Showing 1 - 16 results of 16 for search '"Эндотелиальная NO-синтаза"', query time: 0.63s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда № 24-75-10057 «Идентификация клеточных маркеров дисфункции эндотелия», https://rscf.ru/project/24-75-10057/.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 2 (2025); 110-126 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 2 (2025); 110-126 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1669/1030; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2051; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2052; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2053; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2054; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2055; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2056; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2057; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2058; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2059; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2060; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2061; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2062; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2064; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2065; Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi:10.1161/CIRCRESAHA.115.306301.; Шишкова Д.К., Фролов А.В., Маркова В.Е., Маркова Ю.О., Каноныкина А.Ю., Лазебная А.И., Матвеева В.Г., Торгунакова Е.А., Кутихин А.Г. Современные подходы к моделированию дисфункции эндотелия и системному поиску ее циркулирующих маркеров. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 173-190. doi:10.17802/2306-1278-2024-13-3S-173-190.; Богданов Л.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Кондратьев Е.А., Степанов А.Д., Кутихин А.Г. Современные подходы к идентификации клеточных маркеров дисфункции эндотелия. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 191-207. doi:10.17802/2306-1278-2024-13-3S-191-207.; da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TG, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol. 2022;13:978378. doi:10.3389/fphys.2022.978378.; Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1199-205. doi:10.1152/ajplung.00092.2016.; Li G, Zhang H, Zhao L, Zhang Y, Yan D, Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11(12):842-852. doi:10.1016/j.jash.2017.10.009.; Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi:10.1161/CIRCRESAHA.116.309326.; Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. doi:10.1093/eurheartj/ehr304.; Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:347. doi:10.3389/fphys.2013.00347.; Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503-13. doi:10.2174/13816128113196660745.; Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi:10.1172/JCI123825.; Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi:10.1074/jbc.C100122200.; Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi:10.1161/hh1101.092677.; Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi:10.1002/jcb.22515.; Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi:10.1016/j.vph.2016.04.003.; Li C, Ruan L, Sood SG, Papapetropoulos A, Fulton D, Venema RC. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi:10.1016/j.vph.2007.07.001.; Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025;90(1):132-160. doi:10.1134/S0006297924604064.; Ku KH, Dubinsky MK, Sukumar AN, Subramaniam N, Feasson MYM, Nair R, Tran E, Steer BM, Knight BJ, Marsden PA. In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation. 2021;144(5):365-381. doi:10.1161/CIRCULATIONAHA.120.051078.; Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131(21):e145734. doi:10.1172/JCI145734.; Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep. 2017;7(1):9612. doi:10.1038/s41598-017-10139-x.; Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5(5):391-400. doi:10.1111/j.1474-9726.2006.00232.x.; Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012 Oct 12;111(9):1176-89. doi:10.1161/CIRCRESAHA.112.266395.; Bu S, Nguyen HC, Nikfarjam S, Michels DCR, Rasheed B, Maheshkumar S, Singh S, Singh KK. Endothelial cell-specific loss of eNOS differentially affects endothelial function. PLoS One. 2022;17(9):e0274487. doi:10.1371/journal.pone.0274487.; Shu X, Keller TC 4th, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015;72(23):4561-75. doi:10.1007/s00018-015-2021-0.; Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HF, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem. 2003;278(25):22901-7. doi:10.1074/jbc.M210806200.; Singh A, Sventek P, Larivière R, Thibault G, Schiffrin EL. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996;9(9):867-77. doi:10.1016/s0895-7061(96)00104-5.; Di Pietro N, Di Tomo P, Di Silvestre S, Giardinelli A, Pipino C, Morabito C, Formoso G, Mariggiò MA, Pandolfi A. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88-94. doi:10.1016/j.atherosclerosis.2012.10.062.; Preeclampsia is associated with loss of neuronal nitric oxide synthase expression in vascular smooth muscle cells of the human umbilical cord. Schönfelder G, Fuhr N, Hadzidiakos D, John M, Hopp H, Paul M. Histopathology. 2004;44(2):116-28. doi:10.1111/j.1365-2559.2004.01806.x.; Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83(12):1271-8. doi:10.1161/01.res.83.12.1271.; Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4):831-6. doi:10.1161/01.HYP.0000088854.04562.DA.; Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi:10.3389/fphys.2012.00284.; Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17-28.; Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239-47. doi:10.1111/micc.12040.; Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36(7):1460-1467. doi:10.1097/HJH.0000000000001750.

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: Работа выполнена в рамках Госзадания № ААА-А18-118012290427-7.

    Source: Acta Biomedica Scientifica; Том 6, № 2 (2021); 22-40 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2725/2137; Reaven GM. The metabolic syndrome: Time to get off the merry-go-round? J Intern Med. 2011; 269(2): 127-136. doi:10.1111/j.1365-2796.2010.02325.x; Feldman RD, Anderson TJ, Touyz RM. Metabolic syndrome sinkholes: What to do when Occam’s razor gets blunted. Can J Cardiol. 2015; 31(5): 601-604. doi:10.1016/j.cjca.2014.12.035; Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007; 92: 399-404. doi:10.1210/j.c.2006-0513; Assumpção CR, Brunini TMC, Matsuura C, Resende AC, Mendes-Ribeiro AC. Impact of the L-arginine-Nitric Oxide pathway and oxidative stress on the pathogenesis of the metabolic syndrome. Open Biochem J. 2008; 2: 108-115. doi:10.2174/1874091X00802010108; Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009; 20(6): 295-302. doi:10.1016/j.tem.2009.03.005; Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, et al. Metabolic syndrome and associated diseas es: from the bench to the clinic. Toxicol Sci. 2018; 162(1): 36-42. doi:10.1093/toxsci/kfx233; Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation--mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol. 2012; 32(8): 1771-1776. doi:10.1161FATVBAHA.111.241869; Чистякова О.В., Сухов И.Б., Шпаков А.О. Метаболический синдром: причинно-следственные отношения между окислительным стрессом и хроническим воспалением. Российский физиологический журнал им. И.М. Сеченова. 2018; 104(2): 138-155.; Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013; 110(4): 669-680. doi:10.1160/TH13-01-0075; Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. Front Bioscience (Landmark Ed). 2019; 24: 890-934.; Santolini J. What does “NO-Synthase” stand for? Front Bioscience (Landmark Ed). 2019; 24: 133-171.; Mónica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharmacol. 2016; 77: 1-27. doi:10.1016/bs.apha.2016.05.001; Lin X, Wang Q, Sun S, Xu G, Wu Q, Qi M, et al. Astragaloside IV promotes the eNOS/NO/cGMP pathway and improves left ventricular diastolic function in rats with metabolic syndrome. J Int Med Res. 2019; 48(1): 300060519826848. doi:10.1177/0300060519826848; Lacza Z, Snipes JA, Zhang J, Horváth EM, Figueroa JP, Szabó C, et al. Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med. 2003; 35(10): 1217-1228. doi:10.1016/s0891-5849(03)00510-0; Assumpção CR, Brunini TM, Pereira NR, Godoy-Matos AF, Siqueira MA, Mann GE, et al. Insulin resistance in obesity and metabolic syndrome: is there a connection with platelet l-arginine transport? Blood Cells Mol Dis. 2011; 45(4): 338-342. doi:10.1016/j.bcmd.2010.10.003; Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am. J Physiol. 2007; 293(4): E1062-E1068. doi:10.1152/ajpendo.00045.2007; Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin – a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006; 8(3): 264-280. doi:10.1111/j.1463-1326.2005.00510.x; Шпаков А.О. Адипокины и их роль в регуляции репродуктивных функций. СПб.: Политех-Пресс; 2018.; Roy V, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of metabolic syndrome. Circulation J. 2004; 68(11): 975-981. doi:10.1253/circ.j.68.975; Liu GZ, Liang B, Lau WB, Wang Y, Zhao J, Li R, et al. High glucose/High Lipids impair vascular adiponectin function via inhibition of caveolin-1/AdipoR1 signalsome formation. Free Radic Biol Med. 2015; 89: 473-485. doi:10.1016/j.freeradbiolmed.2015.09.005; Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423(6941): 762-769. doi:10.1038/nature01705; Engin A. Adiponectin-resistance in obesity. Adv Exp Med Biol. 2017. 960: 415-441. doi:10.1007/978-3-319-48382-5-18; Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018; 8(3): 1031-1063. doi:10.1002/cphy.c170046; Gradinaru D, Margina D, Borsa C, Ionescu C, Ilie M, Costache M, et al. Adiponectin: possible link between metabolic stress and oxidative stress in the elderly. Aging Clin Exp Res. 2017; 29(4): 621–629. doi:10.1007/s40520-016-0629-z; Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016; 8: 101-109. doi:10.1093/jmcb/mjwo14; Wang ZV, Cherer PE. Adiponectin, the past two decades. J Mol Cel Biol. 2016; 8: 93-100. doi:10.1093/jmcb/mjwo11; Si Y, Fan W, Sun L. A review of the relationship between CTRP family and coronary artery disease. Curr Atheroscler Rep. 2020; 22(6): 22. doi:10.1007/s11883-020-00840-0; Fadaei R, Moradi N, Kazemi T, Chamani E, Azdaki N, Moezibady SA, et al. Decreased serum levels of CTRP12/adipolin in patients with coronary artery disease in relation to inflammatory cytokines and insulin resistance. Cytokine. 2019; 113: 326-331. doi:10.1016/jcito2018.09.019; Enomoto T, Ohashi K, Shibata R, Higuchi A, Maruyama S, et al. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J Biol Chem. 2011. 286: 34552-34558. doi:10.1074/jbc.M111.277319; Tan BK, Chen J, Hu J, Amar O, Mattu HS, Ramanjaneya M, et al. Circulatory changes of the novel adipokine adipolin/CTRP12 in response to metformin treatment and an oral glucose challenge in humans. Clin Endocrinol (Oxf). 2014; 81: 841-846. doi:10.1111/cen.12438; Knights AJ, Funnell APW, Pearson RCM, Crossley M, Bell-Anderson KS. Adipokines and insulin action. A sensitive issue. Adipocyte. 2014; 3(2): 88-96. doi:10.4161/adip.27552; Tan BK, Lewandowski KC, O’Hare JP, Randeva HS. Insulin regulates the novel adipokine adipolin/CTRP12: in vivo and ex vivo effects. J Endocrinol. 2014; 221(1): 111-119. doi:10.1530/JOE-13-0537; Tan BK, Chen J, Adya R, Ramanjaneya M, Patel V, Randeva HS. Metformin increases the novel adipokine adipolin/CTRP12: Role of the AMPK pathway. J Endocrinol. 2013; 219: 101-108. doi:10.1530/JOE-13-0277; Enomoto T, Shibata R, Ohashi K, Kambara T, Kataoka Y, Uemura Y, et al. Regulation of adipolin/CTRP12 cleavage by obesity. Biochem Biophys Res Commun. 2012; 428: 155-159. doi:10.1016/j.bbrc.2012.10.031; Bell-Anderson KS, Funnell AP, Williams H, Mat Jusoh H, Scully T, Lim WF, et al. Loss of Krüppel-like factor 3 (KLF3/BKLF) leads to upregulation of the insulin-sensitizing factor adipolin (FAM132A/CTRP12/C1qdc2). Diabetes. 2013; 62: 2728-2737. doi:10.2337/db12-1745; Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, et al. Role of omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development. Int J Mol Sci. 2017; 18(8): E1770. doi:10.3390/ijms18081770; Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2017; 7(3): 765-781. doi:10.1002/cphy.c160043; Maruyama S, Shibata R, Kikuchi R, Izumiya Y, Rokutanda T, Araki S, et al. Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J Biol Chem. 2012; 287(1): 408-417. doi:10.1074/jbc.M111.261818; Qi D, Tang X, He J, Wang D, Zhao Y, Deng W, et al. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/ eNOS-dependent mechanism. Cell Death Dis. 2016; 7(9): e2360. doi:10.1038/cddis.2016.265; Alyahya AM, Al-Masri A, Hersi A, El Eter E, Husain S, Lateef R, et al. The effects of progranulin in a rat model of acute myocardial ischemia/reperfusion are mediated by activation of the P13K/Akt signaling pathway. Med Sci Monit Basic Res. 2019; 25: 229-237. doi:10.12659/MSMBR.916258; Hwang HJ, Jung TW, Hong HC, Choi HY, Seo JA, Kim SG, et al. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways. PLoS One. 2013; 8(9): e76679. doi:10.1371/journal.pone.007679; Korolczuk A, Bełtowski J. Progranulin, a new adipokine at the crossroads of metabolic syndrome, diabetes, dyslipidemia and hypertension. Nurr Pharm Des. 2017; 23(10): 1533-1539. doi:10.2174/13816128236661701241424; Townley RA, Boeve BF, Eduardo E, Benarroch EE. Progranulin. Functions and neurologic correlations. Neurology. 2018; 90(3): 118-125. doi:10.1212/WNL0000000000004840; De Henau O, Degroot G-N, Imbault V, Robert V, De Poorter C, McHeik S, et al. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One. 2016; 11: e0164179. doi:10.1371/journal.pone.0164179; Carracedo M, Witasp A, Qureshi AR, Laguna-Fernandez A, Brismar T, Stenvinkel P, et al. Chemerin inhibits vascular calcification through ChemR23 and is associated with lower coronary calcium in chronic kidney disease. J Intern Med. 2019; 286(4): 449-457. doi:10.1111/joim.12940; Li Y, Shi B, Li S. Association between serum сhemerin concentrations and clinical indices in obesity or metabolic syndrome: a meta-analysis. PLoS One. 2014; 9: e113915. doi:10.1371/journal.pone.0113915; Roguska J, Zubkiewicz-Kucharska A. Chemerin as an early marker of metabolic syndrome. Pediatr Endocrinol Diabetes Metab. 2018; 24(1): 45-51. doi:10.18544/PEDM-24.01.0102; Neves KB, Nguyen Dinh CA, Alves-Lopes R, Harvey KY, Costa RMD, Lobato NS, et al. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am J Physiol. 2018; 315(6): 1851- 1860. doi:10.1152/ajpheart.00285.2018; Kaur J, Mattu HS, Chatha K, Randeva HS. Chemerin in human cardiovascular disease. Vascul Pharmacol. 2018; 110: 1-6. doi:10.1016/j.vph.2018.06.018; Kutlay Ö, Kaygısız Z, Kaygısız B. The effect of chemerin on cardiac parameters and gene expressions in isolated perfused rat heart. Balkan Med J. 2019; 36(1): 43-48. doi:10.4274balkanmedj.2017.1787; Heiker JT. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J Pept Sci. 2014; 20(5): 299-306. doi:10.1002/psc.2621; Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A. Biol Reprod. 2020. 102(6): 1290-1305. doi:10.1093biolreioaa027; Fasshauer M, Blüher M. Adipokines in health and disease. Tr Pharmacol Sci. 2015; 36(7): 461-470. doi:10.1016/j.tips.2015.04.014; Mihanfar A, Rahmati-Yamchi M, Mota A, Abediazar S, Pilehvar-Soltanahmadi Y, Zarghami N. Serum levels of vaspin and its correlation with nitric oxide in type 2 diabetic patients with nephropathy. Curr Diabetes Rev. 2018; 14(2): 162-167. doi:10.2174/1573399813666170530103216; Heiker JT, Klöting N, Kovacs P, Kuettner EB, Sträter N, Schultz S, et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci. 2013; 70(14): 2569-2583. doi:10.10072Fs00018-013-1258-8; Bao JP, Xu LH, Ran JS, Xiong Y, Wu LD. Vaspin prevents leptin-induced inflammation and catabolism by inhibiting the activation of nuclear factor-κB in rat chondrocytes. Mol Med Rep. 2017; 16(3): 2925-2930. doi:10.3892/mmr.2017.6911; Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005; 307(5708): 426-30. doi:10.1126/science.1097243; Abella V, Scotece M, Conde J, López V, Lazzaro V, Pino J, et al. Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res. 2014: 343746. doi:10.1155/2014/343746; Olszanecka-Glinianowicz M, Kocełak P, Nylec M, Chudek J, Zahorska-Markiewicz B. Circulating visfatin level and visfatin/insulin ratio in obese women with metabolic syndrome. Arch Med Sci. 2012; 8(2): 214-218. doi:10.51114/aoms.2012.28547; Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 2008; 78: 356-365. doi:10.1093/cvr/cvm111; Gerbier R, Leroux V, Couvineau P, Alvear-Perez R, Maigret B, Llorens-Cortes C, et al. New structural insights into the apelin receptor: indentification of the key residues for apelin binding. FASEB J. 2015; 29(1): 314-322. doi:10.1096/fj.14-256339; Kurowska P, Barbe A, Rozycka M, Chmielinska J, Dupont J, Rak A. Apelin in reproductive physiology and pathology of different species: a critical review. Int J Endocrinol. 2018: 9170480. doi:10.1155/2018//9170480; Yue P, Jin H, Xu S, Aillaud M, Deng AC, Azuma J, et al. Apelin decreased lipolis via Gq, Gi and AMPK-dependent mechanism. Endocrinology. 2011; 152(1): 59-68. doi:10.1210/en.2010-0576; DePaoli AM. 20 years of leptin: leptin in common obesity and associated disorders of metabolism. J Endocrinol. 2014; 223(1): 71-81. doi:10.12703/P6-73; Park HK, Ahima RS. Leptin signaling. F1000Prime Rep. 2014, 6: 73. doi:10.1530/JOE-14-0258; Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008, 70: 537-556. doi:10.1111.1440-1681.2011.05623.x; Романова И.В., Деркач К.В., Морина А.Ю., Сухов И.Б., Кузнецова Л.А., Шпаков А.О. Изменение соотношения орексигенных и анорексигенных факторов в гипоталамусе крыс с ожирением, вызванным кафетерий-диетой. Российский физиологический журнал им. И.М. Сеченова. 2018; 104(6): 724- 730. doi:10.7868/S0869813918-060163; Bełtowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharm Physiol. 2012; 39(2): 168-178. doi:10.1016/j.brainresbull.2012.08.003; Schinzari F, Tesauro M, Rovella V, Daniele ND, Mores N, Veneziani A, et al. Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome. J Clin Endocrinol Metab. 2013; 98(3): 1235-1241. doi:10.1210/jc.2012-3424; Landecho MF, Tuero C, Valentí V, Bilbao I, Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients. 2019; 11(11): 2664. doi:10.3990/nu11112664; Vecchione C, Maffei A, Colella S, Aretini A, Poulet R, Frati G, et al. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes. 2002; 51: 168-173. doi:10.2337/diabetes.5.1.1.168; Mitchell JL, Morgan DA, Correia ML, Mark AL, Sivitz WI, Haynes WG. Does leptin stimulate nitric oxide to oppose the effects of sympathetic activation? Hypertension. 2001; 38: 1081-1086. doi:10.1111.1440-1681.2011.05623.x; de Boer MP, Meijer RI, Richter EA, Nieuw Amerongen GP, Sipkema P, Poelgeest EM, et al. Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2. Vascul Pharmacol. 2016. 78: 24-35. doi:10.1016/j.vph.2015.09.002; Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res. 2015: 648239. doi:10.1155/2015/648239; Grossini E, Farruggio S, Qoqaiche F, Raina G, Camillo L, Sigaudo L, et al. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions. Life Sci. 2016; 161: 1-9. doi:10.1016/j.efs.2016.07.010; Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016; 36(1): 78-85. doi:10.1161/ATVBAHA.115.306263; Zhao L, Fu Z, Wu J, Aylor KW, Barrett EJ, Cao W, et al. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses. J Physiol. 2015; 593(17): 4067-4079. doi:10.1113/JP270371; Brzoskwinia M, Pardyak L, Rak A, Kaminska A, Hejmej A, Marek S, et al. Flutamide alters the expression of chemerin, apelin, and vaspin and their respective receptors in the testes of adult rats. Int J Mol Sci. 2020; 21(12): 4439. doi:10.3390ijms21124439; Ebert T, Gebhardt C, Scholz M, Wohland T, Schleinitz D, Fasshauer M, et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome. J Clin Endocrinol Metab. 2018; 103(3): 1015-1023. doi:10.1210/jc.2017-02085; https://www.actabiomedica.ru/jour/article/view/2725

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: PULMONOLOGIYA; Том 25, № 4 (2015); 425-432 ; Пульмонология; Том 25, № 4 (2015); 425-432 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2015-25-4

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/599/544; Kolobukhina L.V., Merkulova L.N., Shchelkanov M.Yu. et al. Pandemic flu in Russia: specific clinical features and absence of early etiological therapy as a risk factor of severe course. Terapevticheskiy arkhiv. 2011; 9: 48–53 (in Russian).; Onishchenko G.G., ed. Organization and implementation of antiepidemic measures during flu A (H1N1) / 09 pandemic in October – December, 2009, at the Zabaykal'skiy kray. Novosibirsk: Nauka; 2011 (in Russian).; Govorin A.V., Serebryakova O.M., Filev A.P., Romanova E.N. Clinical features of community acquired pneumonia in patients with influenza A / H1N1 infection. Pul'monologiya. 2010; 5: 27–29 (in Russian).; Romanova E.N. Pneumonia in patients with influenza A / H1N1 / 09 infection: clinical and pathogenic patterns and outcomes: Dis. Chita; 2014 (in Russian).; Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al. Community acquired pneumonia in adults. Clinical guidelines on diagnosis, treatment and prevention. Moscow: RRO, MAKMAKh; 2010 (in Russian).; Baygozina E.A., Sovalkin V.I. Regulatory molecules and cytokines gene functional polymorphism in nosocomial pneumonia. Pul'monologiya. 2008; 1: 116–120 (in Russian).; Markelova E.V., Kostyushko A.V., Krasnikov V.E. Pathogenic role of cytokine disorders in infections and inflammation. Tikhookeanskiy meditsinskiy zhurnal. 2008; 3: 24–29 (in Russian).; Rydlovskaya A.V., Simbirtsev A.S. TNFα functional gene polymorphism and pathology. Tsitokiny i vospalenie. 2005; 3: 4–10 (in Russian).; Miromanova N.A. Association of TNF α (G 308A) gene polymorphism with severe and complicated influenza course in children. Zhurnal infektologii. 2013; 4: 30–36 (in Russian).; Petrov A.A., Strambovskaya N.N., Govorin A.V., Vitkovskiy Yu.A. CD14, TNF α and FCGR2A genes polymorphisms in patients with influenza H1N1 at the Zabaykal'skiy kray. Meditsinskaya immunologiya. 2011; 1: 83–86 (in Russian).; Schaaf B.M., Boehmke F., Esnaashari H. et al. Pneumococcal septic shock is associated with the interleukin 10 1082 gene promoter polymorphism. Am. J. Respir. Crit. Care Med. 2003; 168: 476–480.; Gallagher P.M., Lowe G., Fitzgerald T. et al. Association of IL 10 polymorphism with severity of illness in community acquired pneumonia. Thorax. 2003; 58: 154 156.; Gong M.N., Thompson B.T., Williams P.L. et al. Interleukin 10 polymorphism in position 1082 and acute respiratory distress syndrome. Eur. Respir. J. 2006; 27: 674–681.; Sabitova O.N. Gene polymorphism and production of the key immunoregulatory cytokines in community acquired pneumonia. Omskiy nauchnyy vestnik. 2009; 1: 42–45 (in Russian).; Naslednikova I.O., Urazova O.I., Voronkova O.V. et al. Cytokine allelic gene polymorphism in pulmonary tuberculosis. Byulleten' eksperimental'noy biologii i meditsiny. 2009; 8: 137–142 (in Russian).; Yuan F.F. High prevalence of the CD14 159CC genotype in patients infected with severe acute respiratory syndrome associated coronavirus. Clin. Vaccine Immunol. 2007; 12: 644–1645.; Petukhov V.A. Endothelial dysfunction: state of art. Consilium Medicum. 2008; 1: 3–11 (in Russian).; Marco K.C., Braga G.U., Barbosa F. Determination of the effects of eNOS gene polymorphisms (T 786C and Glu298Asp) on nitric oxide levels in a methylmercure exposed population. J. Toxicol. Environ. Health. PartA. 2011; 74 (20): 1323–1333.; Kostryukova E.S., Zakharzhevskaya N.B., Kostin P.A. et al. Genetic analysis of pandemic influenza A / H1N1 virus. Terapevticheskiy arkhiv. 2012; 3: 48–54 (in Russian).; https://journal.pulmonology.ru/pulm/article/view/599

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16