Eur. J. Immunol. 2005; 35 (12): 3405–3413. DOI:10.1002/eji.200535413.; Wang F.F., Zhu L.A., Zou Y.Q. et al. New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus. Arthritis Res. Ther. 2012; 14 (3): R103. DOI:10.1186/ar3828.; Yao C., Liu X., Tang Z. Prognostic role of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio for hospital mortality in patients with AECOPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 2285–2290. DOI:10.2147/COPD.S141760.; Stolz D., Meyer A., Rakic J. et al. Mortality risk prediction in COPD by a prognostic biomarker panel. Eur. Respir. J. 2014; 44 (6): 1557–1570. DOI:10.1183/09031936.00043814.; https://journal.pulmonology.ru/pulm/article/view/1084

  5. 5
    Academic Journal

    Συνεισφορές: Grants of the Russian Foundation for Basic Research (No. 18-015-00160 \ 18) and the Council on Grants of the President of the Russian Federation for leading scientific schools (NSH- 2690.2018.7, No. 075-02-2018-538), Гранты РФФИ (№ 18-015-00160\18) и Совета по грантам Президента Российской Федерации для ведущих научных школ (НШ-2690.2018.7, № 075-02-2018-538)

    Πηγή: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 142-154 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 142-154 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2178/1545; https://bulletin.tomsk.ru/jour/article/view/2178/1561; Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013; 339 (6116): 161–166. DOI:10.1126/science.1230719.; Possamai L.A., Thursz M.R., Wendon J.A., Antoniades C.G. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J. Hepatol. 2014; 61 (2): 439–445. DOI:10.1016/j.jhep.2014.03.031.; Hume D.A., Ross I.L., Himes S.R., Sasmono R.T., Wells C.A., Ravasi T. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 2002; 72 (4): 621–627.; Tsou C.L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 2007; 117 (4): 902–909. DOI:10.1172/JCI29919.; Varol C., Mildner A., Jung S. Macrophages: development and tissue specialization. Annual Review of Immunology. 2015; 33: 643–675. DOI:10.1146/annurev-immunol-032414-112220.; Schulz C. et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science. 2012; 336: 86–90. DOI:10.1126/science.1219179.; Монастырская Е.А., Лямина С.В., Малышев И.Ю. М1 и М2 фенотипы активированных макрофагов и их роль в иммунном ответе и патологии. Патогенез. 2008; 6 (4): 31–39.; Lang R., Patel D., Morris J.J., Rutschm an R.L., Murray P.J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 2002; 169 (5): 2253–2263.; Martinez F.O., Gordon S., Locati М., Mantovani A. Transcriptional Profiling of the Human Monocyte to Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. J. Immunol. 2006; 177: 7303–7311.; Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003; 3 (1): 23–35.; Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41 (1): 14–20. DOI:10.1016/j.immuni.2014.06.008.; Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: Their role in infection and inflammation. Journal of Leukocyte Biology. 2007; 81 (3): 584–592.; Shahid F., Lip G., Shantsila E. Role of Monocytes in heart failure and atrial fibrillation. J. Am. Heart. Assoc. 2018; 7 (3). DOI:10.1161/JAHA.117.007849.; Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Sci. World J. 2011; 11: 2391–2402. DOI:10.1100/2011/213962.; Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M. Macrophage plasticity and polarization in tissue repair and re-modeling. J. Pathol. 2013; 229 (2): 176–185.; Schutyser E., Richmond A., van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J. Leukoc. Biol. 2005; 78 (1): 14–26.; Di Rosa M., Malaguarnera G., De Gregorio C., D’Amico F., Mazzarino M.C., Malaguarnera L. Modulation of chitotriosidase during macrophage differentiation. Cell Biochem. Biophys. 2013; 66 (2): 239–247. DOI:10.1007/s12013-012-9471-x.; Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496 (7446): 445–455. DOI:10.1038/nature12034.; Kapellos T.S., Iqbal A.J. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediators Inflamm. 2016; 6591703. DOI:10.1155/2016/6591703. Epub 2016 Apr 10.; Ginhoux F., Guilliams M., Naik S.H. Editorial: Dendritic Cell and Macrophage Nomenclature and Classification. Front. Immunol. 2016; 7: 168. DOI:10.3389/fimmu.2016.00168.; Hoeffel G., Ginhoux F. Ontogeny of Tissue-Resident Macrophages. Immunol. 2015; 6: 486. DOI:10.3389/fimmu.2015.00486.; Hussell T., Bell T. Alveolar macrophages: plasticity in a tissue-specific context. Immunol. 2014; 14 (2): 81–93. DOI:10.1038/nri3600.; Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008; 1 (13): 453–461.; Kreider Т., Anthony R.M., Urban Jr. J.F., Gause W.C. Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 2007; 19 (4): 448–453.; Schenk M., Fabri M., Krutzik S.R., Lee D.J., Vu D.M., Sieling P.A., Montoya D., Liu P.T., Modlin R.L. Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology. 2014 Feb; 141 (2): 174–180. DOI:10.1111/imm.12167.; Сахно Л.В., Шевела Е.Я., Черных Е.Р. Фенотипические и функциональные особенности альтернативно активированных макрофагов: возможное использование в регенеративной медицине. Иммунология. 2015; (4): 60–64.; Schenk M., Fabri M., Krutzik S.R., Lee D.J., Vu D.M., Sieling P.A., Montoya D., Liu P,T., Modlin R.L. Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology. 2014; 141 (2): 174–180. DOI:10.1111/imm.12167.; Gordon S., Martinez F.O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32 (5): 593–604. DOI:10.1016/j.immuni.2010.05.007.; Maler M.D., Nielsen P.J., Stichling N., Cohen I., Ruzsics Z., Wood C., Engelhard P., Suomalainen M., Gyory I., Hube M., Müller-Quernheim J., Schamel W.A., Gordon S., Jakob T., Martin S.F., Jahnen-Dechent W., Greber U.F., Freudenberg M.A., Fejer G. Key role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages. MBio. 2017; Jul. Aug. 8 (4): e00670–17. Published online 2017 Aug 1. DOI:10.1128/mBio.00670-17.; Xu Z., Xu L., Li W., Jin X., Song X., Chen X., Zhu J., Zhou S., Li Y., Zhang W., Dong X., Yang X., Liu F., Bai H., Chen Q., Su C. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection. Nat. Commun. 2017; 8: 16035. DOI:10.1038/ncomms16035.; PrabhuDas M.R., Baldwin C.L., Bollyky P.L., Bowdish D.M.E., Drickamer K., Febbraio M., Herz J., Kobzik L., Krieger M., Loike J., McVicker B., Means T.K., Moestrup S.K., Post S.R., Sawamura T., Silverstein S., Speth R.C., Telfer J.C., Thiele G.M., Wang X.Y., Wright S.D., El Khoury J.A. Consensus definitive classification of scavenger receptors and their roles in health and disease. J. Immunol. 2017; May 15; 198 (10): 3775–3789. DOI:10.4049/jimmunol.1700373.; Wong C.K., Smith C.A., Sakamoto K., Kaminski N., Koff J.L., Goldstein D.R. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 2017; Aug 1; 199 (3): 1060– 1068. DOI:10.4049/jimmunol.1700397. Epub 2017 Jun 23.; Давлятшина Н.З., Маянская А.Р., Мухаметгалиева Е.В., Майкова О.А., Кравцова Н.Е. Особенности ýкспрессии генов скавенджер-рецепторов моноцитов и макрофагов при разных клинических формах атеросклероза. Вестник современной клинической медицины. 2017; 10 (2): 13–18.; Alidori S., Akhavein N., Thorek D.L., Behling K., Romin Y., Queen D., Beattie B.J., Manova-Todorova K., Bergkvist M., Scheinberg D.A., McDevitt M.R. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med. 2016; 8 (331): 331–339. DOI:10.1126/scitranslmed.aac9647.; Janeway C.A., Travers P., Walport М., Shlomchik M. The immune system in health and disease. Immunobiology. Garland Science Publishing. 2005; 37–95.; Guilliams M., De Kleer I., Henri S., Post S., Vanhoutte L., De Prijck S., Deswarte K., Malissen B., Hammad H., Lambrecht B.N. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 2013; 210 (10): 1977–1992. DOI:10.1084/jem.20131199.; Hashimoto D., Chow A., Noizat C., Teo P., Beasley M.B., Leboeuf M., Becker C.D., See P., Price J., Lucas D., Greter M., Mortha A., Boyer S.W., Forsberg E.C., Tanaka M., Rooijen N., Garcнa-Sastre A., Stanley E.R., Ginhoux F., Frenette P.S., Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013; 38 (4): 792–804. DOI:10.1016/j.immuni.2013.04.004.; Shibata Y., Berclaz P.Y., Chroneos Z.C., Yoshida M., Whitsett J.A., Trapnell B.C. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity. 2001; 15 (4): 557–567. DOI:10.1016/S1074-7613(01)00218.; Пинегин Б.В., Карсонова М.И. Макрофаги: свойства и функции. Иммунология. 2009; 4: 241–249.; Taylor P.R., Martinez-Pomares L., Stacey M., Lin H.H., Brown G.D., Gordon S. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 2005; 23: 901–944.; Knapp S., Leemans J.C., Florquin S., Branger J., Maris N.A., Pater J., Rooijen N.; Poll T. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am. J. Respir. Crit. Care Med. 2003; 167 (2): 171–179. DOI:10.1164/rccm.200207-698OC.; Shaughnessy L. M., Swanson J. A. The role of the activated macrophage in clearing Listeria monocytogenes infection. Front. Biosci. 2007; 12: 2683–2692.; Joshi A.D., Raymond Т., Coelho A.L., Kunkel S.L., Hogaboam C.M. A systemic granulomatous response to Schistosoma mansoni eggs alters responsiveness of bone-marrow-derived macrophages to Toll-like receptor agonists. J. Leukoc. Biol. 2008; 83 (2): 314–324.; Misson P., van den Brule S., Barbarin V., Lison D., Huaux F. Markers of macrophage differentiation in experimental silicosis. J. Leukoc. Biol. 2004; 76: 926–932.; Fernandes D.M., Jiang X., Jung J.H., Baldwin C.L. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol. Med. Microbiol. 1996; 16 (3-4): 193– 203.; Kadioglu A., Andrew P.W. The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol. 2004; 25 (3): 143–149.; Veckman V., Miettinen M., Matikainen S., Lande R., Giacomini E. Coccia M., and Julkunen I. Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J. Leukocyte Biol. 2003; 74 (3): 395–402.; Goldmann, O., von Kockritz-Blickwede M., Holtje C., Chhatwal G.S., Geffers R., Medina E. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect. Immun. 2007; 75 (8): 4148–4157.; WHO pneumonia fact sheet. WHO; Geneva, Switzerland, 2016. World Health Organization Report, 2016.; Кречикова О.И., Козлов Р.С., Катосова Л.К., Вишнякова Л.А., Фаусова М.Е. Выделение, идентификация и определение чувствительности к антибиотикам Streptococcus pneumoniae. Клиническая микробиология и антимикробная химиотерапия. 2000; 2 (1): 88.; Kadioglu A., Coward W., Colston M.J., Colin R., Hewitt A., Andrew P.W. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect. Immun. 2004 May; 72 (5): 2689–2697. DOI:10.1128/IAI.72.5.2689-2697.2004.; Menter T., Giefing-Kroell C., Grubeck-Loebenstein B., Tzankov A. Pathobiology. 2014; 81 (3): 160–167. DOI:10.1159/000360165. Epub 2014 Apr 15.; Davis J., Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009: 136 (1): 37–49. DOI:10.1016/j.cell.2008.11.014; Volkman H., Pozos T., Zheng J., Davis J., Rawls J. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science. 2010; 327 (5964): 466–469. DOI:10.1126/science.1179663. Epub 2009 Dec 10.; Urazova O., Smolyagina R., Churina E., Novitskiy V. The factors of dendritic cells dysfunction at pulmonary tuberculosis. Pathophysiology. 2018; 25 (3): 230. DOI:10.1016/j.pathophys.2018.07.150.; Balboa L., Romero M.M., Laborde E., Sabio Y., Garcнa C.A., Basile J.I., Schierloh P., Yokobori N., Musella R.M., Castagnino J., de la Barrera S., Sasiain M.C., Alemбn M. Impaired dendritic cell differentiation of CD16- positive monocytes in tuberculosis: role of p38 MAPK. Eur J. Immunol. 2013; 43 (2): 335–347. DOI:10.1002/eji.201242557.; Benoit M., Desnues B., Mege J.L. Macrophage polarization in bacterial infections. J. Immunol. 2008; 181 (6): 3733– 3739.; Redente E.F., Higgins D.M., Dwyer-Nield L.D., Orme I.M., Gonzalez-Juarrero M., Malkinson A.M. Differential polarization of alveolar macrophages and bone marrowderived monocytes following chemically and pathogeninduced chronic lung inflammation. J. Leukoc. Biol. 2010; 88 (1): 159–168. DOI:10.1189/jlb.0609378. Epub 2010 Apr Redente et al., 2010.; Murray P., Wynn T. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011; 11 (11): 723–737. DOI:10.1038/nri3073.; Miller B.H., Fratti R.A., Poschet J.F., Timmins G.S., Master S.S., Burgos M., Marletta M.A., Deretic V. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect. Immun. 2004; 72 (5): 2872–2878.; Kahnert A., Seiler P., Stein M., Bandermann S., Hahnke K., Mollenkopf H. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur. J. Immunol. 2006; 36 (3): 631–647.; Гариб Ф.Ю., Ризопулу А.П. Взаимодействие патогенных бактерий с врожденными иммуными реакциями хозяина. Инфекция и иммунитет. 2012; 2 (3): 581– 596.; Pathak S.K., Basu S., Basu K.K., Banerjee A., Pathak S., Bhattacharyya A., Kaisho T., Kundu M., and Basu J. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol.2007; 8(6): 610–618.; Ting L.M., Kim A.C., Cattamanchi A., Ernst J.D. Mycobacterium tuberculosis inhibits IFN- transcriptional responses without inhibiting activation of STAT1. J. Immunol. 1999; 163 (7): 3898–3906.; Nagabhushanam V., Solache A., Ting L.M., Escaron C.J., Zhang J.Y., Ernst J.D. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J. Immunol. 2003; 171 (9): 4750–4757.; Geijtenbeek T.B., van Vliet S.J., Koppel E.A., SanchezHernandez M., Vandenbroucke-Grauls C.M., Appelmelk B., van Kooyk Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Ex. Med. 2003; Jan. 6; 197 (1): 7–17.; Hajishengallis G., Lambris J. Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 2011; 11 (3): 187–200. DOI:10.1038/nri2918.; Verreck F.A.W., de Boer T., Langenberg D.M.L., van der Zanden L., Ottenhoff T.H.M. Phenotypic and functional profiling of human proinflammatiry type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFNg and CD40L-mediated costimulation. J. Leukoc. Biol. 2006; 79 (2): 285–293.; Li M.O., Wan Y.Y., Sanjabi S., Robertson A.K., Fravell R.A. Transforming growth factor-beta regulation of immune responses. Ann. Rev. Immunol. 2006; 24: 99–146.; Brandes M.E., Wakefield L.M., Wahl S.M. Modulation of monocyte type I transforming growth factor-beta receptors by inflammatory stimuli. J. Biol.Chem. 1991; 266 (29): 19697–19703.; Ashcroft G.S. Bidirectional regulation of macrophage function by TGF-beta. Microbes Infect. 1999; 1 (15): 1275–1282.; Gratchev A., Kzhyshkowska J., Duperrier K., Utikal J., Velten F.W., Goerdt S. The receptor for interleukin-17E is induced by Th2 cytokines in antigen-presenting cells. Scand. J. Immunol. 2004; 60 (3): 233–237.; Churina E.G., Urazova O.I., Novitskiy V.V. The role of foxp3-expressing regulatory T cells and T helpers in immunopathogenesis of multidrug resistant pulmonary tuberculosis. Tuberc. Res. Treat. 2012; 2012: 931291. DOI:10.1155/2012/931291.; Чурина Е.Г., Уразова О.И., Новицкий В.В. Регуляторные Т-клетки и противотуберкулезный иммунитет. Томск: Печатная мануфактура, 2014: 156.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41 (1): 49–61. DOI:10.1016/j.immuni.2014.06.010.; Чурина Е.Г., Уразова О.И., Новицкий В.В., Есимова И.Е., Кононова Т.Е., Филинюк О.В., Колобовникова Ю.В., Дмитриева А.И. Факторы дисрегуляции иммунного ответа (на различных ýтапах его реализации) при туберкулезе легких. Бюллетень сибирской медицины. 2016; 15 (5): 166–177. DOI:10.20538/1682-0363-2016-5-166-177.; https://bulletin.tomsk.ru/jour/article/view/2178

  6. 6
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 28, № 5 (2018); 558-566 ; Пульмонология; Том 28, № 5 (2018); 558-566 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2018-28-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/1055/864; Halbert R.J., Natoli J.L., Gano A. et al. Global burden of COPD: systematic review and meta-analysis. Eur. Respir. J. 2006; 28 (3): 523–532. DOI:10.1183/09031936.06.00124605.; Hogg J.C.,Chu F.,Utokaparch S. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350 (26): 2645–2653. DOI:10.1056/NEJMoa032158.; Barnes P.J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2009; 41 (6): 631–638. DOI:10.1165/rcmb.2009-0220TR.; Кадушкин А.Г., Таганович А.Д. Молекулярные механизмы формирования стероидорезистентности у пациентов с хронической обструктивной болезнью легких. Пульмонология. 2016; 26 (6): 736–747. DOI:10.18093/0869-0189-2016-26-6-736-747.; Calverley P.M.A., Tetzlaff K., Vogelmeier C. et al. Eosinophilia, frequent exacerbations, and steroid response in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017; 196 (9): 1219–1221. DOI:10.1164/rccm.201612-2525LE.; Price D., Yawn B., Brusselle G., Rossi A. Risk-to-benefit ratio of inhaled corticosteroids in patients with COPD. Prim. Care Respir. J. 2013; 22 (1): 92–100. DOI:10.4104/pcrj.2012.00092.; Rossios C., To Y., Osoata G. et al. Corticosteroid insensitivity is reversed by formoterol via phosphoinositide-3-kinase inhibition. Br. J. Pharmacol. 2012; 167 (4): 775–786. DOI:10.1111/j.1476-5381.2012.01864.x.; Ratcliffe M.J., Dougall I.G. Comparison of the anti-inflammatory effects of cilomilast, budesonide and a p38 mitogen activated protein kinase inhibitor in COPD lung tissue macrophages. BMC. Pharmacol. Toxicol. 2012; (13):15. DOI:10.1186/2050-6511-13-15.; Siddiqui S.H., Guasconi A., Vestbo J. et al. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 2015; 192 (4): 523–525. DOI:10.1164/rccm.201502-0235LE.; Baughman R.P. Technical aspects of bronchoalveolar lavage: recommendations for a standard procedure. Semin. Respir. Crit. Care Med. 2007; 28 (5): 475–485. DOI:10.1055/s-2007-991520.; Van der Velden V.H. Glucocorticoids: mechanisms of action and antiinflammatory potential in asthma. Mediators Inflamm. 1998; 7 (4): 229–237. DOI:10.1080/09629359890910.; Oakley R.H., Jewell C.M., Yudt M.R. et al. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem. 1999; 274 (39): 27857–27866. DOI:10.1074/jbc.274.39.27857.; Marwick J.A., Caramori G., Stevenson C.S. et al. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am. J. Respir. Crit. Care Med. 2009; 179 (7): 542–548. DOI:10.1164/rccm.200810-1570OC.; Khalaf R.M., Lea S.R., Metcalfe H.J. et al. Mechanisms of corticosteroid insensitivity in COPD alveolar macrophages exposed to NTHi. Respir. Res. 2017. (18): 61. DOI:10.1186/s12931-017-0539-4.; Zeng M., Li Y., Jiang Y. et al. Local and systemic oxidative stress and glucocorticoid receptor levels in chronic obstructive pulmonary disease patients. Can. Respir. J. 2013; 20 (1): 35–41. DOI:10.1155/2013/985382.; Esmailpour N., Högger P., Rabe K.F. et al. Distribution of inhaled fluticasone propionate between human lung tissue and serum in vivo. Eur. Respir. J. 1997; 10 (7): 1496–1499.; Higham A., Booth G., Lea S. et al. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir. Res. 2015; (16): 98. DOI:10.1186/s12931-015-0260-0.; Khorasani N., Baker J., Johnson M. et al. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2015; (10): 283–291. DOI:10.2147/COPD.S72403.; Knobloch J., Hag H., Jungck D. et al. Resveratrol impairs the release of steroid-resistant cytokines from bacterial endotoxin-exposed alveolar macrophages in chronic obstructive pulmonary disease. Basic Clin. Pharmacol. Toxicol. 2011; 109 (2): 138–143. DOI:10.1111/j.1742-7843.2011.00707.x.; Armstrong J., Harbron C., Lea S. et al. Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 2011; 338 (3): 732–740. DOI:10.1124/jpet.111.180737.; Кадушкин А.Г., Таганович А.Д., Картун Л.В. и др. Уровень цитокинов в плазме крови некурящих и курящих пациентов с хронической обструктивной болезнью легких. Пульмонология. 2013; (6): 27–32. DOI:10.18093/0869-0189-2013-0-6-718-723.; Keatings V.M., Collins P.D., Scott D.M., Barnes P.J. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am. J. Respir. Crit. Care Med. 1996; 153 (2): 530–534. DOI:10.1164/ajrccm.153.2.8564092.; Soler N., Ewig S., Torres A. et al. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur. Respir. J. 1999; 14 (5): 1015–1022.; Barnes N.C., Sharma R., Lettis S., Calverley P.M. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur. Respir. J. 2016; 47 (5): 1374–1382. DOI:10.1183/13993003.01370-2015.; Tunçay E.A., Karakurt Z., Aksoy E. et al. Eosinophilic and non-eosinophilic COPD patients with chronic respiratory failure: neutrophil-to-lymphocyte ratio as an exacerbation marker. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; (12): 3361–3370. DOI:10.2147/COPD.S147261.; https://journal.pulmonology.ru/pulm/article/view/1055

  7. 7
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Довгий Р. С. Функціональний стан альвеолярних макрофагів та нейтрофілів кісткового мозку мишей різного віку / Р. С. Довгий, Л. М. Сківка // Вісник проблем біології і медицини. – 2017. – Вип. 4, т. 1 (139). – С. 79–84.; https://repository.pdmu.edu.ua/handle/123456789/13652

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20