Εμφανίζονται 1 - 16 Αποτελέσματα από 16 για την αναζήτηση '"ЭМЕРДЖЕНТНЫЕ СВОЙСТВА"', χρόνος αναζήτησης: 0,65δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The study was financially supported by the Ministry of Education and Science of the Russian Federation (state assignment 2020, No. 0851-2020-0035). The study was carried out as part of the Priority 2030 strategic academic leadership program (Agreement No. 075-15-2021-1213)

    Πηγή: Fine Chemical Technologies; Vol 18, No 5 (2023); 471-481 ; Тонкие химические технологии; Vol 18, No 5 (2023); 471-481 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2000/1970; https://www.finechem-mirea.ru/jour/article/view/2000/1973; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2000/1104; Hatakeyama W., Sanchez T.J., Rowe M.D., et al. Synthesis of Gadolinium Nanoscale Metal−Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. ACS Appl. Mater. Interfaces. 2011;3(5):1502–1510. https://doi.org/10.1021/am200075q; Lu A.H., Salabas E.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew. Chem. 2007;46(8):1222–1244. https://doi.org/10.1002/anie.200602866; Leem G., Sarangi S., Zhang S., et al. SurfactantControlled Size and Shape Evolution of Magnetic Nanoparticles. Crystal. Growth Des. 2009;9(1):32–34. https://doi.org/10.1021/cg8009833; Shamim N., Hong L., Hidajat K., et al. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization. Colloids Surf. B: Biointerfaces. 2007;55(1):51–58. http://doi.org/10.1016/j.colsurfb.2006.11.007; Holmberg K., Jönsson B., Kronberg B., et al. Surfactants and Polymers in Aqueous Solutions. UK: Wiley; 2003. 568 p. ISBN 978-0-470-85642-0 6. Mirgorod Yu.A., Chekadanov A.S., Yanushkevich A.M., et al. Magnetic properties of Gd (III) in aqueous micellar systems. Magnetohydrodynamics. 2018;54(3):299–308. https://doi.org/10.22364/mhd.54.3.9; Mirgorod Yu.A., Borshch N.A. Method of Producing nanoparticles of metal or hybrides of nanoparticles of metals: RF Pat. 2369466 RU. Publ. 10.10.2009 (in Russ.).; Mirgorod Yu.A., Borshch N.A., Borodina V.G., Yurkov G.Yu. Production and characterization of cotton fabric modified with copper nanoparticles. Khimicheskaya promyshlennost’ = Chemical Industry. 2012;89(6):310–316 (in Russ.).; Vorobiova I.G., Borshch N.A., Mirgorod Yu.A. The structure of Mn and Co nanoparticles obtained in direct surfactant micelles. Journal of Nanoand Electronic Physics. 2017;9(5):05036-1–05036-4. http://doi.org/10.21272/jnep.9(5).05036; Geesink H.J.H., Jerman I., Meijer D.K.F. Water, the Cradle of Life via its Coherent Quantum Frequencies. Water. 2020;(11):78–108. http://doi.org/10.14294/WATER.2020.1; Krause W. Contrast Agents I: Magnetic Resonance Imaging: Pt. 1. Berlin, Heidelberg: Springer; 2002. 249 p.; Salt C., Lennox A.J., Takagaki M. Boron and gadolinium neutron capture therapy. Rus. Chem. Bull. 2004;53(9):1871–1888. https://doi.org/10.1007/s11172-0050045-6; Tokura Y., Kawasaki M., Nagaosa N. Emergent functions of quantum materials. Nature Phys. 2017;13:1056–1068. https://doi.org/10.1038/nphys4274; Mirgorod Yu.A., Emelyanov S.G., Pugachesky M.A. Method for Measuring the Parameters of Liquid-Liquid Phase Transition and Micellization: RF Pat. 2730433 RU. Publ. 08.21.2020 (in Russ.).; Mirgorod Yu.A. Method for Measuring the Parameters of the Liquid-Liquid Phase Transition: RF Pat. 2720399 RU. Publ. 04.29.2020 (in Russ.).; Mirgorod Yu.A. Quantum nuclear effect in aqueous ionic surfactant and polyelectrolytes solutions. In: Proc. Bio-Inspired Nanomaterials – Nature Conferences (Nov. 14–15, 2021). Seoul, South Korea. http://doi.org/10.13140/RG.2.2.32364.08325; Mirgorod Yu.A. Strongly correlated electronic states in aqueous micellar surfactant systems. Preprint. 2021. https://doi.org/10.21203/rs.3.rs-660013/v1; Mirgorod Yu.A., Borshch N.A., Reutov A.A., Yurkov G.Yu., Fedosyuk V.M. Synthesis of gadoliniumbased nanoparticles in a system of direct surfactant micelles and study of their magnetic properties. Russ. J. Appl. Chem. 2009;82(8):1357–1363. http://doi.org/10.1134/s1070427209080072; Harada M., Saijo K., Sakamotoet N., et al. Smallangle X-ray scattering study of metal nanoparticles prepared by photoreduction in aqueous solutions of sodium dodecyl sulfate. Colloids and Surfaces A: Physicochem. Eng. aspects. 2009;345(1–3):41–50. http://doi.org/10.1016/j.colsurfa.2009.04.015; Mirgorod Yu.A., Borsch N.A., Fedosyuk V.M., Yurkov G.Yu. The structure and magnetic properties of cobalt ferrite nanoparticles synthesized in a system of direct micelles of amphiphiles by means of ion flotoextraction. Russ. J. Phys. Chem. A. 2012;86(3):418–423. https://doi.org/10.1134/S0036024412030211; Mirgorod Yu.A., Borsch N.A., Fedosyuk V.M., Yurkov G.Yu. Magnetic properties of nickel ferrite nanoparticles prepared using flotation extraction. Inorg. Mater. 2013;49(1):109–114. https://doi.org/10.1134/s0020168512110064; Hansen M.F., Mørup S.J. Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 1999;203:214–216. https://doi.org/10.1016/s03048853(99)00238-3; Mirgorod Yu.A., Borsch N.A., Yurkov G.Yu. Preparation of nanomaterials from aqueous solutions imitating the hydrometallurgy waste. Russ. J. Appl. Chem. 2011;84(8):1314–1318. http://doi.org/10.1134/s1070427211080039; Mirgorod Yu.A., Emelyanov S.G. Integrated technology for production of nanomaterials from poor ore and waste. J. Min. Sci. 2015;51(1):164–173. http://doi.org/10.1134/S1062739115010226; Matt B., Pondman K.М., Asshoff S.J., et al. Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals. Angew. Chem. Int Ed. 2014;53(46):12446–12450. https://doi.org/10.1002/anie.201404312; Lisiecki I. From the Co Nanocrystals to Their Self-Organizations: Towards Ferromagnetism at Room Temperature. Acta Phys. Polonica. A. 2012;121(2):426–433. URL: http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z2p58.pdf; Darling S.B., Yufa N.A., Cisse A.L., et al. SelfOrganization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates. Adv. Mater. 2005;17(20):2446–2450. https://doi.org/10.1002/adma.200500960; Rusanov A.I., Nekrasov A.G. One more extreme near the critical micelle concentration: optical activity. Langmuir. 2010;26(17):13767–13769. https://doi.org/10.1021/la102514a; Farinato R.S., Rowell R.L. Transient light scattering in aqueous surfactant systems. J. Colloid and Interface Sci. 1978;66(3):483–491. http://doi.org/10.1016/00219797(78)90069-3; Yusof N.S.M. The effect of sonication on the ion exchange constant, KXBr of CTABr/chlorobenzoates micellar systems. Ultrason. Sonochem. 2021;71:105360. https://doi.org/10.1016/j.ultsonch.2020.105360; Maestro L.M., Marqués M.I., Camarillo E., et al. On the Existence of Two States in Liquid Water: Impact on Biological and Nanoscopic Systems. Int. J. Nanotech. 2016;13(8–9):667–677. http://doi.org/10.1504/IJNT.2016.079670; Fan H., Leve E.W., Scullin C., et al. Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles. Nano Lett. 2005;5(4):645–648. https://doi.org/10.1021/nl050017l; Rusanov A.I., Krotov V.V., Nekrasov A.G. Extremes of some foam properties and elasticity of thin foam films near the critical micelle concentration. Langmuir. 2004;20(4):1511–1516. https://doi.org/10.1021/la0358623

  3. 3
    Academic Journal

    Συγγραφείς: Гурочкіна, В. В.

    Πηγή: Economic Herald. Series: Finance, Accounting, Taxation; No. 6 (2020): Economic Herald. Series: Finance, Accounting, Taxation; 40-53 ; Экономический вестник. Серия: финансы, учет, налогообложение; № 6 (2020): Экономический вестник. Серия: финансы, учет, налогообложение; 40-53 ; Економічний вісник. Серія: фінанси, облік, оподаткування; № 6 (2020): Економічний вісник. Серія: фінанси, облік, оподаткування; 40-53 ; 2617-5932 ; 10.33244/2617-5932.6.2020

    Περιγραφή αρχείου: application/pdf

  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal

    Πηγή: Priority directions of science and education development; № 1; 11-16 ; Приоритетные направления развития образования и науки; № 1; 11-16

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9500127-3-0; https://interactive-plus.ru/e-articles/393/Action393-119663.pdf; 1. Тарасов В.Б. Многоагентные системы: Учебное пособие / В.Б. Тарасов, С.О. Новиков. – М., 2006.; 2. Городецкий В.И. Самоорганизация и многоагентные системы. I. Модели самоорганизации и их приложения в программных инфраструктурах компьютерных сетей / В.И. Городецкий // Известия РАН. Теория и системы управления. – 2011.; 3. Городецкий В.И. Самоорганизация и многоагентные системы. II. Приложения и технология разработки / В.И. Городецкий // Известия РАН. Теория и системы управления. – 2011.; 4. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям / В.Б. Тарасов. – М., 2011.; 5. Жураев Н.М. Свойства самоорганизации в распределенных системах и сетях: многоагентые системы как средства изучение / Н.М. Жураев, Б.З. Абдухалилов // Ферганский политехничский журнал. – 2014. – №2.; 6. Анатолий И.А. Самоорганизующиеся распределенные системы управления группами интеллектуальных роботов, построенные на основе сетевой модели / И.А. Анатолий, С.Г. Капустян, Г.Р. Анатолий // Управление большими системами: сборник труда. – 2010. – №30–1.; 7. Казанцев А.В. Исследование самоорганизации в распределенных системах и сетях по многоагентному подходу / А.В. Казанцев, Б.З. Абдухалилов [Электронный ресурс]. – Режим доступа: https://nauchforum.ru/sites/default/files/issledovanie_samoorganizacii_v_raspredelennyh_sistemah_i_setyah_po_mnogoagentnomu_podhodu.docx (дата обращения: 30.03.2017).

  7. 7
  8. 8
    Academic Journal

    Περιγραφή αρχείου: text/html

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16