Εμφανίζονται 1 - 20 Αποτελέσματα από 126 για την αναζήτηση '"Электронная спектроскопия"', χρόνος αναζήτησης: 0,70δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: This study was supported by the RUDN University Strategic Academic Leadership Program, Russia, and the Research Council of Ferdowsi University of Mashhad, Iran., Публикация выполнена при поддержке Программы стратегического академического лидерства РУДН, Россия, и Исследовательского совета Мешхедского университета имени Фирдоуси, Иран.

    Πηγή: Fine Chemical Technologies; Vol 18, No 6 (2023); 559-571 ; Тонкие химические технологии; Vol 18, No 6 (2023); 559-571 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2014/1983; https://www.finechem-mirea.ru/jour/article/view/2014/1984; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2014/1128; Sindhwani S., Chan W.C.W. Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 2021;290(3):486–498. https://doi.org/10.1111/joim.13254; Cao Y., Li S., Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol. Mech. Methods. 2021;31(1):1–17. https://doi.org/10.1080/15376516.2020.1828521; Hsu J.C., Nieves L.M., Betzer O., Sadan T., Noël P.B., Popovtzer R., Cormode D.P. Nanoparticle contrast agents for X-ray imaging applications. WIREs Nanomed. Nanobiotechnol. 2020;12(2):e1642. https://doi.org/10.1002/wnan.1642; Temizel-Sekeryan S., Hicks A.L. Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour. Conserv. Recycl. 2020;156:104676. https://doi.org/10.1016/j.resconrec.2019.104676; Makhlouf S.A. Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 2002;246(1–2):184–190. https://doi.org/10.1016/S0304-8853(02)00050-1; Wang R.M., Liu C.M., Zhang H.Z., Chen C.P., Guo L., Xu H.B., Yang S.H. Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett. 2004;85:2080–2082. https://doi.org/10.1063/1.1789577; Rashad M., Rüsing M., Berth G., Lischka K., Pawlis A. CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013;2013:Article ID 714853. https://doi.org/10.1155/2013/714853; Lanje A.S., Ningthoujam R.S., Sharma S.J., Pode R.B., Vatsa R.K. Luminescence properties of Sn1–xFexO2 nanoparticles. Int. J. Nanotechnol. 2010;7(9–12):979–988. https://doi.org/10.1504/IJNT.2010.034703; Duan X., Huang Y., Agarwal R., Lieber C.M. Single-nanowire electrically driven lasers. Nature. 2003;421:241–245. https://doi.org/10.1038/nature01353; Seo Hee J.U., Hong S.K., Jang H.C., Kang Y.C. Fine size cobalt oxide powders prepared by spray pyrolysis using two types of spray generators. J. Ceramic Soc. Japan. 2007;115(1344):507–510. https://doi.org/10.2109/jcersj2.115.507; Lou X.W., Deng D., Lee J.Y., Feng J., Archer L.A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008;20(2):258–262. https://doi.org/10.1002/adma.200702412; Li Y.G., Tan B., Wu Y.Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008;8(1):265–270. https://doi.org/10.1021/nl0725906; Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989;89(8):1861–1873. https://doi.org/10.1021/cr00098a010; Hagfeldt A., Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995;95(1):49–68. https://doi.org/10.1021/cr00033a003; Zhu X., Bai B., Zhou B., Ji S. Co3O4 nanoparticles with different morphologies for catalytic removal of ethyl acetate. Catal. Commun. 2021;156:106320. https://doi.org/10.1016/j.catcom.2021.106320; Nguyen H., El-Safty S.A. Meso- and macroporous Co3O4 nanorods for effective VOC Gas sensors. J. Phys. Chem. C. 2011;115(17):8466–8474. https://doi.org/10.1021/jp1116189; Li L.L., Chu Y., Liu Y., Song J.L., Wang D., Du X.W. A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 2008;62(10–11):1507–1510. https://doi.org/10.1016/j.matlet.2007.09.012; Li W.Y., Xu L.N., Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005;15(5):851–857. https://doi.org/10.1002/adfm.200400429; Xu R., Hua C.Z. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95°C. J. Phys. Chem. B. 2003;107(4):926–930. https://doi.org/10.1021/jp021094x; Sun X.M., Li Y.D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004;43(5):597–601. https://doi.org/10.1002/anie.200352386; Sun X.M., Liu J.F., Li Y.D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 2006;12(7):2039–2047. https://doi.org/10.1002/chem.200500660; Hu L.H., Peng Q., Li Y.D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Amer. Chem. Soc. 2008;130(48):16136–16137. https://doi.org/10.1021/ja806400e; Ковальчукова О.В., Бостанабад А.Ш., Лобанов Н.Н., Рудакова Т.А., Страшнов П.В., Скаржевский Ю.А., Зюзин И.Н. Алкил- и бензилнитрозогидроксиламинаты меди(II) как прекурсоры для синтеза микро- и наноразмерных оксидов меди(I) различной морфологии. Неорган. материалы. 2014;50(11):1183–1188. https://doi.org/10.7868/S0002337X14110098; Absalan Y., Fortalnova E.A., Lobanov N.N., Dobrokhotova E.V., Kovalchukova O.V. Ti (IV) complexes with some diphenols as precursors for TiO2 nano-sized catalysts. J. Organomet. Chem. 2018;859:80–91. https://doi.org/10.1016/j.jorganchem.2018.02.002; Absalan Y., Kovalchukova O.V., Bratchikova I.G., Lobanov N.N. Novel synthesis method for photo-catalytic system based on some 3d-metal titanates. J. Mater. Sci.: Mater. Electron. 2017;28(23):18207–18219. https://doi.org/10.1007/s10854-017-7769-6; Absalan Y., Ryabov M.A., Kovalchukova O.V. Thermal decomposition of bimetallic titanium complexes: A new method for synthesizing doped titanium nano-sized catalysts and photocatalytic application. Mater. Sci. Eng. C. 2019;97:813–826. https://doi.org/10.1016/j.msec.2018.12.077; Absalan Y., Gholizadeh M., Butusov L., Bratchikova I., Kopylov V., Kovalchukova O. Titania nanotubes (TNTs) prepared through the complex compound of gallic acid with titanium; examining photocatalytic degradation of the obtained TNTs. Arab. J. Chem. 2020;13(10):7274–7288. https://doi.org/10.1016/j.arabjc.2020.02.023; Алабада Р., Авраменко О.В., Исаева Н.Ю., Ковальчукова О.В., Абсалан Я. Комплексные соединения переходных металлов с гидроксиароматическими карбоновыми кислотами как прекурсоры для синтеза наноразмерных оксидов металлов. Изв. АН. Сер. хим. 2020;(5):934–940. https://doi.org/10.1007/s11172-020-2851-2; Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия; 1970. 360 с.; Климова В.А. Основные микрометоды анализа органических соединений. М.: Химия; 1975. 224 с; Chernyak S.A., Suslova E.V., Ivanov A.S., Egorov A.V., Maslakov K.I., Savilov S.V., Lunin V.V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2016;523:221–229. https://doi.org/10.1016/j.apcata.2016.06.012; Shrestha S., Wang B., Dutta P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020;279:102162. https://doi.org/10.1016/j.cis.2020.102162; Sathyamurthy R., Kabeel A.E., Balasubramanian M., Devarajan M., Sharshir S.W., Manokar A.M. Experimental study on enhancing the yield from stepped solar still coated using fumed silica nanoparticle in black paint. Mater. Lett. 2020;272:127873. https://doi.org/10.1016/j.matlet.2020.127873; Arani R.P., Sathyamurthy R., Chamkha A., Kabeel A.E., Deverajan M., Kamalakannan K., Balasubramanian M., Manokar A.M., Essa F., Saravanan A. Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still. Environ. Sci. Pollut. Res. 2021;28(26):35102–35112. https://doi.org/10.1007/s11356-021-13126-y

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Conference

    Συνεισφορές: Зыкова, М. В.

    Περιγραφή αρχείου: application/pdf

    Relation: Химия и химическая технология в XXI веке : материалы XXIII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, Томск, 16-19 мая 2022 г. Т. 1; http://earchive.tpu.ru/handle/11683/72430

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/72430

  8. 8
  9. 9
    Academic Journal

    Πηγή: Известия высших учебных заведений. Физика. 2021. Т. 64, № 2. С. 15-20

    Περιγραφή αρχείου: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 13, No 1 (2018); 22-32 ; Тонкие химические технологии; Vol 13, No 1 (2018); 22-32 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2018-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/131/132; Zhen X., Wang Y. An overview of methanol as an internal combustion engine fuel // Renew. Sustainable Energy Rev. 2015. V. 52. № 1. P. 477-493.; Mofijur M., Rasul M.G., Hyde J. Recent developments on internal combustion engine performance and emissions fuelled with biodieseldieselethanol blends // Procedia Eng. 2015. V. 105. № 1. P. 658-664.; Xu S., Fan S., Yaob H., Wang Y., Lang X., Lv P., Fang S. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water // J. Chem. Thermodyn. 2017. V. 104. № 1. P. 212-217.; Sasaki Y., Tagashira S., Murakami Y., Kai S. Spectrophotometric determination of the alcohol content of alcoholic drinks with bis(O,O′-dipropyldithiophosphato)nickel(II) // Analyt. Sci. 1993. V. 9. № 4. P. 483-486.; Wang M.-L., Choong Y.-M., Su N.-W., Lee M.-H. Liquid chromatographic determination of alcohols in food and beverages with indirect polarimetric detection using a β-cyclodextrin mobile phase // Anal. Chem. 2002. V. 18. № 8. P. 903-906.; Wang M.-L, Choong Y.-M., Su N.-W, Lee M.-H. A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography // J. Food and Drug Analysis. 2003. V. 11. № 2. P. 133-140.; Pontes H., Pinho P.G., Casal S., Carmo H., Santos A., Magalhaes T. GC determination of acetone, acetaldehyde, ethanol, and methanol in biological matrices and cell culture // J. Chromatogr. Sci. 2009.V. 47. № 4. P. 272-278.; Горб Е.П., Зайцев В.М., Самойлова Е.В., Рыбцов Е.В. Cовместное определение примесей этиленгликоля и метанола в ДЭГ методом газовой хроматографии // Газовая промышленность. 2006. Т. 8. № 1. С. 83-84.; Szostek B., Prickett K.B., Buck R.C. Determination of fluorotelomer alcohols by liquid chromatography/tandem mass spectrometry in water // Rapid Commun. Mass Spectrom. 2006. V. 20. № 19. Р. 2837-2844.; Duarte I.F., Barros A., Almeida C., Spraul M., Gil A.M. Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer // J. Agricult. and Food Chem. 2004. V. 52. № 5. Р. 1031-1038.; Tetsuyuki T., Akio S., Tadao O. Fluorometric determination of ethanol in liquor samples by flowinjection analysis using an immobilized enzyme-reactor column with packing prepared by coupling alcohol oxidase and peroxidase onto chitosan beads // J. AOAC Int. 2001. V. 84. № 5. Р.1475-1483.; Williams M.B., Reese H.D. Colorimetric determination of ethyl alcohol // Anal. Chem. 1950. V. 22. № 12. Р. 1556-1561.; de Lima R.B., Varela H. Catalytic oxidation of ethanol on gold electrode in alkaline media // Gold Bulletin. 2008. V. 41. № 1. Р. 15-22.; Lourenco L.M., Stradiotto N.R. Determination of free glycerol in biodiesel at a platinum oxide surface using potential cycling technique // Talanta. 2009. V. 79. № 1. P. 92-96.; Caetano L.G., Takeuchi M., Santos A.L., de Oliveira M.F., Stradiotto N.R. Voltammetric determination of ethyl acetate in ethanol fuel using a Fe3+/Nafion®-coated glassy carbon electrode // Fuel. 2013. V. 106. № 1. P. 837-842.; Riyanto, Othman M.R., Salimon J. Analysis of ethanol using copper and nickel sheet electrodes by cyclic voltammetry // Malaysian J. Analyt. Sci. 2007. V. 11. № 2. P. 379-387.; Hu X., Wang J.A Simple route of modifying copper electrodes for the determination of methanol and ethylene glycol // J. Electroanalysis. 2012. V. 24. № 7. P. 1639-1645.; Pereira P.F., Sousa M.F., Munoz R.A., Richter E.M. Simultaneous determination of ethanol and methanol in fuel ethanol using cyclic voltammetry // Fuel. 2013. V. 103. № 1. P. 725-729.; Fleischmann M., Korinek K., Pletcher D. The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes // J. Chem. Soc. Perkin Trans. 1972. V. 2. № 1. P. 1396-1403.; Мартынов Л.Ю., Наумова А.О., Зайцев Н.К., Ловчиновский И.Ю. Использование медных индикаторных электродов в вольтамперометрическом анализе // Тонкие химические технологии. 2016. Т. 11. № 5. С. 26-41.; Montenegro M.I., Queiros M.A., Daschbach J.L. Microelectrodes: Theory and Applications. Springer Verlag, 2013. V. 197. № 1. 497 p.; Будников Г.К., Евтюгин Г.А., Майстренко В.Н. Модифицированные электроды для вольтамперометрии в химии, биологии и медицине. М.: БИНОМ. Лаборатория знаний, 2010. 416 с.; Davis J., Moorcroft M.J., Wilkins S.J., Compton R.G., Cardosi M.F. Electrochemical detection of nitrate at a copper modified electrode under the influence of ultrasound // Electroanalysis. 2000. V. 12. № 1. P. 1363-1367.; Gamboa J.C.M., Peña R.C., Paixão T.R.L.C., Bertotti M. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples // Talanta. 2009. V. 80. № 2. P. 581-585.; Gamboa J.C.M., Peña R.C., Paixão T.R.L.C., Lima A.S., Bertotti M. Activated copper cathodes as sensors for nitrite analysis // Electroanalysis. 2010. V. 22. № 22. P. 2627-2632.; Gamboa J.C.M., Petri D.F.S., Benedetti T.M., Gonçales V.R., Bertotti M. Morphology, microstructure and electrocatalytic properties of activated copper surfaces // J. Braz. Chem. Soc. 2012. V. 23. № 1. P. 120-123.; Biesinger M.C., Laua L.W.M., Gerson A.R., Smart R.St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn // Appl. Surface Sci. 2010. V. 257. № 7. P. 887-898.; Paixão T.R.L.C., Corbo D., Bertotti M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium // Anal. Chim. Acta. 2002. V. 472. № 1-2. P. 123-131.; Mizokawa T., Fujimori A., Namatame H. Electronic structure of the local-singlet insulator NaCuOz // Phys. Rev. B. 1994. V. 49. № 11. P. 7193-7204.; Allan K., Campion A. X-ray photoemission spectroscopy study of LaCuO3 // Phys. Rev. B. 1990. V. 41. № 16. P. 11572-11575.

  18. 18
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 12, No 1 (2017); 26-30 ; Тонкие химические технологии; Vol 12, No 1 (2017); 26-30 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2017-12-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/69/70; висмут; Yang Y., Ouyang R., Xu L., Guo N., Li W., Feng K., Ouyang L., Yang Z., Zhou S., Miao Y. Bismuth complexes: synthesis and application in biomedicine // J.Coord. Chem., 2015. V. 68. № 3. P. 379-397.; Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. Новосибирск. СО РАН. 2001. 359 с.; Реестр лекарственных средств РФ. ООО «РЛС-2005». М., 2004. 1440 с.; Treibs A. Metallkomplexe von Porphyrinen // Lieb. Ann. Chem. 1969. Bd. 728. S. 115-143.; Lemon C.M., Brothers P.J., Boitrel B. Porphyrin complexes of the 6 main group and late transition metals // Dalton Trans. 2011. V. 40. P. 6591-6609.; Michaudet L., Fasseur D., Guilard R., Ou Zh., Kadish K.M. Synthesis, characterization and electrochemistry of bismuth porphyrins. X-ray crystal structure of (OEP)Bi(SO3CF3) // J. Porphyrins Phthalocyanines. 2000. V. 4. P. 261-270.; Fischer H., Orth H. Die Chemie des Pyrrols. Leipzig: Akad. Verlagsges. 1937. Bd. 2. H. 1. S. 197-199.; Laikov D.N. A new class of atomic basis functions for accurate electronic structure calculations of molecules // Chem. Phys. Letters. 2005. V. 416. PP. 116-120.; Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis set // Chem. Phys. Lett. 1997. V. 281. P. 151-156.; Laikov D.N., Ustynyuk Yu.A. PRIRODA-04: a quantum chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing // Rus. Chem. Bull., Int. Ed. 2005. V. 54. № 3. P. 820-826.; Ogoshi H., Yoshida Z. Infrared study on interaction between porphyrin and divalent metal ion. // Short Commun. 1971. V. 44. № 6. P. 1722.; Boucher L.J., Katz J.J. The infrared spectra of metalloporphyrins (4000-160 сm-1). // J. Am. Chem. Soc., 1967. V. 89. № 6. P. 1340-1345.

  19. 19
  20. 20