Showing 1 - 1 results of 1 for search '"адаптивная лабораторная эволюция"', query time: 0.51s Refine Results
  1. 1
    Academic Journal

    Source: Regulatory Research and Medicine Evaluation; Том 15, № 1 (2025); 24-33 ; Регуляторные исследования и экспертиза лекарственных средств; Том 15, № 1 (2025); 24-33 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2025-15-1

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/656/1618; https://www.vedomostincesmp.ru/jour/article/view/656/1621; https://www.vedomostincesmp.ru/jour/article/view/656/1622; https://www.vedomostincesmp.ru/jour/article/view/656/1629; https://www.vedomostincesmp.ru/jour/article/view/656/1632; https://www.vedomostincesmp.ru/jour/article/view/656/1633; https://www.vedomostincesmp.ru/jour/article/view/656/1648; https://www.vedomostincesmp.ru/jour/article/view/656/1654; https://www.vedomostincesmp.ru/jour/article/view/656/1799; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/656/584; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/656/585; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/656/586; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/656/722; Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: A growing serious threat for global public health. Healthcare (Basel). 2023;11(13):1946. https://doi.org/10.3390/healthcare11131946; Endale H, Mathewos M, Abdeta D. Potential causes of spread of antimicrobial resistance and preventive measures in one health perspective — a review. Infect Drug Resist. 2023;16:7515–45. https://doi.org/10.2147/IDR.S428837; Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control. 2017;6:47. https://doi.org/10.1186/s13756-017-0208-x; Watkins RR, Bonomo RA. Overview: Global and local impact of antibiotic resistance. Infect Dis Clin North Am. 2016;30(2):313–22. https://doi.org/10.1016/j.idc.2016.02.001; Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399(10325):629–55. https://doi.org/10.1016/S0140-6736(21)02724-0; Намазова-Баранова ЛС, Баранов АА. Антибиотикорезистентность в современном мире. Педиатрическая фармакология. 2017;14(5):341–54. https://doi.org/10.15690/pf.v14i5.1782; Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, et al. Antibiotic action and resistance: Updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024;14:1305294. https://doi.org/10.3389/fphar.2023.1305294; Сидоренко СВ, Тишков ВИ. Молекулярные основы резистентности к антибиотикам. Успехи биологической химии. 2004;44:263–306.; Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol. 2018;9:2928. https://doi.org/10.3389/fmicb.2018.02928; Супотницкий МВ. Механизмы развития резистентности к антибиотикам у бактерий. БИОпрепараты. Профилактика, диагностика, лечение. 2011;(2):4–13. EDN: RDTUFZ; Землянко ОМ, Рогоза ТМ, Журавлева ГА. Механизмы множественной устойчивости бактерий к антибиотикам. Экологическая генетика. 2018;16(3):4–17. https://doi.org/10.17816/ecogen1634-17; Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482; Niewiadomska AM, Jayabalasingham B, Seidman JC, Willem L, Grenfell B, Spiro D, et al. Population-level mathematical modeling of antimicrobial resistance: A systematic review. BMC Med. 2019;17(1):81. https://doi.org/10.1186/s12916-019-1314-9; Anjum MF, Zankari E, Hasman H. Molecular methods for detection of antimicrobial resistance. Microbiol Spectr. 2017;5(6):10. https://doi.org/10.1128/microbiolspec.arba-0011-2017; Steel H, Papachristodoulou A. The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance. J Theor Biol. 2020;486:110077. https://doi.org/10.1016/j.jtbi.2019.110077; Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353(6304):1147–51. https://doi.org/10.1126/science.aag0822; Kleinman A. The Kishony mega-plate experiment, a Markov process. bioRxiv. 2021;474071. https://doi.org/10.1101/2021.12.23.474071; Vinchhi R, Jena C, Matange N. Adaptive laboratory evolution of antimicrobial resistance in bacteria for genetic and phenotypic analyses. STAR Protoc. 2023;4(1):102005. https://doi.org/10.1016/j.xpro.2022.102005; Дебабов ВГ. Современные подходы к созданию промышленных штаммов микроорганизмов. Генетика. 2015;51(4):365–76. https://doi.org/10.7868/S0016675815040049; Novick A, Szilard L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci USA. 1950;36(12):708–19. https://doi.org/10.1073/pnas.36.12.708; Hirasawa T, Maeda T. Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction. Microorganisms. 2023;11(1):92. https://doi.org/10.3390/microorganisms11010092; Jahn LJ, Munck C, Ellabaan MMH, Sommer MOA. Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Front Microbiol. 2017;8:816. https://doi.org/10.3389/fmicb.2017.00816; Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, et al. Antimicrobial activity and resistance: influencing factors. Front Pharmacol. 2017;8:364. https://doi.org/10.3389/fphar.2017.00364; Гуров АВ, Боровкова КЕ, Крышень КЛ, Никифорова ЛР, Салмова ЮВ. Оценка бактерицидной активности грамицидина С в отношении клинических изолятов Streptococcus pneumoniae и Staphylococcus aureus при однократном и многократном воздействии. Антибиотики и химиотерапия. 2022;67(7–8):8–18. https://doi.org/10.37489/0235-2990-2022-67-7-8-8-18; Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid methods for antimicrobial resistance diagnostics. Antibiotics (Basel). 2021;10(2):209. https://doi.org/10.3390/antibiotics10020209; Guliy OI, Evstigneeva SS, Karavaeva OA. Antimicrobial resistance and current methods for its detection. Front Biosci Elite. 2023;15(3):19. https://doi.org/10.31083/j.fbe1503019; Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, et al. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol. 2021;5(9):1233–42. https://doi.org/10.1038/s41559-021-01511-2; Jaishankar J, Srivastava P. Molecular basis of stationary phase survival and applications. Front Microbiol. 2017;8:2000. https://doi.org/10.3389/fmicb.2017.02000; Maeda T, Furusawa C. Laboratory evolution of antimicrobial resistance in bacteria to develop rational treatment strategies. Antibiotics (Basel). 2024;13(1):94. https://doi.org/10.3390/antibiotics13010094; Dragosits M, Mattanovich D. Adaptive laboratory evolution — principles and applications for biotechnology. Microb Cell Fact. 2013;12:64. https://doi.org/10.1186/1475-2859-12-64; Hong J, Hu J, Ke F. Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the resistance mechanisms. Antimicrob Agents Chemother. 2016;60(10):6067–75. https://doi.org/10.1128/AAC.00640-16; https://www.vedomostincesmp.ru/jour/article/view/656