Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"ЭФФЕКТ ГИСТЕРЕЗИСА"', χρόνος αναζήτησης: 0,54δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 13-15 (2019); 52-61 ; Альтернативная энергетика и экология (ISJAEE); № 13-15 (2019); 52-61 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1700/1468; Namagatsu J., Nakagawa N., Muranaka Y., Zenitani T., Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature, 2001;410:63–4.; Rosner H., Kitaigorodsky A., Pickett W.E. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett., 2002;88:127001. 1-4.; Wörle M., Nesper R. MgB2C2, a new graphite-related refractory compound. J Alloys Compd, 1994;216:75–83.; Wörle M., Nesper R., Mair G., Schwarz M., Schnering H.G. LiBC e a completely intercalated heterographite. Z Anorg Allg Chem., 1995;621:1153–9.; Pronin A.V., Pucher K., Lunkenheimer P., Krimmel A., Loidl A. Electronic and optical properties of LiBC. Phys. Rev B, 2003;67:132502. 1-4.; Mickelson W., Cumings J., Han W.Q., Zettl A. Effects of carbon doping on superconductivity in magnesium diboride. Phys Rev B, 2002;65:052505. 1-3.; Zhao L., Klavins P., Liu K. Synthesis and properties of hole-doped Li1-xBC. J Appl Phys, 2003;93:8653–5.; Emori S., Takahashi Y., Takano Y., Takase K., Watanabe T. Process for producing hole doped lithium borocarbide. Patent WO 2009028505 A1. 2008.; Ai Q., Fu Z.J., Cheng Y., Chen M.L. Electronic structure and thermodynamic properties of LiBC under high pressure. Chin Phys B, 2008;17:2639.; Saengdeejing A., Wang Y., Liu Z.K. Structural and thermodynamic properties of compounds in the Mg– B–C system from first-principles calculations. Intermetallics, 2010;18:803–8.; Nesper R. New electrode materials, in particular for rechargeable lithium ion batteries. Patent US 20110020706 A1. 2011.; Liu Z.L., Chen Y., Tan N.N., Gou Q.Q. First-principle calculations for thermodynamic properties of LiBC under high temperature and high pressure. Commun Theor Phys., 2006;46:573.; Lazicki A., Yoo C.S., Cynn H., Evans W.J., Pickett W.E., Olamit J., et al. Search for superconductivity in LiBC at high pressure: diamond anvil cell experiments and first-principles calculations. Phys Rev B, 2007;75:054507. 1-6.; Wörle M., Fischbach U., Widmer D., Krumeich F., Nesper R., Evers J., et al. The high-pressure phase of MgB2C2. J Inorg Gen Chem, 2010;636:2543–9.; Langer T., Dupke S., Dippel C., Winter M., Eckert H., Pöttgen R. LiBC–synthesis, electrochemical and solid-state NMR investigations. Z Naturforsch., 2012;67b:1212–20.; Caputo R. Exploring the structure-composition phase space of lithium borocarbide, LixBC for x ≤ 1. RSC Adv 2013;3:10230–41.; Krumeich F., Wörle M., Reibisch P., Nesper R. Characterization of LiBC by phase-contrast scanning transmission electron microscopy. Micron, 2014;63:64–8.; Nesper R. Structure and chemical bonding in Zintl-phases containing lithium. Solid St Chem., 1990;20:1–45.; Ramirez R., Nesper R., Schnering H.G., Bohm M.C. Structure and chemical bonding in Zintl-phases containing lithium. Z Naturforsch., 1987;A42:670.; Mair G. On the lithiumeboron system [Ph.D. diss]. University of Stuttgart; 1984.; Hlinka J., Zelezn'y V., Gregora I., Pokorn'y J., Fogg A.M., Claridge J.B., et al. Vibrational properties of hexagonal LiBC: Infrared and Raman spectroscopy. Phys Rev B, 2003;68:220510. 1-4.; Hlinka J., Gregora I., Pronin A.V., Loidl A. LiBC by polarized Raman spectroscopy: evidence for lower crystal symmetry. Phys Rev B 2003;67:020504. 1-4.; Souptel S., Hossain Z., Behr G., Löser W., Geibel C. Synthesis and physical properties of LiBC intermetallics. Solid St Commun, 2003;125:17–21.; Kobayashi K., Arai M. LiBC and related compounds under high pressure. Phys C, 2003;388–389:201–2.; Renker B., Schober H., Adelmann P., Schweiss P., Bohnen K.P., Heid R. Lattice dynamics of LiBC. Phys Rev B, 2004:69.; Kudo T., Nakamori Y., Orimo S., Badica P., Togano K. Hydrogen effect on synthesis processes and electrical resistivities of LiBC. J Jpn Inst Met., 2005;69:433–8.; Liu K, Klavins P, Zhao L. Synthesis of LiBC and hole-doped Li1-xBC. Patent US 7144562 B2. 2006.; Fogg A.M., Darling G.R., Claridge J.B., Meldrum J., Rosseinsky M.J. The chemical response of main-group extended solids to formal mixed valency: the case of LixBC. Phil Trans R Soc A, 2008;366:55–62.; Ravindran P., Vajeeston P., Vidya R., Kjekshus A., Fjellvåg H. Detailed electronic structure studies on superconducting MgB2 and related compounds. Phys Rev B, 2001;64:224509. 1-15.; Harima H. Energy band structures of MgB2 and related compounds. Phys C, 2002;18:378–81.; Mori T., Takayama-Muromachi E. Hole doping of MgB2C2, a MgB2 related [B/C] layered compound. Cur Appl Phys, 2004;4:276–9.; Takenobu T., Ito T., Chi Dam Hieu, Prassides K., Iwasa Y. Intralayer carbon substitution in the MgB2 superconductor. Phys Rev B, 2001;64:134513. 1-9.; Bharathi A., Balaselvi S.J., Kalavathi S., Reddy G.L.N., Sastry V.S., Hariharan Y., et al. Carbon solubility and superconductivity in MgB2. Phys C Supercond, 2002;370:211–8.; Cava R.J., Zandbergen H.W., Inumaru K. The substitutional chemistry of MgB2. Phys C, 2003;385:8–15.; Avdeev M., Jorgensen J.D., Ribeiro R.A., Bud'ko S.L., Canfield P.C. Crystal chemistry of carbon-substituted MgB2. Phys C Supercond, 2003;387:301–6.; Balaselvi S.J., Gayathri N., Bharathi A., Sastry V.S., Hariharan Y. Peculiarities in the carbon substitution of MgB2. Phys C Supercond, 2004;407:31–8.; Kazakov S.M., Puzniak R., Rogacki K., Mironov A.V., Zhigadlo N.D., Jun J., et al. Carbon substitution in MgB2 single crystals: structural and superconducting properties. Phys Rev B, 2004;71:024533. 1-22.; Lebe'gue S., Arnaud B., Alouani M. Molecular dynamics simulation and chemical bonding analysis of MgB2C2. Compt Mat Sci., 2006;37:220–5.; Yan S.C., Zhou L., Yan G., Wang Q.Y., Lu Y.F. Effect of carbon doping on the formation and stability of MgB2 phase. J. Alloys Compd., 2008;459:452–6.; Bengtson A.K., Bark C.W., Giencke J., Dai W., Xi X., Eom C.B., et al. Impact of substitutional and interstitial carbon defects on lattice parameters in MgB2. J Appl Phys., 2010;107:023902. 1-4.; Kang D.B. Structural arrangements and bonding analysis of MgB2C2. Bull Korean Chem Soc., 2010;31:2565–70.; Bohnenstiehl S.D. Thermal analysis, phase equilibria, and superconducting properties in MgB2 and carbon doped MgB2. Ohio: Ohio State University; 2012.; Yan H., Zhang M., Wei Q., Guo P. Ab initio studies of ternary semiconductor BeB2C2. Compt Mat Sci., 2013;68:174–80.; Zuttel A. Smart carbon-based materials for hydrogen storage. Dubendorf, Switzerland: EMPA Project 130509; 2013.; Liu P., Vajo J.J. Thermodynamically tuned nanophase materials for reversible hydrogen storage. Washington: Project review ID #ST18; 2007.; Churchard A.J., Banach E., Borgschulte A., Caputo R., Chen J.C., Clary D., et al. A multifaceted approach to hydrogen storage. Phys Chem Chem Phys., 2011;13:16955–72.; Nakamori Y., Orimo S. Synthesis and characterization of single phase LixBC (x = 0.5 and 1.0), using Li hydride as a starting material. J Alloys Comp., 2004;370:L7–9.; Klebanoff L., Keller J. 5 years of hydrogen storage research in US DOE Metal Hydride Center of Excellence. Int J Hydrogen Energy, 2013;38:4533–76.; Reibisch P. Low-dimensional compounds and composites for lithium exchange as well as for electronic and for ionic conductivity enhancement [Ph.D. diss]. No 21946. Zurich, Germany. 2014.; Albert B., Schmitt K. CaB2C2: reinvestigation of a semiconducting boride carbide with a layered structure and an interesting boron/carbon ordering scheme. Inorg Chem., 1990;38:6159–63.; Smirnov A.A. Theory of interstitial alloys. Moscow: Nauka; 1979 [in Russian].; Smirnov A.A. Generalized theory of alloys ordering. Kiev: Naukova Dumka; 1986 [in Russian].; Smirnov A.A. Theory of phase transformations and arrangement of atoms in interstitial alloys. Kiev: Naukova Dumka; 1992 [in Russian].; Matysina Z.A., Schur D.V. Hydrogen and solid phase transformations in metals, alloys and fullerites. Dnepropetr Nauka i Obraz., 2002 [in Russian].; Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Solubility of admixtures in metals, alloys, intermetallic compounds, fullerites. Dnepropetr Nauka i Obraz., 2006 [in Russian].; Schur D.V., Zaginaichenko S.Yu., Matysina Z.A., Pishuk V.K. Hydrogen in lanthanum-nickel storage alloys. J Alloys Compd., 2002;330–2:70–5.; Zaginaichenko S.Yu., Matysina Z.A., Schur D.V. Hydrogen in lanthanum-magnesium-nickel alloys of L22, D2d, L60 structures. Phys Metals Latest Technol., 2007;104:453–64.; Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen sorption properties of magnesium intermetallics. Nanosyst Nanomater Nanotechnologies, 2012;37:883–93.; https://www.isjaee.com/jour/article/view/1700

  2. 2
    Academic Journal

    Συνεισφορές: The study was financially supported by the grant received from the RFBR, no. 18-05-60240. Field campaigns were funded within the EU 7th Framework Programme Project TOMCARPermafrost, no. 277059., Работа выполнена при финансовой поддержке РФФИ, проект № 18-05-60240. Полевые исследования проводились в рамках международного проекта TOMCAR-Permafrost (проект № 277059 7-й Рамочной программы ЕС).

    Πηγή: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; № 6 (2019); 68-82 ; Известия Российской академии наук. Серия географическая; № 6 (2019); 68-82 ; 2658-6975 ; 2587-5566

    Περιγραφή αρχείου: application/pdf

    Relation: https://izvestia.igras.ru/jour/article/view/971/655; Алексеевский Н.И. Формирование и движение речных наносов. М.: Изд-во Моск. ун-та, 1998. 202 с.; Алексеевский Н.И. Концепция геостока и состояние малых рек // Эрозионные и русловые процессы. Вып. 13 / ред. Р.С. Чалов. М.: Изд-во Моск. ун-та, 2000. С. 68–77.; Алексеевский Н.И., Власов Б.Н., Доронин Ю.П., Сидорчук А.Ю., Царев В.А. Влияние горных работ на сток наносов в бассейнах рек Омолоя и Яны и на шельфе моря Лаптевых // Рациональное природопользование в криолитозоне / отв. ред. В.Т. Балобаев. М.: Наука, 1992. С. 68–77.; Магрицкий Д.В. Годовой сток взвешенных наносов российских рек водосбора Северного Ледовитого океана и его антропогенные изменения // Вестн. Моск. ун-та. Сер. 5. География. 2010. № 6. С. 17–24.; Михайлов В.Н. Гидрология устьев рек. М.: Издво Моск. ун-та, 1998. 176 с.; Наставление гидрометеорологическим станциям и постам. Вып. 6. Ч. I. Гидрологические наблюдения на больших и средних реках. Л.: Гидрометеоиздат, 1978. 78 с.; Тананаев Н.И. Эффект гистерезиса в сезонной изменчивости соотношения расхода и мутности воды рек криолитозоны Сибири и Дальнего Востока // Водные ресурсы. 2012. Т. 39. № 6. С. 648–656.; Тананаев Н.И. Использование регрессионного анализа в расчетах стока взвешенных наносов: особенности метода // Водные ресурсы. Т. 40. № 6. С. 585–592.; Тананаев Н.И., Лебедева Л.С. Органическая составляющая взвешенного вещества малых рек тундрово-таежной зоны Енисейского Севера в летне-осенний период // География и природные ресурсы. 2018. № 2. С. 140–147.; Asselman N.E.M. Fitting and interpretation of sediment rating curves // J. Hydrol. 2000. V. 234. P. 228–248.; Bogen J. The hysteresis effect of sediment transport system // Norwegian J. of Geography. 1980. V. 34. № 1. P. 45–54.; Cohn T.A., DeLong L.L., Gilroy E.J., Hirsch R.M., Wells D.K. Estimating constituent loads // Water Res. Research. 1989. V. 25. P. 937–942.; Gordeev V.V. Fluvial sediment flux to the Arctic Ocean // Geomorphology. 2006. V. 80. P. 94–104. DOI:10.1016/j.geomorph.2005.09.008; Horowitz A.J., Elrick K.A., Smith J.J. Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the NASQAN programme // Hydrol. Process. 2001. V. 17. P. 1107–1132. DOI:10.1002/hyp.206; Horowitz A.J., Stephens V.C., Elrick K.A., Smith J.J. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data // Hydrol. Process. 2012. V. 26. P. 1090–1114. DOI:10.1002/hyp.8437; Kokelj S.V., Lacelle D., Lantz T.C., Tunnicliffe J., Malone L., Clark I.D., Chin K.S. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales // J. Geophys. Res.: Earth Surface. 2013. V. 118. P. 681–692. DOI:10.1002/jgrf.20063 17. LOADEST: Load Estimator. USGS. 2013. http:// water.usgs.gov/software/loadest; Lloyd C.E.M., Freer J.E., Johnes P.J., Collins A.L. Technical note: Testing an improved index for analysing storm discharge–concentration hysteresis // Hydrol. Earth System Sci. 2016. V. 20. P. 625–632. DOI:10.5194/hess-20-625-2016; Lobbes J., Fitznar H., Kattner G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic ocean // Geochimica et Cosmochimica Acta. 2000. V. 64. P. 2973–2983.; McClelland J.W., Holmes R.M., Peterson B.J., Raymond P.A., Striegl R.G., Zhulidov A.V., Zimov S.A., Zimov N., Tank S.E., Spencer R.G.M., Staples R., Gurtovaya T.Y., Griffin C.G. Particulate organic carbon and nitrogen export from major Arctic rivers // Global Biogeochem. Cycles. 2016. V. 30. P. 629–643. DOI:10.1002/2015GB005351; Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. Part I. A discussion of principles // J. Hydrol. 1970. V. 10. P. 282–290.; Nummelin A., Ilicak M., Li C., Smedsrud L.H. Consequences of future increased Arctic runoff on Arctic ocean stratification. Circulation. And sea ice cover // J. Geophys. Res.: Oceans. 2016. V. 121. P. 617–637. DOI:10.1029/2015JC011156; Opsahl S., Benner R., Amon R.M.W. Major flux of terrigenous organic matter through the Arctic Ocean // Limnology and Oceanography. 1999. V. 44. P. 2017– 2023. DOI:10.4319/lo.1999.44.8.2017; Peterson B.J., Holmes R.M., McClelland J.W., Vorosmarty C.J., Lammers R.B., Shikloma nov A.I., Shiklomanov I.A., Rahmstorf S. Increasing river discharge to the Arctic Ocean // Sci. 2002. V. 298. P. 2171–2173.; Rstudio (2015). Integrated Development Environment for R (Ver. 0.99.489). USA, Boston. 2015.; Runkel R.L., Crawford C.G., Cohn T.A. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers // USGS Techniques and Methods Book 4. Chapter A5. Reston: USGS Publ., 2004. 75 p.; St. Jacques J.-M., Sauchyn D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada // Geophys. Res. Let. V. 36. L01401. DOI:10.1029/2008GL035822; Syvitski J.P.M. Sediment discharge variability in Arctic rivers: implications for a warmer future // Polar Res. 2006. V. 21. P. 323–330. DOI:10.1111/j.17518369.2002.tb00087.x; Tananaev N.I. Hysteresis effects of suspended sediment transport in relation to geomorphic conditions and dominant sediment sources in medium and large rivers of the Russian Arctic // Hydrol. Res. 2015. V. 46.2. P. 232–243. DOI:10.2166/nh.2013.199; Tananaev N.I., Makarieva O.M., Lebedeva L.S. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia // Geophys. Res. Let. 2016. V. 43. № 20. P. 10 764–10 772. DOI:10.1002/2016GL070796; Williams G.P. Sediment concentration versus water discharge during single hydrologic events in rivers // J. of Hydrol. 1989. № 111. P. 89–106. DOI:10.1016/0022-1694(89)90254-0; https://izvestia.igras.ru/jour/article/view/971

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Tyumen State University Herald. — 2012. — № 8 : Sociology; Akulich, M. M. Innovation changes habitus / M. M. Akulich, I. N. Shilo // Tyumen State University Herald. — 2012. — № 8 : Sociology. — P. 97–101.

  14. 14