Εμφανίζονται 1 - 20 Αποτελέσματα από 89 για την αναζήτηση '"ЭНДОТОКСЕМИЯ"', χρόνος αναζήτησης: 0,76δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Συνεισφορές: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования

    Πηγή: The Russian Archives of Internal Medicine; Том 13, № 5 (2023); 325-334 ; Архивъ внутренней медицины; Том 13, № 5 (2023); 325-334 ; 2411-6564 ; 2226-6704

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1663/1251; https://www.medarhive.ru/jour/article/view/1663/1261; Safiri S, Kolahi AA, Smith E, et al. Global, Regional and National Burden of Osteoarthritis 1990-2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 2020; 79(6): 819–828. DOI:10.1136/annrheumdis-2019-216515.; Zhao X., Shah D., Gandhi K., et al. Clinical, humanistic, and economic burden of osteoarthritis among noninstitutionalized adults in the United States. Osteoarthr Cartil. 2019; 27(11): 1618–1626. DOI:10.1016/j.joca.2019.07.002.; Berenbaum F., Wallace I.J., Lieberman D.E., et al. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018; 14(11): 674–681. DOI:10.1038/s41584-018-0073-x.; Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019; 76(3): 473–493. DOI:10.1007/s00018-018-2943-4.; Zhao Y, Chen B, Li S, et al. Detection and Characterization of Bacterial Nucleic Acids in Culture-Negative Synovial Tissue and Fluid Samples From Rheumatoid Arthritis or Osteoarthritis Patients. Sci. Rep. 2018; 8(1): 14305. DOI:10.1038/s41598-018-32675-w.; Dunn CM, Velasco C, Rivas A, et al. Identification of Cartilage Microbial DNA Signatures and Associations With Knee and Hip Osteoarthritis. Arthritis Rheumatol. 2020; 72(7): 1111–1122. DOI:10.1002/art.41210.; Rios JL, Bomhof MR, Reimer RA, et al. Protective effect of prebiotic and exercise intervention on knee health in a rat model of dietinduced obesity. Sci Rep. 2019;9(1):3893. DOI:10.1038/s41598-019-40601-x.; Contartese D, Tschon M, De Mattei M, et al. Sex specific determinants in osteoarthritis: a systematic review of preclinical studies. Int J Mol Sci. 2020; 21(10): 3696. DOI:10.3390/ijms21103696.; de Sire A, de Sire R, Petito V, et al. Gut-Joint Axis: The Role of Physical Exercise on Gut Microbiota Modulation in Older People With Osteoarthritis. Nutrients. 2020; 12(2): 574. DOI:10.3390/nu12020574.; Урясьев О.М., Заигрова Н.К. Остеоартрит: патогенез, диагностика, лечение. Земский врач. 2016;1-2(29-30):27-35.; Mills S, Stanton C, Lane JA, et al. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients. 2019; 11(4): 923. DOI:10.3390/nu11040923.; Guss JD, Ziemian SN, Luna M, et al. The effects of metabolic syndrome, obesity, and the gut microbiome on load-induced osteoarthritis. Osteoarthr Cartil. 2019; 27(1): 129–139. DOI:10.1016/j.joca.2018.07.020.; Terkawi M.A., Matsumae G., Shimizu T., et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int. J. Mol. Sci. 2022; 23(3): 1786. DOI:10.3390/ijms23031786.; Thomson A., Hilkens C.M.U. Synovial Macrophages in Osteoarthritis: The Key to Understanding Pathogenesis? Front. Immunol. 2021; 12: 678757. DOI:10.3389/fimmu.2021.678757.; Lambert C., Zappia J., Sanchez C., et al. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature. Front. Med. 2020; 7: 607186. DOI:10.3389/fmed.2020.607186.; Larkin DJ, Kartchner JZ, Doxey AS, et al. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without Receptor for Advanced Glycation End-products (RAGE). Front. Physiol. 2013; 4: 121. DOI:10.3389/fphys.2013.00121.; Bosch M.H.J. Inflammation in osteoarthritis: Is it time to dampen the alarm(in) in this debilitating disease? Clin. Exp. Immunol. 2019; 195(2): 153–166. DOI:10.1111/cei.13237.; Hwang H.S., Park S.J., Cheon E.J., et al. Fibronectin fragment-induced expression of matrix metalloproteinases is mediated by MyD88-dependent TLR-2 signaling pathway in human chondrocytes. Arthritis Res. Ther. 2015; 17: 320. DOI:10.1186/s13075-015-0833-9.; Zhou Q., Zhu Z., Hu X., et al. HMGB1: A critical mediator for oxidized-low density lipoproteins induced atherosclerosis. Int. J. Cardiol. 2016; 202: 956–957. DOI:10.1016/j.ijcard.2015.08.203.; Aulin C., Lassacher T., Palmblad K., et al. Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthr. Cartil. 2020; 28 (5): 698–707. DOI:10.1016/j.joca.2020.01.003.; Chen K., Jiao Y., Liu L., et al. Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front. Cell Dev. Biol. 2020; 8: 598263. DOI:10.3389/fcell.2020.598263.; Toh W.S., Brittberg M., Farr J., et al. Cellular senescence in aging and osteoarthritis. Acta Orthop. 2016; 87(363): 6–14. DOI:10.1080/17453674.2016.1235087.; Biver E, Berenbaum F, Valdes AM, et al. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev. 2019; 55: 100946. DOI:10.1016/j.arr.2019.100946.; Liu Y, Ding W, Wang HL, et al. Gut Microbiota and Obesity-Associated Osteoarthritis. Osteoarthr. Cartil. 2019; 27(9): 1257–1265. DOI:10.1016/j.joca.2019.05.009.; Ulici V, Kelley KL, Azcarate-Peril MA, et al. Osteoarthritis Induced by Destabilization of the Medial Meniscus Is Reduced in Germ-Free Mice. Osteoarthr. Cartil. 2018; 26(8): 1098–1109. DOI:10.1016/j.joca.2018.05.016.; McAllister M.J., Chemaly M., Eakin A.J., et al. NLRP3 as a Potentially Novel Biomarker for the Management of Osteoarthritis. Osteoarthr. Cartil. 2018; 26(5): 612–619. DOI:10.1016/j.joca.2018.02.901.; Rosenberg J.H., Rai V., Dilisio M.F., et al. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: Potentially novel therapeutic targets. Mol. Cell. Biochem. 2017; 434: 171–179. DOI:10.1007/s11010-017-3047-4.; Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthr Cartil. 2020; 28(5): 555-561. DOI:10.1016/j.joca.2020.01.007.; Lorenz W., Buhrmann C., Mobasheri A., et al. Bacterial Lipopolysaccharides Form Procollagen-Endotoxin Complexes That Trigger Cartilage Inflammation and Degeneration: Implications for the Development of Rheumatoid Arthritis. Arthritis Res. Ther. 2013; 15(5): 111. DOI:10.1186/ar4291.; Huang Z., Kraus V.B. Does Lipopolysaccharide-Mediated Inflammation Have a Role in OA? Nat. Rev. Rheumatol. 2016; 12(2): 123–129. DOI:10.1038/nrrheum.2015.158.; Zhao LR, Xing RL, Wang PM, et al. NLRP1 and NLRP3 Inflammasomes Mediate LPS/ATP−induced Pyroptosis in Knee Osteoarthritis. Mol. Med. Rep. 2018; 17(4): 5463–5469. DOI:10.3892/mmr.2018.8520.; Woodell-May J.E., Sommerfeld S.D. Role of Inflammation and the Immune System in the Progression of Osteoarthritis. J. Orthop Res. 2020; 38(2): 253–257. DOI:10.1002/jor.24457.; Hao F, Tian M, Zhang X, et al. Butyrate Enhances CPT1A Activity to Promote Fatty Acid Oxidation and iTreg Differentiation. Proc. Natl. Acad. Sci. USA 2021; 118(22): 2014681118. DOI:10.1073/pnas.2014681118.; Murugesan S., Nirmalkar K., Hoyo-Vadillo C., et al. Gut microbiome production of short-chain fatty acids and obesity in children. Eur. J. Clin. Microbiol. Infect. Dis. 2018; 37: 621-625. DOI:10.1007/s10096-017-3143-0.; Zeddou M. Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity’s Involvement and Herbal Treatment. Evid Based Complement Alternat Med. 2019: 2037484. DOI:10.1155/2019/2037484.; Xiong H., Li W., Ke J., et al. Leptin Levels in the Synovial Fluid of Patients With Temporomandibular Disorders. J. Oral. Maxillofac. Surg. 2019; 77(3): 493–498. DOI:10.1016/j.joms.2018.09.012.; Rodríguez-Carrio J, Salazar N, Margolles A, et al. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Front. Immunol. 2017; 8: 823. DOI:10.3389/fimmu.2017.00823.; Kim S., Hwang J., Kim J., et al. Metabolite Profiles of Synovial Fluid Change With the Radiographic Severity of Knee Osteoarthritis. Joint Bone Spine. 2017; 84(5): 605–610. DOI:10.1016/j.jbspin.2016.05.018.; Koeth RA, Lam-Galvez BR, Kirsop J, et al. L-Carnitine in Omnivorous Diets Induces an Atherogenic Gut Microbial Pathway in Humans. J. Clin. Invest. 2019; 129(1): 373–387. DOI:10.1172/jci94601.; Canyelles M., Tondo M., Cedó L., et al. Trimethylamine N-Oxide: A Link Among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int. J. Mol. Sci. 2018; 19(10): 3228. DOI:10.3390/ijms19103228.; Ohlsson C., Nigro G., Boneca I.G., et al. Regulation of Bone Mass by the Gut Microbiota Is Dependent on NOD1 and NOD2 Signaling. Cell Immunol. 2017; 317: 55–58. DOI:10.1016/j.cellimm.2017.05.003.; Caputi V., Giron M.C. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease. Int. J. Mol. Sci. 2018; 19(6): 1689. DOI:10.3390/ijms19061689.; Morris JL, Letson HL, Gillman R, et al. The CNS Theory of Osteoarthritis: Opportunities Beyond the Joint. Semin. Arthritis Rheum. 2019; 49(3): 331–336. DOI:10.1016/j.semarthrit.2019.03.008.; Pan T.T., Pan F., Gao W., et al. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr. Rheumatol. Rep. 2021; 23(5): 29. DOI:10.1007/s11926-021-00997-w.; Erny D, Dokalis N, Mezö C, et al. Microbiota-Derived Acetate Enables the Metabolic Fitness of the Brain Innate Immune System During Health and Disease. Cell Metab. 2021; 33(11): 2260–2276. DOI:10.1016/j.cmet.2021.10.010.; Lorenzo D, GianVincenzo Z, Carlo Luca R, et al. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J. Clin. Med. 2019; 8(10): 0. DOI:10.3390/jcm8101753.; Kalinkovich A., Livshits G. A Cross Talk Between Dysbiosis and Gut-Associated Immune System Governs the Development of Inflammatory Arthropathies. Semin. Arthritis Rheum. 2019; 49(3): 474–484. DOI:10.1016/j.semarthrit.2019.05.007.; O-Sullivan I, Natarajan Anbazhagan A, Singh G, et al. Lactobacillus acidophilus Mitigates Osteoarthritis-Associated Pain, Cartilage Disintegration and Gut Microbiota Dysbiosis in an Experimental Murine OA Model. Biomedicines. 2022; 10(6): 1298. DOI:10.3390/biomedicines10061298.; https://www.medarhive.ru/jour/article/view/1663

  8. 8
  9. 9
    Academic Journal

    Συγγραφείς: Махмудов, Қ. А.

    Πηγή: BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI; Vol. 2 No. 12 (2022): BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY-AMALIY JURNALI; 381-384 ; 2181-2608

    Περιγραφή αρχείου: application/pdf

  10. 10
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 14 No. 2 (54) (2010); 84-89
    Буковинский медицинский вестник; Том 14 № 2 (54) (2010); 84-89
    Буковинський медичний вісник; Том 14 № 2 (54) (2010); 84-89

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/242246

  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Pathologia; Vol. 16 No. 3 (2019): Pathologia ; Патология; Том 16 № 3 (2019): Патологія ; Патологія; Том 16 № 3 (2019): Патологія ; 2310-1237 ; 2306-8027

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://pat.zsmu.edu.ua/article/view/188796

  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: Scientific digest of association of obstetricians and gynecologists of Ukraine; № 2(42) (2018); 20-24
    СБОРНИК НАУЧНЫХ ТРУДОВ Ассоциации акушеров-гинекологов Украины; № 2(42) (2018); 20-24
    Збірник наукових праць Асоціації акушерів-гінекологів України; № 2(42) (2018); 20-24

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://zbirnyk.aagu.com.ua/article/view/172801

  20. 20
    Academic Journal

    Πηγή: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 2, № 2 (2015); 25-31 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 2, № 2 (2015); 25-31 ; 2500-0594 ; 2408-9613 ; 10.17650/2408-9613-2015-2-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.riri.su/jour/article/view/4/6; Галкин А.А., Демидова В.С. Повреждение защитных функций нейтрофилов на ранней стадии ожоговой болезни. Успехи современной биологии 2012;132(3):297– 311. [Galkin А.А., Demidova V.S. Damage; of neutrophils’ protective functions at the early stage of the burn diseases. Uspekhi sovremennoy biologii = Successes of Modern Biology 2012;132(3):297–311. (In Russ.)].; Галкин А.А., Демидова В.С. Центральная роль нейтрофилов в патогенезе синдрома острого повреждения легких (острый респираторный дистресс-синдром). Успехи современной биологии 2014;134(4):377–94. [Galkin А.А., Demidova V.S. The central role of neutrophils in the pathogenesis of the acute lung damage syndrome (acute respiratory distress syndrome). Uspekhi sovremennoy biologii = Successes of Modern Biology 2014;134(4):377–94. (In Russ.)].; Goris R.J., Boekhorst T.P., Nuytinck J.K., Gimbrene J.S. Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg 1985;120(10):11–5.; Bone R.C. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 1996;(24):163–72.; Nystrom P.O. The systemic inflammatory response syndrome: definitions and aetiology. J Antimicrob Chemother 1998;41 Suppl A: 1–7.; Klein D., Einspanier R., Bolder U., Jeschke M.G. Differences in the hepatic signal transcription pathway and cytokine expression between thermal injury and sepsis. Shock 2003;20(6):536–43.; Aird W.C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003;101(10):3765–77.; Wagner J.G., Roth R.A. Neutrophil migration mechanisms, with an emphasis; on the pulmonary vasculature. Pharmacol Rev 2000;52(3):349–74.; Барсуков А.А., Годков М.А., Земсков В.М. и др. Роль праймированных нейтрофилов в повреждении паренхиматозных органов и развитии воспалительной патологии. Успехи современной биологии 2004;124(6):542–54. [Barsukov А.А., Godkov М.А., Zemskov V.М. et al. The role of primed neutrophils in the damage of parenchyma organs and inflammatory pathology development. Uspekhi sovremennoy biologii = Successes of Modern Biology 2004;124(6):542–54. (In Russ.)].; Галкин А.А., Демидова В.С. Роль адгезии в активации нейтрофилов и цитотоксическом взаимодействии нейтрофилов с эндотелием. Успехи современной биологии 2011;131(1):62–78. [Galkin А.А., Demidova V.S. Adhesion role in the activation of neutrophils and cytotoxic interaction between neutrophils and endothelium. Uspekhi sovremennoy biologii = Successes of Modern Biology 2011;131(1):62–78. (In Russ.)].; Ussov W.Y., Peters A.M., Chapman P.T. et al. Pulmonary granulocyte kinetics; in relation to endothelial and granulocyte activation. Clin Sci (Lond) 1999;96(5): 525–31.; Downey G.P., Dong Q., Kruger J., Cherapanov V. Regulation of neutrophil activation in acute lung injury. Chest 1999;116(1 Suppl):46S–54S.; Cowburn A.S., Condiffe A.M., Farahi N. et al. Advances in neutrophil biology. Clinical implications. Chest 2008;134(3):606–12.; Singh N.R., Johnson A., Peters A.M. et al. Acute lung injury results from failure of neutrophil de-priming: a new hypothesis. Eur J Clin Invest 2012;42(12):1342–9.; Qiu Z., Hu J., Van den Steen P.E. et al. Targeting matrix metalloproteinases in acute inflammatory shock syndromes. Comb Chem High Throughput Screen 2012;15(7): 555–70.; Botha A.J., Moore F.A., Moore E.E. et al. Base deficit after major trauma directly relates to neutrophil CD11b expression: a proposed mechanism of shock-induced organ injury. Intensive Care Med 1997;23(5):504–9.; Wedmore C.V., Williams T.J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 1981;289(5799):640–50.; Wang Q., Doerschuk C.M. The signaling pathways induced by neutrophil-endothelial cell adhesion. Antioxid Redox Signal 2002;4(1):39–47.; Rao R.M., Yang L., Garsia-Cardena G. et al. Endothelial-dependent mechanisms of leukocyte recruitment to vascular wall. Circ Res 2007;101(3):234–47.; Schmidt E.P., Lee W.L., Zemans R.L. et al. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiology (Bethesda) 2011;26(5):334–47.; Hakim J. Consequences of neutrophil adhesion to physiological and pathological targets. Biorheology 1990;27(3–4):419–24.; Wyman T.H., Bjornsen A.J., Elzi D.J. et al. A two-insult in vitro model of PMN-mediated pulmonary endothelial damage: requirements for adherence and chemokine release. Am J Physiol Cell Physiol 2002;283(6):1592–603.; Segel G., Halterman M., Lichtman M. The paradox of the neutrophil’s role in tissue injury. J Leukoc Biol 2011;89(3):359–72.; Panes J., Perry M., Granger D.N. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 1999;126(3):537–50.; Dallegri F., Ottonello L. Tissue injury in neutrophilic inflammation. Inflamm Res 1997;46(10):382–91.; Grommes J., Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2011;17(3–4):293–307.; Lee W.L., Downey G.P. Neutrophil activation and acute lung injury. Curr Opin Crit Care 2001;7(1):1–7.; Movat H.Z. The role of histamine and other mediators in microvascular changes in acute inflammation. Can J Physiol Pharmacol 1987;65(3):451–7.; He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res 2010;87(2): 281–90.; Lee W.L. Downey G.P. Leukocyte elastase. Physiological functions and role in acute lung injury. Am J Respir Crit Care Med 2001;164(5):896–904.; DiStasi M.R., Ley K. Opening the floodgates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 2009;30(11):547–56.; Alves-Filho J.C., Spiller F., Cunha F.Q. Neutrophil paralysis in sepsis. Shock 2010; 34 Suppl 1:15–21.; Галкин А.А., Демидова В.С., Захарова О.А. Угнетение подвижности нейтрофилов у хирургических больных с гнойными ранами; и раневой инфекцией как показатель интоксикации организма. Раны и раневые инфекции 2014;1(2):38–43. [Galkin А.А., Demidova V.S. Suppression of neutrophils’ mobility at surgical patients with septic wounds and wound infection as indictor of the organism intoxication. Rany i ranevye infektsii = Wounds and Wound Infections 2014;1(2): 38–43. (In Russ.)].; Галанкин В.Н., Токмаков А.М. Проблема воспаления с позиций теории и клиники. М., 1991. 120 c. [Galankin N.V., Tokmakov А.М. Inflammation problem from theoretic and clinical positions. Мoscow, 1991. 120 p. (In Russ.)].; Галкин А.А., Туманов Е.А., Тимин Е.Н. и др. Влияние вторичных посредников на двигательную активность нейтрофилов. Вопросы медицинской химии 1994;(6):7–10. [Galkin А.А., Тumanov Е.А., Тimin Е.N. et al. Influence of secondary intermediates on the mobile activities of neutrophils. Voprosy meditsinskoy khimii = Medical Chemistry Issues 1994;(6):7–10. (In Russ.)]. Галкин А.А., Туманов Е.А., Тимин Е.Н., Карелин А.А. Действие активаторов на подвижность нейтрофилов. Бюллетень экспериментальной биологии и медицины 1997;124(10):409–12. [Galkin А.А., Тumanov Е.А., Тimin Е.N., Karelin А.А. Activators’ influence on neutrophils’ mobility. Bulleten’ eksperimentalnoy biologii i meditsiny = Bulletin of the Experimental Biology and Medicine 1997;124(10):409–12. (In Russ.)].; Галкин А.А., Демидова В.С. Роль Са2+ в регуляции функций нейтрофилов. Успехи современной биологии 2007;127(1):58–72. [Galkin А.А., Demidova V.S. Са2+ role in the regulation of neutrophils’ functions. Uspekhi sovremennoy biologii = Successes of Modern Biology 2007;127(1):58–72. (In Russ.)].; https://www.riri.su/jour/article/view/4