-
1Academic Journal
Συγγραφείς: Тронин Ефим Викторович, Efim V. Tronin
Πηγή: Science, education, society: trends and prospects; 235-237 ; Наука, образование, общество: тенденции и перспективы развития; 235-237
Θεματικοί όροι: эффективность, развитие, химическая промышленность, энергоемкость, факторы развития
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6054968-2-3; https://interactive-plus.ru/e-articles/953/Action953-586214.pdf; Тонких К.А. Обзор факторов, влияющих на развитие рынка химической промышленности в России и Алтайском крае / К.А. Тонких // Наука и молодежь. Материалы XX Всероссийской научно-технической конференции студентов, аспирантов и молодых ученых. – Барнаул, 2023. – С. 281–284. EDN FRJBRG; Nazarova L. Improving the management of organizational and economic mechanisms of chemical industry enterprises / L. Nazarova // Bulletin of Science and Practice. – 2022. – Vol. 8. №11. – P. 428–434. DOI 10.33619/2414-2948/84/54. EDN OFXFFF
-
2Academic Journal
-
3Academic Journal
Συγγραφείς: Рудченко, Г.А.
Πηγή: Economy and banks; No. 1 (2024); 84-93 ; Экономика и банки; № 1 (2024); 84-93 ; 2524-2393 ; 2078-5410
Θεματικοί όροι: fuel and energy resources, energy efficiency, energy intensity, energy consumption, energy development strategies, agriculture, food production, топливно-энергетические ресурсы, энергоэффективность, энергоемкость, энергопотребление, стратегии энергетического развития, сельское хозяйство, производство продовольствия
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.polessu.by/EB/article/view/1889/1580; https://ojs.polessu.by/EB/article/view/1889
Διαθεσιμότητα: https://ojs.polessu.by/EB/article/view/1889
-
4Academic Journal
Συγγραφείς: Камила Юнировна Бикчурина
Πηγή: Экономика, профессия, бизнес, Iss 4, Pp 83-91 (2024)
Θεματικοί όροι: устойчивое развитие, энергетический комплекс, энергетическая безопасность региона, энергоемкость валового регионального продукта, альтернативная энергетика, Commerce, HF1-6182, Finance, HG1-9999, Economics as a science, HB71-74
Relation: http://journal.asu.ru/ec/article/view/16551; https://doaj.org/toc/2413-8584; https://doaj.org/article/0a6a60143d094afdb1967f970e31c2d3
-
5Academic Journal
Πηγή: Плодородие. :38-41
Θεματικοί όροι: 2. Zero hunger, плодородие, озимая рожь, Фосфатовит, урожайность, дерново-подзолистая почва, Азотовит, энергоёмкость
-
6Academic Journal
Συγγραφείς: Aleksei Victorovich Sosnin
Πηγή: Современная наука и инновации, Vol 0, Iss 1, Pp 114-131 (2022)
Θεματικοί όροι: многоэтажные каркасные здания, дефицит сейсмостойкости, коэффициент k¥ (в редакции сп 14.13330), рассеяние энергии землетрясения, суммарное затухание колебаний, энергоёмкость, коэффициент учёта гистерезисного поведения, категория уязвимости здания, срок эксплуатации здания, multi-storey frame buildings, earthquake-resistance shortage, damping modification factor k¥ (to sp 14.13330 formulation), earthquake energy dissipation, total damping, energy-output ratio, hysteresis modiication factor, structural behavior type, building lifespan, International relations, JZ2-6530
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/e781b01967024c0282eb7eb0de982c07
-
7Academic Journal
Πηγή: МИЛЛИОНЩИКОВ-2020. :189-193
Θεματικοί όροι: окружающая среда, экология, энергоэффективность, энергосбережение, зеленое строительство, энергоёмкость
-
8Conference
Συγγραφείς: Хамракулов Сабит Салижонович
Θεματικοί όροι: землеройные машины, пластическая деформация, изнашивание режущих органов, абразивные частицы, термическая обработка стали, внутреняя энергия, темп износа, энергоемкость, производительность
Relation: https://zenodo.org/records/7747685; oai:zenodo.org:7747685; https://doi.org/10.5281/zenodo.7747685
-
9Academic Journal
Συγγραφείς: Tiranov, A.B.
Πηγή: Плодородие. :43-46
Θεματικοί όροι: 2. Zero hunger, fertility, плодородие, productivity, яровой рапс, energy intensity, урожайность, энергоёмкость. DOI, microbiological fertilizers, 10.25680/S19948603.2020.113.13, микробиологические удобрения, 6. Clean water, spring rape
-
10Academic Journal
Συγγραφείς: Рудченко, Г.А., Ермалинская, Н.В.
Πηγή: Economy and banks; No. 1 (2023); 46-59 ; Экономика и банки; № 1 (2023); 46-59 ; 2524-2393 ; 2078-5410
Θεματικοί όροι: energy efficiency, energy intensity, energy conservation, renewable energy sources, national economy, agricultural sector, энергоэффективность, энергоемкость, энергосбережение, возобновляемые источники энергии, национальная экономика, аграрный сектор
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.polessu.by/EB/article/view/1752/1463; https://ojs.polessu.by/EB/article/view/1752
Διαθεσιμότητα: https://ojs.polessu.by/EB/article/view/1752
-
11Academic Journal
Συγγραφείς: V. L. Nezevak, A. D. Dmitriev, S. S. Samolinov, В. Л. Незевак, А. Д. Дмитриев, С. С. Самолинов
Συνεισφορές: The study was supported by the Russian Science Foundation grant No. 22–29–00002, https://rscf.ru/ project/22-29-00002/., Исследование выполнено за счёт гранта Российского научного фонда № 22–29–00002, https://rscf.ru/ project/22–29–00002.
Πηγή: World of Transport and Transportation; Том 21, № 2 (2023); 6-17 ; Мир транспорта; Том 21, № 2 (2023); 6-17 ; 1992-3252
Θεματικοί όροι: энергоёмкость, traction power supply system, electric rolling stock, simulation model, Matlab software package, storage battery, supercapacitor, voltage level, energy intensity, система тягового электроснабжения, электроподвижной состав, имитационная модель, программный комплекс Matlab, аккумуляторная батарея, суперконденсатор, уровень напряжения
Περιγραφή αρχείου: application/pdf
Relation: https://mirtr.elpub.ru/jour/article/view/2452/4223; https://mirtr.elpub.ru/jour/article/view/2452/4224; Jiaxin Yuan, Ke Cheng, Kai Qu. Optimal dispatching of high-speed railway power system based on hybrid energy storage system. Energy Reports, 2022, Vol. 8, Supplement 13, pp. 433–442. DOI:10.1016/j.egyr.2022.08.039.; Vilberger, M., Arestova, A., Matrenin, P., Domakhin, E. Analysis of rectification techniques and autonomous hybrid power plants potential for railway power supply systems. Energy Reports, 2022, Vol. 8, Supplement 13, pp. 957–966. DOI:10.1016/j.egyr.2022.08.046.; Tretyakov, E., Istomin, S., Avdienko, E., Denisov, I. Development of the system of coordinated control of traction power supply equipment and electric rolling stock. Transportation Research Procedia, 2022, Vol. 63, pp. 1970–1978. DOI:10.1016/j.trpro.2022.06.218.; Alnuman, H. H., Gladwin, D. T., Foster, M. P., Ahmed, E. M. Enhancing energy management of a stationary energy storage system in a DC electric railway using fuzzy logic control. International Journal of Electrical Power & Energy Systems, 2022, Vol. 142, Part B, 108345. DOI:10.1016/j.ijepes.2022.108345.; Zhiming Zhong, Yongxin Zhang, Hong Shen, Xingmei Li. Optimal planning of distributed photovoltaic generation for the traction power supply system of high-speed railway. Journal of Cleaner Production, 2020, Vol. 263, 121394. DOI:10.1016/j.jclepro.2020.121394.; Shanpeng Zhao, Qiang Feng, Hongwei Yang, Youpeng Zhang. Control strategy of hybrid energy storage in regenerative braking energy of high-speed railway. Energy Reports, 2022, Vol. 8, Supplement 1, pp. 1330–1338. DOI: https://doi.org/10.1016/j.egyr.2021.11.230.; Незевак В.Л. Сравнение вариантов применения накопителей электроэнергии в системе тягового электроснабжения и на электроподвижном составе // Транспорт: наука, техника, управление. Научный информационный сборник. – 2020. – № 9. – С.17–23. DOI:10.36535/023619142020094.; Закарюкин В. П., Крюков А. В., Асташин С.М. Управление режимами систем тягового электроснабжения: монография. – Иркутск: Иркутский государственный университет путей сообщения, 2009. – 104 с. ISBN 978-5-98710-103-2.; Марский В.Е. Режимы работы системы тягового электроснабжения на линии Санкт-Петербург– Москва при пропуске сдвоенных поездов «Сапсан» // Железнодорожный транспорт на современном этапе: 70 лет аспирантуре ОАО «ВНИИЖТ»: сб. трудов ученых ОАО «ВНИИЖТ». – М.: ВМГ-Принт, 2014. – С. 111–120.; Бадер М. П., Гречишников В. А., Шевлюгин М. В., Король Ю. Н. Анализ показателей работы силового оборудования системы тягового электроснабжения ОАО «РЖД» на основе мониторинга тяговых подстанций в режиме реального времени // Электроника и электрооборудование транспорта. – 2011. – № 5–6.– С.5–8.; Черемисин В. Т., Каштанов А. Л., Незевак В.Л. Организация контроля предельных режимов работы тяговой сети в условиях скоростного и тяжеловесного движения // Известия Транссиба. – 2017. – № 1 (29). – С.83–90.; Герман Л. А., Новиков Е. В., Фомина З. А., Ручкина Л.Г. Обоснование необходимости применения быстродействующего АПВ фидеров контактной сети переменного тока // Наука и техника транспорта. – 2015. – № 1.– С.105–108. [Электронный ресурс]: https://elibrary.ru/item.asp?id=23146329. Доступ 16.04.2023.; Shiraishi, S. Electric Double Layer Capacitors. In: Carbon Alloys. Novel Concepts to Develop Carbon Science and Technology, 2003, pp. 447–457. DOI:10.1016/b978-008044163-4/50027-9 [ограниченный доступ].; Dongen, van, L. A. M., Graaf, van der, R., Visscher, W. H. M. Theoretical prediction of electric vehicle energy consumption and battery state-of-charge during arbitrary driving cycles. In: Andrews, L. (Ed.), EVC symposium VI proceedings: Baltimore, Maryland, October 21–23, 1981, Electric Vehicle Council, pp. 1–13. [Электронный ресурс]: https://pure.tue.nl/ws/files/4381208/604417.pdf. Доступ 16.04.2023.; Shepherd, C.M. Design of Primary and Secondary Cells: II. An Equation Describing Battery Discharge. Journal of Electrochemical Society, 1965, Vol. 112, No. 7, pp. 657–664. DOI 10.1149/1.2423659.; Stern, O. Zur Theorie der Elektrolytischen Doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924, Vol. 30, Iss. 21–22, pp. 508–516. DOI: https://doi.org/10.1002/bbpc.192400182 [ограниченный доступ].; Незевак В. Л. Условия работы системы накопления электроэнергии в тяговом электроснабжении постоянного тока однопутных участков железных дорог // Вестник Научно-исследовательского института железнодорожного транспорта. – 2021. – Т.80. – № 4. – С.216–224. DOI:10.21780/2223-9731-2021-80-4-216-224.; Nezevak, V. L., Cheremisin, V. T. Determination of Electric Energy Storage Units Parameters of Direct Current Traction Power Supply in Conditions of Goods Traffic Dominance. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020. DOI: https://doi.org/10.1109/fareastcon50210.2020.9271611.; Незевак В. Л. О сравнении энергетических параметров систем накопления электроэнергии для систем тягового электроснабжения постоянного и переменного тока // Вестник Научно-исследовательского института железнодорожного транспорта. – 2022. – Т.81. – № 1.– С.38–52. DOI:10.21780/2223-9731-2022-81-1-38-52.; https://mirtr.elpub.ru/jour/article/view/2452
-
12Academic Journal
Συγγραφείς: Критская, Тетяна, Сукач, Михайло, Баженов, Євген
Πηγή: Pidvodni tehnologii; No. 12 (2022); 63-77 ; "Подводные технологии: промышленная и гражданская инженерия"; № 12 (2022); 63-77 ; Pidvodni tehnologii; № 12 (2022); 63-77 ; 2415-8569 ; 2415-8550 ; 10.32347/uwt.2022.12
Θεματικοί όροι: quartz sand, silicon polycrystalline, semiconductor quality, high-energy processing, energy intensity, кварцевий пісок, кремній полікристалічний, напівпровідникова якість, енергоємність, кварцевый песок, кремний поликристаллический, полупроводниковое качество, энергоемкость
Περιγραφή αρχείου: application/pdf
Relation: http://uwtech.knuba.edu.ua/article/view/275831/270756; http://uwtech.knuba.edu.ua/article/view/275831
-
13Academic Journal
Συγγραφείς: Kritskaia, Tatiana, Sukach, Mykhailo, Bazhenov, Yevgen
Πηγή: Transfer of innovative technologies; Vol 5, No 1 (2022); 29-44 ; 2664-2697 ; 2617-0264 ; 10.32347/tit.2022.51
Θεματικοί όροι: кварцевый песок, поликристаллический кремний, механоактивация, энергоемкость, хлорирование, quartz sand, polycrystalline silicon, semiconductor purity, mechanical activation, high-energy treatment, energy intensity, chlorination, low-temperature catalytic hydrogenation
Περιγραφή αρχείου: application/pdf
-
14Academic Journal
Συγγραφείς: S. V. Braginets, O. N. Bakhchevnikov, K. A. Deev, С. В. Брагинец, О. Н. Бахчевников, К. А. Деев
Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Agricultural Research Centre Donskoy (theme No. 0505-2022-0007). The authors thank the reviewers for their contribution to the peer review of this work., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «АНЦ «Донской» (тема № 0505-2022-0007). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.
Πηγή: Agricultural Science Euro-North-East; Том 24, № 1 (2023); 30-45 ; Аграрная наука Евро-Северо-Востока; Том 24, № 1 (2023); 30-45 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: энергоемкость гранулирования, biofuel, pelletizer, die, pellet density, pellet durability, pelleting energy intensity, биотопливо, пресс-гранулятор, фильера матрицы, плотность гранул, прочность гранул
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1244/632; Blagov D. A., Gizatov A. Y., Smakuyev D. R., Kosilov V. I., Pogodaev V. A., Tamaev S. A. Overview of feed granulation technology and technical means for its implementation. IOP Conference Series: Earth and Environmental Science. 2020;613(1):012018. DOI: https://doi.org/10.1088/1755-1315/613/1/012018; Regupathi E. R., Suriya A., Geethapriya R. S. On studying different types of pelletizing system for fish feed. International Journal of Fishiries and Aquatic Studies. 2019;7(2):187-192. URL: https://www.fisheriesjournal.com/archives/2019/vol7issue2/PartC/7-2-4-857.pdf; Kumaraguru Vasagam K. P., Ambasankar K., Dayal J. S. An overview of aquafeed formulation and processing. In: Perumal S., Thirunavukkarasu A. R., Pachiappan P. (eds) Advances in Marine and Brackishwater Aquaculture. Springer, New Delhi, 2015. pp. 227-240. DOI: https://doi.org/10.1007/978-81-322-2271-2_21; Muramatsu K., Massuquetto A., Dahlke F., Maiorka A. Factors that affect pellet quality: a review. Journal of Agricultural Science and Technology. 2015;9(2):717-722. DOI: https://doi.org/10.17265/2161-6256/2015.09.002; Nielsen S. K., Mando M., Rosenorn A. B. Review of die design and process parameters in the biomass pelleting process. Powder Technology. 2020;364: 971-985. DOI: https://doi.org/10.1016/j.powtec.2019.10.051; Gageanu I., Cujbescu D., Persu C., Tudor P., Cardei P., Matache M., Vladut V., Biris S., Voicea I., Ungureanu N. Influence of input and control parameters on the process of pelleting powdered biomass. Energies. 2021;14(14):4104. DOI: https://doi.org/10.3390/en14144104; Ольховик П. А., Шахов В. А., Хлопко Ю. А., Козловцев А. П., Межуева Л. В., Шахов В. В., Шахов Г. В. Основные тенденции совершенствования пресс-грануляторов. Известия Оренбургского государственного аграрного университета. 2022;94(2):102-106. DOI: https://doi.org/10.37670/2073-0853-2022-94-2-102-106; Thomas M., Van der Poel A. F. B. Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Animal Feed Science and Technology. 2020;268:114612. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114612; Dujmovic M., Safran B., Jug M., Radmanovic K., Antonovic A. Biomass Pelletizing Process: A Review. Drvna Industrija. 2022;73(1):99-106. DOI: https://doi.org/10.5552/drvind.2022.2139; Torraco R. J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review. 2016;15(4):404-428. DOI: https://doi.org/10.1177/1534484316671606; Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems. 2015;37:879-910. DOI: https://doi.org/10.17705/1cais.03743; Stelte W., Sanadi A. R., Shang L., Holm J. K., Ahrenfeldt J., Henriksen U. B. Recent developments in biomass pelletization – A review. BioResources. 2012;7(3):4451-4490. URL: https://orbit.dtu.dk/files/10266572/Recent_Development_Biomass_Pelletization_Review.pdf; Harun N. Y., Afzal M. Effect on particle size on mechanical properties of pellets made from biomass. Procedia Engineering. 2016;148:93-99. DOI: https://doi.org/10.1016/j.proeng.2016.06.445; Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel. 2011;90(11):3285-3290. DOI: https://doi.org/10.1016/j.fuel.2011.05.011; Lyu F., Thomas M., Hendriks W. H., Van der Poel A. F. B. Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology. 2020;261:114347. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114347; Рюле М. Как изменяется размер частиц при гранулировании. Комбикорма. 2020;(6):34-36. Режим доступа: https://kombi-korma.ru/sites/default/files/2/06_20/2020_06_34-36.pdf; Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V. Particle size distribution and physicochemical properties of pellets made of straw, hay, and their blends. Waste and Biomass Valorization. 2020;11:63-75. DOI: https://doi.org/10.1007/s12649-018-0458-8; Bergström D., Israelsson S., Ohman M., Dahlqvist S. A., Gref R., Boman C., Wasterlund I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology. 2008;89(12):1324-1329. DOI: https://doi.org/10.1016/j.fuproc.2008.06.001; Mani S., Tabil L. G., Sokhansanj S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy. 2006;30(7):648-654. DOI: https://doi.org/10.1016/j.biombioe.2005.01.004; Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy. 2011;35(2):910-918. DOI: https://doi.org/10.1016/j.biombioe.2010.11.003; Froetschner J. Conditioning Controls Quality of Pellet. Feed Tech. 2006;10(6):12-5. URL: https://vk.cc/chaXTz; Moritz J. S., Cramer K. R., Wilson K. J., Beyer R. S. Feed manufacture and feeding of rations with graded levels of added moisture formulated to different energy densities. Journal Applied of Poultry Research. 2003;12(3):371-381. DOI: https://doi.org/10.1093/japr/12.3.371; Abdollahi M. R., Ravindran V., Wester T. J., Ravindran G., Thomas D. V. Effect of improved pellet quality from the addition of a pellet binder and/or moisture to a wheat-based diet conditioned at two different temperatures on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broilers. Animal Feed Science and Technology. 2012;175(3-4);150-157. DOI: https://doi.org/10.1016/j.anifeedsci.2012.05.001; Cutlip S. E., Hott J. M., Buchanan N. P., Rack A. L., Latshaw J. D., Moritz J. S. The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. Journal Applied of Poultry Research. 2008;17(2):249-261. DOI: https://doi.org/10.3382/japr.2007-00081; Ungureanu N., Vladut V., Voicu G., Dinca M. N., Zabava B. S. Influence of biomass moisture content on pellet properties – review. Engineering for Rural Development. 2018;17:1876-1883. DOI: https://doi.org/10.22616/ERDev2018.17.N449; Colovic R., Vukmirovic D., Matulaitis R., Bliznikas S., Uchockis V., Juskiene V., Levic J. Effect of die channel press way length on physical quality of pelleted cattle feed. Food & Feed Research. 2010;37(1):1-6. URL: http://foodandfeed.fins.uns.ac.rs/uploads/Magazines/magazine_37/effect-of-die-channel-press-way-length-on-physicalquality-of-pelleted-cattle-feed.pdf; Abadi M. H. M. G., Moravej H., Shivazad M., Torshizi M. A. K., Kim W. K. Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry Science. 2019;98(10):4745-4754. DOI: https://doi.org/10.3382/ps/pez190; Gehring C. K., Lilly K. G. S., Shires L. K., Beaman K. R., Loop S. A., Moritz J. S. Increasing mixer-added fat reduces the electrical energy required for pelleting and improves exogenous enzyme efficacy for broilers. Journal of Applied Poultry Research. 2011;20(1):75-89. DOI: https://doi.org/10.3382/japr.2009-00082; Lamichhane S., Sahtout K., Smillie J., Scott T. A. Vacuum coating of pelleted feed for broilers: opportunities and challenges. Animal Feed Science and Technology. 2015;200:1-7. DOI: https://doi.org/10.1016/j.anifeedsci.2014.11.015; Massuquetto A., Durau J. F., Schramm V. G., Netto M. T., Krabbe E. L., Maiorka A. Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research. 2018;27(1);51-58. DOI: https://doi.org/10.3382/japr/pfx039; Segerstrom M., Larsson S. H. Clarifying sub-processes in continuous ring die pelletizing through die temperature control. Fuel Processing Technology. 2014;123:122-126. DOI: https://doi.org/10.1016/j.fuproc.2014.02.008; Abdollahi M. R., Ravindran V., Wester T. J., Ravindran G., Thomas D. V. Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed corn and sorghum-based diets. Animal Feed Science and Technology. 2010;162(3-4):106-115. DOI: https://doi.org/10.1016/j.anifeedsci.2010.08.017; Kulig R., Laskowski J. Effect of conditioning parameters on pellet temperature and energy consumption in the process of plant material pressing. Teka Komisji Motoryzacji i Energetyki Rolnictwa. 2008;8a:105-111. URL: https://www.researchgate.net/publication/237283167_EFFECT_OF_CONDITIONING_PARAMETERS_ON_PELLET_TEMPERATURE_AND_ENERGY_CONSUMPTION_IN_THE_PROCESS_OF_PLANT_MATERIAL_PRESSING; Netto M. T., Massuquetto A., Krabbe E. L., Surek D., Oliveira S. G., Maiorka A. Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. Journal of Applied Poultry Research. 2019;28(4):963-973. DOI: https://doi.org/10.3382/japr/pfz056; Dos Santos R. O. F., Bassi L. S., Schramm V. G., da Rocha C., Dahlke F., Krabbe E. L., Maiorka A. Effect of conditioning temperature and retention time on pellet quality, ileal digestibility, and growth performance of broiler chickens. Livestock Science. 2020;240:104110. DOI: https://doi.org/10.1016/j.livsci.2020.104110; Picchio R., Latterini F., Venanzi R., Stefanoni W., Suardi A., Tocci D., Pari L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies. 2020;13(11):2937. DOI: https://doi.org/10.3390/en13112937; Благов Д. А., Митрофанов С. В., Панферов Н. С., Тетерин В. С., Пестряков Е. В. Пресс-грануляторы, технические особенности, влияние гранулирования на качественные показатели корма. Кормление сельскохозяйственных животных и кормопроизводство. 2020;(9):57-66. DOI: https://doi.org/10.33920/sel-05-2009-06; Agar D. A., Rudolfsson M., Kalen G., Campargue M., Perez D. D. S., Larsson S. H. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology. 2018;180:47-55. DOI: https://doi.org/10.1016/j.fuproc.2018.08.006; Crawford N. C., Ray A. E., Yancey N. A., Nagle N. Evaluating the pelletization of “pure” and blended lignocellulosic biomass feedstocks. Fuel Processing Technology. 2015;140:46-56. DOI: https://doi.org/10.1016/j.fuproc.2015.08.023; Whittaker C., Shield I. Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews. 2017;71:1-11. DOI: https://doi.org/10.1016/j.rser.2016.12.119; Faborode M. O., O’Callaghan J. R. Theoretical analysis of the compression of fibrous agricultural materials. Journal of Agricultural Engineering Research. 1986;35(3):175-191. DOI: https://doi.org/10.1016/S0021-8634(86)80055-5; Mani S., Tabil L. G., Sokhansanj S. Evaluation of compaction equations applied to four biomass species. Canadian Biosystems Engineering. 2004;46(3):55-61. URL: https://library.csbe-scgab.ca/docs/journal/46/c0404.pdf; Alakangas E., Paju P. Wood pellets in Finland – technology, economy, and market. OPET Report 5. Jyväskylä: VTT Processes, 2002. 85 p. URL: https://cris.vtt.fi/ws/files/52184787/wood_pellet_in_finland_compress.pdf; Jackson J., Turner A., Mark T., Montross M. Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Processing Technology. 2016;148:43-49. DOI: https://doi.org/10.1016/j.fuproc.2016.02.024; Nielsen N. P. K., Gardner D., Poulsen T., Felby C. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science. 2009;41(4):414-425. URL: https://wfs.swst.org/index.php/wfs/article/view/469/469; Кувшинов В. В., Муханов Н. В., Телегин И. А., Марченко С. А. Поведение системы «канал матрицыспрессованные монолиты» в процессе их нагрева. Аграрный вестник Верхневолжья. 2020;(4):85-90. DOI: https://doi.org/10.35523/2307-5872-2020-33-4-85-90; Serrano C., Monedero E., Lapuerta M., Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology. 2011;92(3):699-706. DOI: https://doi.org/10.1016/j.fuproc.2010.11.031; Mostafa M. E., Hu S., Wang Y., Su S., Fu X., Elsayed S. A., Xiang J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews. 2019;105:332-348. DOI: https://doi.org/10.1016/j.rser.2019.01.053; Tumuluru J. S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering. 2014;119:44-57. DOI: https://doi.org/10.1016/j.biosystemseng.2013.11.012; Safran B., Radmanovic K., Jug M., Lucic Beljo R., Lojen T., Risovic S. Influence of pressing temperature and additive on mechanical properties of wood pellets. Natural Resources, Green Technology & Sustainable Development. 2018;3:141-148. URL: https://www.sumins.hr/wp-content/uploads/2019/07/green3-proceedings.pdf; Кошак Ж., Кошак А. Влияние состава комбикормов на удельную энергоемкость процесса гранулирования. Комбикорма. 2012;(2):63-64. Режим доступа: https://kombi-korma.ru/sites/default/files/2/2_12/02_2012_063-064.pdf; Клименко А., Гущева-Митропольская А. Качество гранул: проблемы и предложения по их решению. Комбикорма. 2016;(7-8):40-42. Режим доступа: https://kombi-korma.ru/sites/default/files/2/7-8_16/07-08_2016_40-42.pdf; Ivanov M. Feed pellet quality and productivity. Borregaard LignoTech, 2017. URL: https://vk.cc/chs8F1; Nielsen S. K., Mando M. Experimental and numerical investigation of die designs in biomass pelleting and the effect on layer formation in pellets. Biosystems Engineering. 2020;198:185-197. DOI: https://doi.org/10.1016/j.biosystemseng.2020.08.010; Mediavilla I., Esteban L. S., Fernandez M. J. Optimisation of pelletisation conditions for poplar energy crop. Fuel Processing Technology. 2012;104:7-15. DOI: https://doi.org/10.1016/j.fuproc.2012.05.031; Misljenovic N., Colovic R., Vukmirovic D., Brlek T., Bringas C. S. The effects of sugar beet molasses on wheat straw pelleting and pellet quality. A comparative study of pelleting by using a single pellet press and a pilot-scale pellet press. Fuel Processing Technology. 2016;144:220-229. DOI: https://doi.org/10.1016/j.fuproc.2016.01.001; Hu J., Lei T., Shen S., Zhang Q. Specific energy consumption regression and process parameters optimization in wet-briquetting of rice straws at normal temperature. BioResources. 2013;8(1):663-675. URL: https://vk.cc/cjosiF; Nielsen S. K., Mandø M., Rosenørn A. B. 1D Model for investigation of energy consumption and wear in die designs used for biomass pelleting. European Biomass Conference and Exhibition Proceedings. 2018;26:550-558. DOI: https://doi.org/10.5071/26thEUBCE2018-2CO.13.1; Wu K., Shi S. J., Wang Y. L., Peng B. B. FEA simulation of extruding feed through die hole in pelleting process. Applied Mechanics and Materials. 2011;109:350-354. DOI: https://doi.org/10.4028/www.scientific.net/AMM.109.350; Януков Н., Волков А., Лукина Д., Прохорова Л., Брыгин В. Повышение эффективности работы матричного пресс-гранулятора. Комбикорма. 2020;(2):43-45. DOI: https://doi.org/10.25741/2413-287X-2020-02-2-093; Thek G., Obernberger I. The Pellet Handbook: The production and thermal utilization of biomass pellets. London: Routledge, 2010. 592 p. DOI: https://doi.org/10.4324/9781849775328; Monedero E., Portero H., Lapuerta M. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology. 2015;132:15-23. DOI: https://doi.org/10.1016/j.fuproc.2014.12.013; Stelte W., Clemons C., Holm J. K., Ahrenfeldt J., Henriksen U. B., Sanadi A. R. Fuel pellets from wheat straw: the effect of lignin glass transition and surface waxes on pelletizing properties. Bioenergy Research. 2012;5(2):450-458. DOI: https://doi.org/10.1007/s12155-011-9169-8; Adapa P., Tabil L., Schoenau G., Opoku A. Pelleting characteristics of selected biomass with and without steam explosion pretreatment. International Journal of Agricultural and Biological Engineering. 2010;3(3):62-79. DOI: https://doi.org/10.3965/j.issn.1934-6344.2010.03.062-079; Theerarattananoon K., Xu F., Wilson J., Ballard R., Mckinney L., Staggenborg S., Vadlani P., Pei Z. J., Wang D. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products. 2011;33(2):325-332. DOI: https://doi.org/10.1016/j.indcrop.2010.11.014; Puig-Arnavat M., Ahrenfeldt J., Henriksen U. B. Validation of a multiparameter model to investigate torrefied biomass pelletization behavior. Energy and Fuels. 2017;31(2):1644-1649. DOI: https://doi.org/10.1021/acs.energyfuels.6b02895; Holm J. K., Stelte W., Posselt D., Ahrenfeldt J., Henriksen U. B. Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior. Energy and Fuels. 2011;25(8):3706-3711. DOI: https://doi.org/10.1021/ef2005628; Kaliyan N., Vance Morey R. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy. 2009;33(3):337-359. DOI: https://doi.org/10.1016/j.biombioe.2008.08.005; Shuijuan S., Kai W., Binbin P., Shuanhu W., Yu S. Mechanical model and FEA of ring die of three-roller pellet mill. In: 2010 International Conference on Mechanic Automation and Control Engineering. IEEE, 2010. pp. 76-80. DOI: https://doi.org/10.1109/MACE.2010.5535988; Holm J. K., Henriksen U. B., Hustad J. E., Sorensen L. H. Toward an understanding of controlling parameters in softwood and hard-wood pellets production. Energy and Fuels. 2006;20(6):2686-2694. DOI: https://doi.org/10.1021/ef0503360; Xia X., Sun Y., Wu K., Jiang Q. Modeling of a straw ring-die briquetting process. BioResources. 2014;9(4):6316-6328. DOI: https://doi.org/10.15376/biores.9.4.6316-6328; Полищук В. Ю., Панов Е. И., Василевская С. П. Определение влияния на энергоемкость гранулирования радиусов рабочих органов пресс-гранулятора. Тракторы и сельхозмашины. 2019;(6):86-92. DOI: https://doi.org/10.31992/0321-4443-2019-6-86-92; Wu K., Shi S., Ding W., Peng B., Sun Y. Influence of die speed on the energy consumption in the pelleting process. 2010 International Conference on Computing, Control and Industrial Engineering. IEEE, 2010. pp. 247-250. DOI: https://doi.org/10.1109/CCIE.2010.70
-
15Academic Journal
Συγγραφείς: Белов, В. И.
Θεματικοί όροι: экономика, региональная экономика, энергетика, энергетическое хозяйство, экономический рост, интенсивный рост, экстенсивный рост, фактор производства, природные ресурсы, энергоресурсы, устойчивое развитие,
"зеленая" экономика, электроэнергия, энергоемкость Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/62832
-
16Academic Journal
Συγγραφείς: Зубарь, А. А., Пономаренко, Е. П.
Θεματικοί όροι: Энергоэффективность, Энергосбережение, Энергоемкость, Топливно-энергетические ресурсы, Экономика, Energy efficiency, Energy saving, Еnergy intensity, Fuel and energy resources, Еconomy
Θέμα γεωγραφικό: Гомель
Περιγραφή αρχείου: application/pdf
Relation: Зубарь, А. А. Понятие «энергоэффективность» в экономике / А. А. Зубарь, Е. П. Пономаренко // Современные проблемы машиноведения : сборник научных трудов : в 2 частях / Министерство образования Республики Беларусь, Гомельский государственный технический университет имени П. О. Сухого; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2025. – Часть 2. – С. 252–255.; https://elib.gstu.by/handle/220612/41404; 338.2
Διαθεσιμότητα: https://elib.gstu.by/handle/220612/41404
-
17Academic Journal
Συγγραφείς: Мазурова, О. В., Гальперова, Е. В., Локтионов, В. И., Mazurova, O. V., Galperova, E. V., Loktionov, V. I.
Θεματικοί όροι: ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС, ЭНЕРГОЕМКОСТЬ, ЭКОНОМИЧЕСКИЙ РОСТ, МОДЕЛЬ ЭКОНОМИКИ, МОДЕЛЬ ЭНЕРГЕТИКИ, СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ, ПРОГНОЗИРОВАНИЕ, СПРОС НА ЭЛЕКТРОЭНЕРГИЮ, ЭЛЕКТРИФИКАЦИЯ, ЭНЕРГОПОТРЕБЛЕНИЕ, ЭНЕРГОЭФФЕКТИВНОСТЬ, ENERGY SECTOR, ENERGY INTENSITY, ECONOMIC GROWTH, ECONOMIC MODEL, ENERGY MODEL, SOCIAL AND ECONOMIC DEVELOPMENT, FORECASTS, ELECTRICITY DEMAND, ELECTRIFICATION, ENERGY CONSUMPTION, ENERGY EFFICIENCY
Περιγραφή αρχείου: application/pdf
Relation: Экономика региона. 2022. Том 18, выпуск 2; http://elar.urfu.ru/handle/10995/127978; 85134234318; 000979818500016
-
18Academic Journal
Συγγραφείς: S. V. Makrak, С. В. Макрак
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 60, № 2 (2022); 135-145 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 60, № 2 (2022); 135-145 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2022-60-2
Θεματικοί όροι: потребитель энергии альтернативных источников, agriculture, energy intensity, efficiency, alternative energy sources, food security, region, management, alternative energy consumer, сельское хозяйство, энергоемкость, эффективность, альтернативные источники энергии, продовольственная безопасность, регион, управление
Περιγραφή αρχείου: application/pdf
Relation: https://vestiagr.belnauka.by/jour/article/view/630/565; Daineko A.E., Padalko L.P., Tsilibina V.M. Energy efficiency of the Belarusian economy. Minsk, Belaruskaya navuka Publ., 2016. 363 p. (in Russian).; Zorina T.G. Formation of the strategy of sustainable energy development. Minsk, Misanta Publ., 2016. 332 p. (in Russian).; Gerasimovich L.S., Sapun О.L., Sinenkiy А.V. Method for scientific substantiation of agrarian complex energy system using local resources. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Agrarian series, 2019, vol. 57, no. 1, pp. 93-109 (in Russian). https://doi.org/10.29235/1817-7204-2019-57-1-93-109; Baitanaeva B.A., Shaikhutdinova A.K., Bisultanova N.S. Problems and perspectives of the use of renewable sources of energy: domestic and foreign experience. Vestnik universiteta Turan = Bulletin of “Turan” University, 2019, no. 3 (83), pp. 180-184 (in Russian).; Gusakov V.G., Rusan V.I., Prishchepov M.A., Zayats E.M., Kuzmich V.V., Dyachek P.I. (et al.). Energy efficiency of agricultural production. Minsk, Belaruskaya navuka Publ., 2011. 775 p. (in Russian).; Ayrapetova A.G., Lastovka I.V. Renewable energy sources as a new trend of the world energy market development. Izvestiya Sankt-Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta [News of the Saint Petersburg State University of Economics], 2019, no. 5 (119), pt. 1, pp. 70-74 (in Russian).; Burenina I.V., Prokofieva P.E., Yakupova K.V. Theoretical approaches to estimation of economic efficiency of using alternative sources of energy. Vestnik ekonomiki i menedzhmenta = Vestnik of Economics and Management, 2018, no. 2, pp. 12-17 (in Russian).; Korsak E.P., Mantserova T.F. Prospects for nuclear power development: a global and national perspective. Mirovaya ekonomika i biznes-administrirovanie malykh i srednikh predpriyatii: materialy 15-go Mezhdunarodnogo nauchnogo seminara, provodimogo v ramkakh 17-i mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Nauka – obrazovaniyu, proizvodstvu, ekonomike”, 24–25 yanvarya 2019 g., g. Minsk, Respublika Belarus’ [World economy and business administration of small and medium-sized enterprises: proceedings of the 15th international scientific seminar held within the framework of the 17th international scientific and technical conference “Science for Education, Production, Economics”, January 24-25, 2019, Minsk, Belarus]. Minsk, 2019, pp. 79-80 (in Russian).; Mudretsov A.F., Tulupov A.S. Improving the economic effectiveness of non-traditional and renewable sources of energy. Regional’nye problemy preobrazovaniya ekonomiki = Regional Problems of Transforming the Economy, 2017, no. 5 (79), pp. 12-19 (in Russian).; Pavlenkov I.O. Economic problems of development of production and consumption of alternative sources of energy. Neftegazovyi kompleks: ekonomika, politika, ekologiya: sbornik statei pobeditelei II konkursa, 21 aprelya 2016 g. [Oil and gas complex: economics, politics, ecology: collection of articles of the winners of the 2nd competition, April 21, 2016]. St. Petersburg, 2016, pp. 219-227 (in Russian).; Titova E.S., Bondarchuk N.V. Theoretical improvement bases of key parameters management in creation and using alternative energy sources innovative processes. Ekonomika i predprinimatel’stvo = Journal of Economy and Entrepreneurship, 2016, no. 10, pt. 1, pp. 447-452 (in Russian).; Makrak S. Studying technique of fuel and energy expense resources and their detailed carrying out of analysis by agricultural production. Agrarnaya ekonomika = Agrarian Economics, 2019, no. 1, pp. 23-38 (in Russian).; Makrak S.V. Fuel and energy resources in agriculture of the Republic of Belarus: features of management and promising areas for improving efficiency. Dolgosrochnye tendentsii razvitiya agroprodovol’stvennogo kompleksa Rossii v usloviyakh novykh global’nykh vyzovov: sbornik materialov Vserossiiskoi nauchnoi konferentsii “Ostrovskie chteniya” [Long-term trends in the development of the agro-food sector in the context of new global challenges: proceedings of the All-Russian scientific conference “Ostrovsky Readings”]. Saratov, 2020, pp. 104-109 (in Russian).; Rudchenko G.A. Improving the energy-saving system of agribusiness enterprises based on the use of economic tools. Minsk, Institute of System Researches in Agroindustrial Complex of NAS of Belarus, 2020. 134 p. (in Russian).; Mandal B. Alternate energy sources for sustainable organic synthesis. Chemistry Select, 2019, vol. 4, no. 28, pp. 8301- 8310. https://doi.org/10.1002/slct.201901653; Zocca R., Gaspar P.D., Silva P.D., Santos F.C., Andrade L.P., Nunes J. Decision-making computationally aided in the management of energy sources used in agrifood industries. Energy Procedia, 2019, vol. 161, pp. 100-107. https://doi.org/10.1016/j.egypro.2019.02.063; Bolyssov T., Yessengeldin B., Akybayeva G., Zhanseitov A., Sultanova Z. Features of the use of renewable energy sources in agriculture. International Journal of Energy Economics and Policy, 2019, vol. 9, no. 4, pp. 363-368. https://doi.org/10.32479/ijeep.7443; Uzair M., Sohail S.S., Shaikh N.U., Shan A. Agricultural residue as an alternate energy source: a case study of Punjab province, Pakistan. Renewable Energy, 2020, vol. 162, pp. 2066-2074. https://doi.org/10.1016/j.renene.2020.10.041; Novoselov A., Novoselova I., Potravnii I., Gassiy V. Conflicts management in natural resources use and environment protection on the regional level. Journal of Environmental Management and Tourism, 2016, vol. 7, no. 3, 407-415. https://doi.org/10.14505/jemt.v7.3(15).06; Novoselova I.Y., Novoselov A.L. Estimation of accumulated environmental damage: methods and experience. Journal of Environmental Management and Tourism, 2016, vol. 7, no. 4, pp. 619-624. https://doi.org/10.14505/jemt.v7.4(16).08; Berthouex Р.M., Linfield C.B. Energy management for pollution control, 2018.; Rodriguez Borda C., Echeverri Martínez L.M. Renewable energies: the role of regulatory institutions to promote the use of alternative sources. Revista Internacional de Cooperación y Desarrollo, 2019, vol. 6, no. 1, pp. 47-62. https://doi.org/10.21500/23825014.3937; Skufina Т.P., Samarina V.P., Krachunov H., Savon D.Y. Problems of Russia‘s arctic development in the context of optimization of the mineral raw materials complex use. Eurasian Mining, 2015, no. 2, pp. 18-21. https://doi.org/10.17580/em.2015.02.05; Zhaglovskaya А.V., Savon D.Yu., Safronov А.E., Sidorova Е.Yu. Production activity analysis Methodology for open pit coal mines (in terms of shestaki open pit mine). Eurasian Mining, 2017, no. 1, pp. 14-16. https://doi.org/10.17580/em.2017.01.04; Gerasimovich L.S., Sapun O.L. Modern innovative approaches to the development of renewable energy in the Republic of Belarus. Innovatsionnoe razvitie agropromyshlennogo kompleksa kak faktor konkurentosposobnosti: problemy, tendentsii, perspektivy [Innovative development of the agroindustrial complex as a factor of competitiveness: problems, trends, prospects]. Kirov, 2020, pt. 2, pp. 275-283 (in Russian).; Gitelman L.D., Dobrodey V.V., Kozhevnikov M.V. Tools for sustainable development of regional energy systems. Ekonomika regiona = Economy of Region, 2020, vol. 16, no. 4, pp. 1208-1223 (in Russian). https://doi.org/10.17059/ekon.reg.2020-4-14; Rudchenko H., Zapolski M. Regional structural and functional model of energy saving in agroindustrial complex organizations based on the use of decentralized energy sources. Agrarnaya ekonomika = Agrarian Economics, 2019, no. 4, pp. 53-59 (in Russian).; Mantserova T.F., Lapchenko D.A. The main approaches to economic diagnostics of the power engineering enterprises. Energetika. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob”edinenii SNG = Energetika. Proceedings of CIS higher education institutions and power engineering associations, 2019, vol. 62, no. 4, pp. 362-376 (in Russian). https:// doi.org/10.21122/1029-7448-2019-62-4-362-376; Tsiatsiorkina A., Lychahina K. Tendencies, prospects and economic incentives for renewable energy development. Nauka i innovatsii = Science & Innovations, 2019, no. 12 (202), pp. 41-47 (in Russian).; https://vestiagr.belnauka.by/jour/article/view/630
-
19Academic Journal
Συγγραφείς: А. Nizhegorodov I., A. Gavrilin N., B. Moyzes B., G. Ismailov M., А. Нижегородов И., А. Гаврилин Н., Б. Мойзес Б., Г. Исмаилов М.
Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 12 (2021); 14-20 ; Новые огнеупоры; № 12 (2021); 14-20 ; 1683-4518 ; undefined
Θεματικοί όροι: платформенная печь, подвижная подовая плита, термообработка сыпучих материалов, верхняя нагревательная система, нагревательная система, размещенная под подовой плитой, удельная энергоемкость обжига
Περιγραφή αρχείου: application/pdf
Relation: https://newogneup.elpub.ru/jour/article/view/1665/1391; Кременецкая, И. П. Реагент для иммобилизации тяжелых металлов из серпентиносодержащих вскрышных пород / И. П. Кременецкая, О. П. Корытная, Т. Н. Васильева // Водоочистка. Водоподготовка. Водоснабжение. ― 2008. ― № 4. ― С. 33‒40.; Нижегородов, А. И. Теоретическое обоснование использования новых модификаций электрических печей для обжига вермикулита / А. И. Нижегородов // Строительные материалы. ― 2009. ― № 5. ― С. 94‒96.; Nizhegorodov, A. I. Electric modular-trigger kiln with an energy recuperation system for firing vermiculite concentrates / A. I. Nizhegorodov // Refract. Ind. Ceram. ― 2016. ― Vol. 56, № 5. ― Р. 470‒475. doi 10.1007/s11148-016-9871-3. Нижегородов, А. И. Электрические модульноспусковые печи с системой рекуперации энергии для обжига вермикулитовых концентратов / А. И. Нижегородов // Новые огнеупоры. ― 2015. ― № 10. ― С. 22‒27.; Пат. 166554 Российская Федерация. МПК F 27 В 9/06. Электрическая печь с вибрационной подовой платформой / Нижегородов А. И.; заявитель и патентообладатель Иркутский национальный исследовательский технический университет, г. Иркутск. ― № 2025155496; заявл. 23.12.2015; опубл. 27.11.2016, Бюл. № 22.; Пат. 179059 Российская Федерация. МПК F 27 В 9/06. Электрическая печь для получения вспученного вермикулита из вермикулитовых концентратов / Нижегородов А. И.; заявитель и патентообладатель Иркутский национальный исследовательский технический университет, г. Иркутск. ― № 2017118594; заявл. 29.05.2017; опубл. 25.04.2018, Бюл. № 12.; Нижегородов, А. И. Показатели эффективности электрической печи с вибрационной подовой платформой и технологический комплекс на ее основе / А. И. Нижегородов, Д. В. Кокоуров // Вестник машиностроения. ― 2019. ― № 5. ― С. 8‒13.; Нижегородов, А. И. Испытания новой альтернативной электрической печи для обжига вермикулитовых концентратов / А. И. Нижегородов, Т. Б. Брянских, А. Н. Гаврилин [и др.] // Изв. Томского политехн. ун-та. ― 2018. ― № 4. ― С. 142‒153.; Телегин, А. С. Тепломассоперенос / А. С. Телегин, В. С. Швыдкий, Ю. Г. Ярошенко. ― М. : ИКЦ Академкнига, 2002. ― 455 с.; Кошкин, Н. И. Справочник по элементарной физике / Н. И. Кошкин, М. Г. Ширкевич. ― М. : Физматгиз, 1972. ― 256 с.; Нижегородов, А. И. Энерготехнологические агрегаты для переработки вермикулитовых концентратов / А. И. Нижегородов, А. В. Звездин. ― Иркутск : изд-во ИРНИТУ, 2015. ― 250 с.; https://newogneup.elpub.ru/jour/article/view/1665
-
20Academic Journal
Συγγραφείς: Пелевін, Леонід, Тетерятник, Олександр, Комоцька, Світлана, Богдан, Федишин
Πηγή: Gіrnichі, budіvelnі, dorozhnі ta melіorativnі mashini; No. 100 (2022); 29-38 ; Горные, строительные, дорожные и мелиоративные машины ; № 100 (2022); 29-38 ; Гірничі, будівельні, дорожні та меліоративні машини; № 100 (2022); 29-38 ; 2709-6149 ; 2312-6590 ; 10.32347/gbdmm.2022.100
Θεματικοί όροι: ентропія, інформативність, синергія, робоче середовище, гравітаційне поле, енергоємність, энтропия, информативность, синергия, рабочая среда, гравитационное поле, энергоемкость, entropy, informativeness, synergy, working environment, gravitational field, energy intensity
Περιγραφή αρχείου: application/pdf
Relation: http://gbdmm.knuba.edu.ua/article/view/276102/270993; http://gbdmm.knuba.edu.ua/article/view/276102