Showing 1 - 20 results of 62 for search '"Электростатический потенциал"', query time: 0.75s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Devices and Methods of Measurements; Том 13, № 4 (2022); 291-301 ; Приборы и методы измерений; Том 13, № 4 (2022); 291-301 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2022-13-4

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/792/641; Di C., Blundo E., Pettinari G., Felici M., Bobba F., Polimeni A. Mechanical, Elastic, and Adhesive Properties of Two-Dimensional Materials: From Straining Techniques to State-of-the-Art Local Probe Measurements. Adv. Mater. Interfaces, 2022, vol. 9, no. 13, p. 2102220. DOI:10.1002/admi.202102220; Lianhui Li, Wenhong Liu, Fugang Qi, Di Wu, Zhiqiang Zhang. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys. A review. Journal of Magnesium and Alloys, 2022, vol. 10, iss. 9, pp. 2334‒2353. DOI:10.1016/j.jma.2022.09.003; Ponomarenko A.T., Tameev A.R., Shevchenko V.G. Action of Mechanical Forces on Polymerization and Polymers. Polymers, 2022, vol. 14, no. 3, p. 604. DOI:10.3390/polym14030604; Wang Y., Meng Z. Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites – Effect of interlayer sliding within graphene sheets. Carbon, 2021, vol. 177, pp. 128–137. DOI:10.1016/j.carbon.2021.02.071; Pratasenia T.A., Kren’ A.P., Dyakova H.N. Application of the Dynamic Indentation Method for Evaluation of the Hardness and Elastic Modulus of the Material of Products Obtained by Extrusion Method of Additive Production from Carbon-Filled Composite Materials. Mechanics of Composite Materials, 2022, vol. 58, no. 3, pp. 383–394. DOI:10.1007/s11029-022-10036-z; Sujith R., Jothi S., Zimmermann A., Aldinger F., Kumar R. Mechanical behaviour of polymer derived ceramics – a review. International Materials Reviews, 2021, vol. 66, no. 6, pp. 426–449. DOI:10.1080/09506608.2020.1784616; Zharin A.L. Metod kontaktnoj raznosti potentsialov i yego primeneniye v tribologii [Method of contact potential difference and its application in tribology. Minsk, Bestprint Publ., 1996, 235 p.; Lang N.D., Kohn W. Theory of Metal Surfaces: Work Function. Phys. Rev. B, 1971, vol. 3, no. 4, p. 1215. DOI:10.1103/PhysRevB.3.1215; Pantsialeyeu K., Zharin A., Opielak M., Rogalski P. Charge sensitive techniques in tribology studies. Przeglad Elektrotechniczny, 2016, vol. 92, no. 11, pp. 239–243.; Craig P.P. Direct observation of stress – induced shifts in contact potentials. Phis. Rev. Letters, 1969, vol. 22, no. 14, pp. 700‒703.; Thiago A.L. Burgo. Chemical Electrostatics. New Ideas on Electrostatic Charging: Mechanisms and Conse-quences. Springer, 2017, 237 p.; Galembeck F., Burgo T. Chemical Electrostatics: New Ideas on Electrostatic Charging: Mechanisms and Consequences. Springer, 2017, 248 p.; Davies D.K. Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics, 1969, vol. 2, no. 11, pp. 1533–1537. DOI:10.1088/0022-3727/2/11/307.; Pilipenko V.A., Solodukha V.A., Zharin A., Gusev O., Vorobey R., Pantsialeyeu K., Tyavlovsky A., Tyavlovsky K., Bondariev V.A. Influence of rapid thermal treatment of initial silicon wafers on the electrophysical properties of silicon dioxide obtained by pyrogenous oxidation. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2019, vol. 23, iss. 3, pp. 283–290. DOI:10.1615/HighTempMatProc.2019031122; Pantsialeyeu K., Zharin A., Gusev O., Vorobey R., Tyavlovsky A., Tyavlovsky K., Svistun A. Digital contact potential probe in studying the deformation of dielectric materials. Informatics, Control, Measurement in Economy and Environmental Protection, 2020, vol. 4, no. 10, pp. 57–60. DOI:10.35784/iapgos.2374; Broadhurst M.G., Malmberg C.G., Mopsik F.I., Harris W.P. Piezoand pyro-electricity in polymer electrets. Conference on Electrical Insulation & Dielectric Phenomena. Annual Report, 1972. DOI:10.1109/ceidp.1972.7734193; Sow M., Lacks D.J., Mohan Sankaran R. Dependence of contact electrification on the magnitude of strain in polymeric materials. Journal of Applied Physics, 2012, vol. 112, no. 8, p. 084909. DOI:10.1063/1.4761967; Subrahmanyam A., Kumar S. The Kelvin Probe for Surface Engineering: Fundamentals and Design. USA, CRC Press 2, 2010, 200 р.; Zharin A., Pantsialeyeu K., Svistun A., Tyavlovsky K. Determining the lifetime of minority charge carriers and iron impurity concentration in semiconductor structures with submicron layers. Euroasian Journal of Semiconductors Science and Engineering, 2020, vol. 2, iss. 4, Article 3, pp. 17‒21.; https://pimi.bntu.by/jour/article/view/792

  7. 7
  8. 8
    Academic Journal

    Source: Chemistry, Physics and Technology of Surface; Том 11, № 1 (2020): Хімія, фізика та технологія поверхні; 72-99 ; Химия, физика и технология поверхности; Том 11, № 1 (2020): Хімія, фізика та технологія поверхні; 72-99 ; Хімія, фізика та технологія поверхні; Том 11, № 1 (2020): Хімія, фізика та технологія поверхні; 72-99 ; 2518-1238 ; 2079-1704 ; 10.15407/hftp11.01

    File Description: application/pdf

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Chebyshevskii Sbornik; Том 19, № 2 (2018); 101-110 ; Чебышевский сборник; Том 19, № 2 (2018); 101-110 ; 2226-8383 ; 10.22405/2226-8383-2018-19-2

    File Description: application/pdf

    Relation: https://www.chebsbornik.ru/jour/article/view/411/400; Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. - М.:Физматгиз, 1963.- 768 с.; Kohn W., Sham J. L. Self-consistent equations including exchange and correlation effects // Phys. Rev. 1965. Vol. 140, №4A. pp. A1133--A1138.; Заводинский В. Г. Компьютерное моделирование наночастиц и наносистем. - М.:Физматлит, 2013.- 137 с.; Skollermo G. A Fourier method for the Numerical Solution of Poisson Equation// Mathematics of Computation. 1975. Vol. 29, №131. pp. 697--711.; Chun-- Min Chang, Yihan Shao, Jing Kong. Ewald mesh method for quantum mechanical calculations// J. Chem. Phys. 2012. Vol. 136, №11 pp. 114112--114112-5.; Bobrov V. B., Trigger S. A. The problem of the universal density functional and the density matrix functional theory//Journal of Experimental and Theoretical Physics. 2013. Vol. 116, №4, pp. 635–640.; Chelikowsky J. R., Troullier N, Saad Y. Finite-difference-pseudopotential method: Electronic structure calculations without a basis//Phys. Rev. Lett. 1994. Vol. 72, №8, pp. 1240-1243.; L. Kleinman L., Bylander D. M. Efficacious Form for Model Pseudopotentials // Phys. Rev. Lett. 1982. Vol. 48, №20, pp. 1425-1428.; H. Cheng H., Greebgard L., Rokhlin V. A Fast Adaptive Multipole Algorithm in Three Dimensions //Journal of Computational Physics. 1999. Vol.155, №2, pp. 468-498.; Mortensen J. J, Hansen L. B., Jacobsen K. W. Real-space grid implementation of the projector augmented wave method //Phys. Rev. B Condensed Matter. 2005. Vol.71, №3, pp. 035109-1--035109-11.; Chelikowsky J. R., Wu K.,Troullier N., Saad Y. Higher-order finite-difference pseudopotential method: An application to diatomic molecules //Phys. Rev. B. 1994. Vol.50, №16, pp. 11355--11364.; Becke A. D. A multicenter numerical integration scheme for polyatomic molecules // J. Chem. Phys. 1988. Vol.88, №4,pp. 2547-2553.; Kikuji Hirose, Tomoya Ono, Yoshitaka Fujimoto, Shigeru Tsukamoto. First-Principles Calculations inReal-Space Formalism. - London: Imperial College Press, 2005. - 2253 c.; Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. - New York: Wiley, 2000. - 696 c.; Gonze X., Stumpf R., Scheffler M. Analysis of separable potentials //Phys. Rev. B. 1991. Vol.44, №16, pp. 8503-8513.; Troullier N.,Martins J. L. Efficient pseudopotentials for plane-wave calculations //Phys. Rev. 1991. Vol.43, №3, pp. 1993-2006.; Brandt A. Multi-level adaptive solutions to boundary-value problems //Mathematics of Computation. 1977. Vol. 31. №138. pp. 333-390.; Харрисон У. Электронная структура и свойства твердых тел.: Пер. с англ. - М.: Мир, 1983. - Т.1. - 381 с.; Заводинский В. Г. Квантовое моделирование многоатомных систем без волновых функций. - LAP LAMBERT Academic Publishing RU, 2017.- 56 с.; https://www.chebsbornik.ru/jour/article/view/411

  13. 13
  14. 14
    Academic Journal

    Source: Radio Engineering; № 2 (2017); 18-36 ; Радиостроение; № 2 (2017); 18-36 ; 2587-926X

    File Description: application/pdf

    Relation: https://www.radiovega.su/jour/article/view/97/86; Николаев М.Ю., Есимов А.М., Леонов В.В. Электрофильтры: принцип работы и основные достоинства // Технические науки - от теории к практике: XLI Междунар. науч.-практич. конф. (Россия, г. Новосибирск, 24 декабря 2014 г.): Сб. статей. Новосиб.: СибАК, 2014. С. 59-65.; Санаев Ю.И. Электрофильтры: монтаж, наладка, испытание, эксплуатация. М.: ЦИНТИхимнефтемаш, 1984. 25 с.; Мюллер Б., Пот У. Лакокрасочные материалы и покрытия. Принципы составления рецептур. М.: Пэйнт-Медиа, 2007. 234 с. [Muller B., Poth U. Coatings formulation. Hannover: Vincentz, 2006. 290 p.].; Мельников И.В. Автомобиль: покраска и защита от коррозии. 2-е изд. Ростов н/Д.: Фе¬никс, 2006. 287 с.; Яковлев А.Д. Химия и технология лакокрасочных покрытий: учебник. 3-е изд. СПб.: Химиздат, 2008. 444 с.; Макаров Е.А., Усольцев Н. В. Твердотельная электроника : учеб. пособие. Новосиб.: Изд-во Новосиб. гос. техн. ун-та, 2004. 115 с.; Гуртов В. А. Твердотельная электроника: учеб. пособие. Петрозаводск: Изд-во Петрозаводского гос. ун-та, 2004. 312 с.; Колпакчиев И. Волшебный ковер будущего // Техника - молодежи. 1969. № 7. С. 5-6.; Ситников А.В., Ситников И.А. Прикладная электроника: учебник. М.: КУРС: Инфра-М, 2017. 269 с.; Ситников А.В. Основы электротехники: учебник. М.: КУРС: Инфра-М, 2017. 288 с.; https://www.radiovega.su/jour/article/view/97

  15. 15
    Academic Journal

    Source: Devices and Methods of Measurements; Том 8, № 4 (2017); 386-397 ; Приборы и методы измерений; Том 8, № 4 (2017); 386-397 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2017-8-4

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/348/314; Subrahmanyam, A. The Kelvin Probe for Surface Engineering: Fundamentals and Design /A. Subrahmanyam, S. Kumar. – USA : CRC Press, 2010. – 200 p.; Zharkikh, Yu.S. Mechanic-electrical transformations in the Kelvin method / Yu.S. Zharkikh, S.V. Lysochenko // Applied Surface Science. 2017. – Vol. 400. – P. 71–76.; Kelvin probe force microscopy and its application / W. Melitz, J. Shen, A.C. Kummel, S. Lee // Surface Science Reports. – 2011. – Vol. 66. – P. 1–27. doi:10.1016/j.surfrep.2010.10.001; Noras, M.A. Charge detection methods for dielectrics – Overview / M.A. Noras // Trek Application Note. – 2003. – No. 3005. – P. 1–13.; Scanning electric potential microscopy imaging of polymers: electrical charge distribution in dielectrics / A. Galembeck, C.A.R. Costa, M.C.V.M. da Silva, E.F. Souza, F. Galembeck // Polymer. – 2001. – Vol. 42. – P. 4845−4851. doi:10.1016 / S0032-3861 (00) 00921-6; The mosaic of Surface Charge in Contact Electrification / H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B.A. Grzybowski // Science. – 2011. – Vol. 333. – P. 308–312. doi:10.1126 / science.1201512; Влияние высокодисперсного наполнителя на адгезионные и фрикционные свойства сополимера этилена с винилацетатом / А.И. Свириденок, А.Л. Жарин, А.В. Кравцевич, А.К. Тявловский // Трение и износ. – 2014. – Т. 35, № 4.– С. 401–410.; Ebrahimi, G. Investigation on corrosion protection mechanism of polyaniline nanoparticles doped with phosphoric acid by scanning Kelvin probe and other electrochemical methods / G. Ebrahimi, F. Rezaei, J. Neshati // Journal of the Taiwan Institute of Chemical Engineers. – 2016. – P. 1–10. doi:10.1016/j.jtice.2016.11.007; Schroder, D. Surface voltage and surface photovoltage: history, theory and applications / D. Schroder // Measurement Science & Technology. – 2001. – Vol. 3. – No. 12. – P. R16–R31.; Davies, D.K. Charge generation of dielectric surfaces / D.K. Davies // Journal of Physics. D: Applied Physics. – 1969. – No. 2. – P. 1533–1537. doi:10.1088/0022-3727/2/11/307; Vorobey, R.I. Controlling the characteristics of photovoltaic cell based on their own semiconductors / R.I. Vorobey, [at al.] // Przeglad Elektrotechniczny. – 2015. – No. 8. – P. 81–85. doi:10.15199/48.2016.08.52; Zisman, W.A. A new method of measuring contact potential differences in metals / W. A. Zisman // Review of Scientific Instruments. – 1932. – No. 3. – P. 367–370. doi:10.1063/1.1748947; Пантелеев, К.В. Построение измерителей контактной разности потенциалов / К.В. Пантелеев, В.А. Микитевич, А.Л. Жарин // Приборы и методы измерений. – 2016. – Т. 7, № 1. – С. 7–15. doi:10.21122/2220-9506-2016-7-1-7-15; Wicinski, M. Lateral resolution in scanning Kelvin probe microscopy / M. Wicinski, W. Burgstaller, A.W. Hassel // Corrosion Science. – 2016. – Vol. 104. – P. 1–8. doi:10.1016/j.corsci.2015.09.008; Multitip scanning bio-Kelvin probe / I.D. Baikie, Smith, D.M. Porterfield, P.J. Estrup // Review of Scientific Instruments. – 1999. – Iss. 70. doi:10.1063/1.1149678; https://pimi.bntu.by/jour/article/view/348

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 14, № 2 (2015); 55-66 ; Бюллетень сибирской медицины; Том 14, № 2 (2015); 55-66 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2015-14-2

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/132/129; Беленков Ю.И., Самко А.Н., Батыралиев Т.А., Першуков И.В. Коронарная ангиопластика: взгляд через 30 лет // Кардиология. 2007. № 9. С. 4–14.; Holmes J. State of the art in coronary intervention // Am. J. Cardiol. 2003. V. 91. P. 50A–53A.; Virmani R., Guagliumi G., Farb A., Musumeci G., Grieco N., Motta T., Mihalcsik L., Tespili M., Valsecchi O., Kolodgie F.D. Localized hypersensitivity and late coronary thrombosis sec-ondary to a sirolimus-eluting stent: should we be cautious? // Circulation. 2004. V. 109, № 6. P. 701–705.; Gamici G. What is an optimal stent? Biological requirements of drug eluting stents // Kardiovasculare Medizin. 2008. V. 11. P. 22–25.; Karjalainen P.P., Biancari F., Ylitalo A., Raeber L., Billinger M., Hess O., Airaksinen K.E.J. Pooled analysis of trials comparing titanium-nitride-oxide-coated stents with paclitaxel-eluting stents in patients undergoing coronary stenting // J. Invasive Cardiol. 2010. V. 22, № 7. P. 322–326.; Nan H., Ping Y., Xuan C., Yongxang L., Xiaolan Z., Guangjun C., Zihong Z., Feng Z., Yuanru C., Xianghuai L., Tingfei X. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition // Bio-materials. 1998. V. 19, № 7–9. P. 771–776.; Wan G., Lv B., Jin G., Maitz M.F., Zhou J., Huang N. Direct correlation of electrochemical behaviors with anti-thrombogenicity of semiconducting titanium oxide films // J. Biomater. Appl. 2014. V. 28, № 5. P. 719–728. doi:10.1177/0885328213476911.; Subramanian B., Muraleedharan C.V., Ananthakumar R., Jayachandran M. A comparative study of titanium nitride (TiN), titanium oxynitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants // Surf. Coat. Technol. 2011. V. 205. P. 5014–5020.; Barybin A.A., Zav’yalov A.V., Shapovalo V.I. A nonisothermal physicochemical model of synthesis of oxynitrides by reactive sputtering techniques // Glass Physics and Chemistry. 2012. V. 38, № 4. P. 396–401.; Biomaterials science: an introduction to materials in medicine / ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. 2nd ed. San Diego: Elsevier Academic Press, 2004. 851 p.; Andrade J.D., Gregonis D.E., Smith L.M. Polymer–water in-terface dynamics // Physicochemical aspects of polymer sur-faces / ed. K.L. Mittal. N. Y.: Plenum Press, 1981. P. 911–922.; Khlusov I.A., Khlusova M.Yu., Pichugin V.F., Sharkeev Yu.P., Legostaeva Ye.V. Artificial niches for stromal stem cells as a potential instrument for the design of the surface of biomimetic osteogenic materials // Russian Physics Journal. 2014. V. 56, № 10. P. 1206–1211.; Bykova Yu., Weinhardt V., Kashkarova A., Lebedev S., Baumbach T., Pichugin V., Zaitsev K., Khlusov I. Physical properties and biocompatibility of UHMWPE-derived mate-rials modified by synchrotron radiation // J. Mater Sci.: Mater Med. 2014. V. 25, № 8. P. 1843–1852. doi:10.1007/s10856-014-5222-4.; Yaroshchuk A., Luxbacher T. Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure // Langmuir. 2010. V. 26, № 13. P. 10882–10889.; Dorozhkin S.V., Dorozhkina E.I., Epple M. A model system to provide a good in vitro simulation of biological minerali-zation // Crystal Growth & Design. 2004. V. 4, № 2. P. 389–395.; Trace Elements and Nanoparticles / I.A. Khlusov, G.B. Slepchenko, G.T. Dambaev, L.V. Zagrebin, S.S. Shestov, S.A. Antipov, T. A. Feduschak, M.Yu. Khlusova, O.V. Kokorev, A.Ye Yermakov, M.A. Uymin, A.M. Nekrasova. N. Y.: Nova Science Publishers Inc., 2011. 93 p.; Сосудистое и внутриорганное стентирование: руководство / под ред. Л.С. Кокова и др. М.: Изд. дом «ГРААЛЬ», 2003. 384 с.; Cai K., Frant M., Bossert J., Hildebrand G., Liefeith K., Jandt K.D. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation // Colloids and Surfaces B: Biointerfaces. 2006. V. 50. P. 1–8.; Hallab N., Merritt K., Jacobs J.J. Metal sensitivity in patients with orthopaedic implants // J. Bone Joint Surg. Am. 2001. V. 83A, № 3. P. 428–436.; Hubler R., Cozza A., Marcondes T.L., Souza R.B., Fiori F.F. Wear and corrosion protection of 316-L femoral implants by deposition of thin films // Surf. Coat. Technol. 2001. V. 1078. P. 142–144.; Mani G., Feldman M.D., Patel D., Agrawal C.M. Coronary stents: A materials perspective // Biomaterials. 2007. V. 28. P. 1689–1710.; Windecker S., Mayer I., De Pasquale G., Maier W., Dirsch O., De Groot P., Wu Y.P., Noll G., Leskosek B., Meier B., Hess O.M. Stent coating with titanium-nitride-oxide for re-duction of neointimal hyperplasia // Circulation. 2001. V. 104. P. 928–933.; Yi X., Nan H., Hong S. Blood Compatibility of Titanium Ox-ide Films Modified by Hydrogen Plasma Reduction // Journal of Inorganic Materials. 2008. V. 23, № 6. P. 1246–1252.; Hamdan M., Blanco L., Khraisat A., Tresguerres I.F. Influ-ence of titanium surface charge on fibroblast adhesion // Clin. Implant. Dent. Relat. Res. 2006. V. 8, № 1. P. 32–38.; Qiu Q., Sayer M., Kawaja M., Shen X., Davies J.E. Attach-ment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces // J. Bi-omed. Mater. Res. 1998. V. 42, № 1. P. 117–127.; Pilling D., Vakil V., Gomer R.H. Improved serum-free culture conditions for the differentiation of human and murine fibrocytes // J. Immunol. Methods. 2009. V. 351, № 1–2. P. 62–70.; Webb K., Hlady V., Tresco P. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibro-blast attachment, spreading, and cytosquelette organization // J. Biomed. Mater. Res. 1998. V. 41. P. 422–430.; Kovacs P., Davidson G.A. Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM STP 1272 / ed. S.A. Brown and J.E. Lemons. Am. Society for Testing and Materials, 1996. P. 163–178.; Prime K.L., Whitesides G.M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers // J. Am. Chem. Soc. 1993. V. 115. P. 10714–10721.; Ruardy T.G., Schakenraad J.M., Van der Mei H.C., Busscher H.J. Adhesion and spreading of human skin fibroblasts on physocochemically characterized gradient surfaces // J. Biomed. Mater. Res. 1995. V. 29. P. 1415–1423.; Hyde G.K., Stewart S.M., Scarel G., Parsons G.N., Shih C.C., Shih C.M., Lin S.J., Su Y.Y., Monteiro-Riviere N.A., Na-rayan R.J. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis // Biotechnol. J. 2011. V. 6, № 2. P. 213–223. doi:10.1002/biot.20100034.; Yang W.E., Hsu M.L., Lin M.C., Chen Z.H., Chen L.K., Huang H.H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application // J. Alloys. Compd. 2009. V. 479, № 1–2. P. 642–647.; Demetrescu I., Pirvu C., Mitran V. Effect of nano-topographical features of Ti/TiO(2) electrode surface on cell response and electrochemical stability in artificial saliva // Bioelectrochemistry. 2010. V. 79, № 1. P. 122–129. doi:10.1016/j.bioelechem.2010.02.001.; Ponsonnet L., Reybier K., Jaffrezic N., Comte F., Lagneau C., Lissac M., Martelet C. Relationship between surface proper-ties (roughness, wettability) of titanium and titanium alloys and cell behaviour // Materials Science and Engineering C. 2003. V. 23. P. 551–560.; https://bulletin.tomsk.ru/jour/article/view/132