Showing 1 - 12 results of 12 for search '"алкоксикарбонилирование"', query time: 0.59s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation (grant No. 22-23-00102), https://rscf.ru/ project/22-23-00102/., Исследование выполнено за счет гранта Российского научного фонда (№ 22-23-00102), https://rscf.ru/ project/22-23-00102/.

    Source: Fine Chemical Technologies; Vol 19, No 3 (2024); 192-201 ; Тонкие химические технологии; Vol 19, No 3 (2024); 192-201 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2084/2021; https://www.finechem-mirea.ru/jour/article/view/2084/2022; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2084/1229; Kalck P., Le C., Serp B.P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020;402:213078. https://doi.org/10.1016/j.ccr.2019.213078; Севостьянова Н.Т., Баташев С.А. Катализаторы карбонилирования спиртов для получения карбоновых кислот и сложных эфиров (обзор). Журн. прикладной химии. 2022;95(8):947–970. https://doi.org/10.31857/S0044461822080011; Севостьянова Н.Т., Баташев С.А. Алкоксикарбонилирование ненасыщенных субстратов растительного происхождения с использованием палладиевых катализаторов как путь к получению сложноэфирных продуктов. Катализ в промышленности. 2023;23(1):37–55. https://doi.org/10.18412/1816-0387-2023-1-37-55; Liang W.-Y., Liu L., Zhou Q., Yang D., Lu Y., Liu Y. Pd-catalyzed alkoxycarbonylation of alkenes promoted by H2O free of auxiliary acid additive. Mol. Catal. 2020;482:110221. https://doi.org/10.1016/j.mcat.2018.10.016; Eliseev O.L., Bondarenko T.N., Stepin N.N., Lapidus A.L. Carbonylation of alcohols in the Pd(OAc)2/TsOH/molten salt system. Mendeleev Commun. 2006;16(2):107–109. https://doi.org/10.1070/MC2006v016n02ABEH002232; Севостьянова Н.Т., Баташев С.А. Влияние концентрации п-толуолсульфокислоты и температуры на совмещенный процесс дегидратации и гидрокарбалкоксилирования. Бюллетень науки и практики. 2016;7:8–13. https://www.bulletennauki.ru/gallery/%D0%91%D0%9D%D0%9F%20%E2%84%967%202016.pdf; Севостьянова Н.Т., Баташев С.А., Родионова А.С. Однореакторный совмещенный процесс дегидратации циклогексанола и алкоксикарбонилирования циклогексена в присутствии каталитической системы PdCl2–PPh3–п-толуолсульфокислота. Изв. АH. Сер. хим. 2023;72(8):1936–1939.; Севостьянова Н.Т., Баташев С.А., Родионова А.С. Совмещенный процесс синтеза циклогексилциклогексанкарбоксилата из циклогексанола и CO, катализируемый системой Pd(OAc)2–PPh3–п-толуолсульфокислота. Тонкие химические технологии. 2023;18(1):29–37. https://doi.org/10.32362/2410-6593-2023-18-1-29-37; Elks J., Ganellin C.R. (Eds.). Dictionary of Drugs. Boston: Springer; 1990. 2062 p. https://doi.org/10.1007/978-1-4757-2085-3; Herrmann N., Köhnke K., Seidensticker T. Selective product crystallization for concurrent product separation and catalyst recycling in the isomerizing methoxycarbonylation of methyl oleate. ACS Sustainable Chem. Eng. 2020;8(29):10633–10638. https://doi.org/10.1021/acssuschemeng.0c03432; Roesle P., Stempfle F., Hess S.K., Zimmerer J., Río Bártulos C., Lepetit B., Eckert A., Kroth P.G., Mecking S. Synthetic polyester from algae oil. Angew. Chem. Int. Ed. 2014;53(26):6800–6804. https://doi.org/10.1002/anie.201403991; Quinzler D., Mecking S. Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. Angew. Chem. 2010;122(25):4402–4404. https://doi.org/10.1002/ange.201001510; Stempfle F., Ritter B.S., Mülhaupt R., Mecking S. Longchain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem. 2014;16(4):2008−2014. https://doi.org/10.1039/C4GC00114A; Dong K., Sang R., Wei Z., Liu J., Dühren R., Spannenberg A., Jiao H., Neumann H., Jackstell R., Franke R., Beller M. Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands. Chem. Sci. 2018;9(9):2510–2516. https://doi.org/10.1039/C7SC02964K; Yang J., Liu J., Ge Y., Huang W., Ferretti F., Neumann H., Jiao H., Franke R., Jackstell R., Beller M. Efficient palladiumcatalyzed carbonylation of 1,3-dienes: selective synthesis of adipates and other aliphatic diesters. Angew. Chem. Int. Ed. 2021;60(17):9527–9533. https://doi.org/10.1002/anie.202015329; Stempfle F., Quinzler D., Heckler I., Mecking S. Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules. 2011;44(11):4159−4166. https://doi.org/10.1021/ma200627e; Illner M., Schmidt M., Pogrzeba T., Urban C., Esche E., Schomaecker R., Repke J.-U. Palladium-catalyzed methoxycarbonylation of 1-dodecene in a two phase system: the path towards a continuous process. Ind. Eng. Chem. Res. 2018;57(27):8884–8894. https://doi.org/10.1021/acs.iecr.8b01537; Behr A., Vorholt A.J., Rentmeister N. Recyclable homogeneous catalyst for the hydroesterification of methyl oleate in thermomorphic solvent systems. Chem. Eng. Sci. 2013;99:38–43. https://doi.org/10.1016/j.ces.2013.05.040; Nifant’ev I.E., Sevostyanova N.T., Averyanov V.A., Batashev S.A., Vorobiev A.A., Toloraya S.A., Bagrov V.V., Tavtorkin A.N. The concentration effects of reactants and components in the Pd(OAc)2/p-toluenesulfonic acid/trans-2,3- bis(diphenyl-phosphinomethyl)-norbornane catalytic system on the rate of cyclohexene hydrocarbomethoxylation. Appl. Catal. A.: Gen. 2012;449:145–152. https://doi.org/10.1016/j.apcata.2012.09.020; Vavasori A., Toniolo L., Cavinato G. Hydroesterification of cyclohexene using the complex Pd(PPh3)2(TsO)2 as catalyst precursor. Effect of a hydrogen source (TsOH, H2O) on the TOF and a kinetic study (TsOH: p-toluenesulfonic acid). J. Mol. Catal. A: Chem. 2003;191(1):9–21. https://doi.org/10.1016/S1381-1169(02)00358-8; Аверьянов В.А., Севостьянова Н.Т., Баташев С.А. Кинетические закономерности гидрокарбоалкоксилирования циклогексена циклогексанолом, катализируемого системой Pd(PPh3)2Cl2 – PPh3 – п-толуолсульфокислота. Нефтехимия. 2008;48(4):286–294.; Аверьянов В.А., Баташев С.А., Севостьянова Н.Т., Носова Н.М. Кинетика и механизм катализируемого комплексом Pd(II) гидрокарбометоксилирования циклогексена. Кинетика и катализ. 2006;47(3):381–390.; Петров Э.С. Фосфиновые комплексы палладия в катализе реакций карбонилирования олефинов. Журн. физ. химии. 1988;62(10):2858–2868.; Белобородов В.Л., Зурабян С.Э., Лузин А.П., Тюкавкина Н.А. Органическая химия. М.: ГЭОТАР-Медиа; 2019. Кн. 1. 640 с.

  7. 7
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation, grant No. 22-23-00102, https://rscf.ru/project/22-23-00102/, Исследование выполнено за счет гранта Российского научного фонда (№ 22-23-00102), https://rscf.ru/project/22-23-00102/

    Source: Fine Chemical Technologies; Vol 18, No 1 (2023); 29-37 ; Тонкие химические технологии; Vol 18, No 1 (2023); 29-37 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1930/1906; https://www.finechem-mirea.ru/jour/article/view/1930/1907; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1930/888; Biermann U., Bornscheuer U., Feussner I., Meier M.A.R., Metzger J.O. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Ang. Chem. Int. Ed. 2021;60(37):20144−20165. https://doi.org/10.1002/anie.202100778; Tullo A.H. A unique methyl methacrylate plant in Singapore owes its success to a handful of British chemists. Chemical & Engineering News. 2009;87(42). URL: https://cen.acs.org/articles/87/i42/New.html (Accessed November 30, 2022).; Nomura K., Awang N.W.B. Synthesis of bio-based aliphatic polyesters from plant oils by efficient molecular catalysis: a selected survey from recent reports. ACS Sustainable Chem. Eng. 2021;9(16):5486–5505. https://doi.org/10.1021/acssuschemeng.1c00493; Liu Y., Mecking S. A synthetic polyester from plant oil feedstock by functionalizing polymerization. Angew. Chem. Int. Ed. Engl. 2019;58(11):3346−3350. https://doi.org/10.1002/anie.201810914; Herrmann N., Köhnke K., Seidensticker T. Selective product crystallization for concurrent product separation and catalyst recycling in the isomerizing methoxycarbonylation of methyl oleate. ACS Sustainable Chem. Eng. 2020;8(29):10633–10638. https://doi.org/10.1021/acssuschemeng.0c03432; Nifant’ev I.E., Sevostyanova N.T., Batashev S.A., Vinogradov A.A., Vinogradov A.A., Churakov A.V., Ivchenko P.V. Synthesis of methyl β-alkylcarboxylates by Pd/diphosphine-catalyzed methoxycarbonylation of methylenealkanes RCH CH C(R)=CH . Appl. Catal. A: Gen.; Nifant’ev I., Bagrov V., Vinogradov A., Vinogradov A., Ilyin S., Sevostyanova N., Batashev S., Ivchenko P. Methylenealkane-based low-viscosity ester oils: synthesis and outlook. Lubricants. 2020;8(5):50–59. https://doi.org/10.3390/lubricants8050050; Liang W.-Y., Liu L., Zhou Q., Yang D., Lu Y., Liu Y. Pd-catalyzed alkoxycarbonylation of alkenes promoted by H2O free of auxiliary acid additive. Mol. Catal. 2020;482:110221. https://doi.org/10.1016/j.mcat.2018.10.016; Akiri S.O., Ojwach S.O. Methoxycarbonylation of olefins catalysed by homogeneous palladium(II) complexes of (phenoxy)imine ligands bearing alkoxy silane groups. Inorganica Chim. Acta. 2019;489:236–243. https://doi.org/10.1016/j.ica.2019.02.025; Kalck P., Le C., Serp B.P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020;402:213078. https://doi.org/10.1016/j.ccr.2019.213078; Лапидус А.Л., Пирожков С.Д. Каталитический синтез органических соединений карбонилированием непредельных углеводородов и спиртов. Успехи химии. 1989;58(2):197–233. URL: https://www.uspkhim.ru/RCR3430pdf; Hoffmann U., Jansen M., Reents R., Stahr H. Process for cyclohexanecarboxylic acid derivatives: US Pat. 20090253927 A1. Publ. 08.10.2009.; Colle K., Stanat J.E., Reinoso J.J., Godwin A.D. C7-C12 Secondary alcohol esters of cyclohexanoic acid: WO Pat. 2009/070398 A1. Publ. 04.06.2009.; Godwin A.D. Co-plasticizer systems: WO Pat. 2009/085453 A2. Publ. 09.07.2009.; Jenni K., Springer O. Cosmetic and dermatological formulations including phenoxyalkyl esters: US Pat. 20100068160 A1. Publ. 18.03.2010.; Nifant’ev I.E., Sevostyanova N.T., Averyanov V.A., Batashev S.A., Vorobiev A.A., Toloraya S.A., Bagrov V.V., Tavtorkin A.N. The concentration effects of reactants and components in the Pd(OAc)2 / p-toluenesulfonic acid / trans-2,3- bis(diphenyl-phosphinomethyl)-norbornane catalytic system on the rate of cyclohexene hydrocarbomethoxylation. Appl. Catal. A: Gen. 2012;449:145–152. https://doi.org/10.1016/j.apcata.2012.09.020; Аверьянов В.А., Севостьянова Н.Т., Баташев С.А., Несоленая С.В. Механизм каталитического действия системы Pd(PPh3)2Cl2–PPh3–n-толуолсульфокислота на гидрокарбалкоксилирование циклогексена в среде циклогексанола. Нефтехимия. 2006;46(6):435–445. URL: https://www.elibrary.ru/item.asp?id=9466418; Sevostyanova N.T, Batashev S.A. Оne-pot cyclohexyl cyclohexanecarboxylate synthesis from cyclohexanol and CO at catalysis by Pd(PPh3)2Cl2 / PPh3 / p-toluenesulfonic acid system. Chemistry of Organoelement Compounds and Polymers 2019: Proceedings of the International Conference. 2019. P. 239. URL: http://irbiscorp.spsl.nsc.ru/fulltext/WORKS/2019/Abstracts.pdf; Севостьянова Н.Т., Баташев С.А., Родионова А.С., Козленко Д.К. Совмещенный процесс синтеза циклогексил- циклогексанкарбоксилата из циклогексанола и СО. Современная химическая физика: Сборник тезисов XXXIV симпозиума. 2022. P. 170. URL: http://www.chemicalphysics.ru/?page_id=1360; Vavasori A., Cavinato G., Toniolo L. Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh3)2(TsO)2 (TsO = p-toluenesulfonate anion) catalyst precursor. J. Mol. Catal. A: Chemical. 2001;176(1–2):11–18. https://doi.org/10.1016/S1381-1169(01)00235-7; Vavasori A., Toniolo L., Cavinato G. Hydroesterification of cyclohexene using the complex Pd(PPh3)2(TsO)2 as catalyst precursor: Effect of a hydrogen source (TsOH, H2O) on the TOF and a kinetic study (TsOH: p-toluenesulfonic acid). J. Mol. Catal. A: Chemical. 2003;191(1):9–21. https://doi.org/10.1016/S1381-1169(02)00358-8; Li J., Ren W., Dai J., Shi Y. Palladium-catalyzed regio- and enantioselective hydroesterification of aryl olefins with CO gas. Org. Chem. Front. 2018;5(1):75–79. https://doi.org/10.1039/C7QO00622E; Brennführer A., Neumann H., Beller M. Palladium- catalyzed carbonylation reactions of alkenes and alkynes. ChemCatChem. 2009;1(1):28–41. https://doi.org/10.1002/cctc.200900062; Neumann H., Brennführer A., Beller M. An efficient and practical sequential one-pot synthesis of suprofen, ketoprofen and other 2-arylpropionic acids. Adv. Synth. Catal. 2008;350(14–15):2437–2442. https://doi.org/10.1002/adsc.200800415

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12