-
1Academic Journal
Subject Terms: высоковольтные сети, удельные нормы энергопотребления, рациональное использование топливно-энергетических ресурсов, электроэнергетическая система, Белорусская энергосистема
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/71480
-
2Academic Journal
Authors: A. E. Mozokhin, V. N. Shvedenko
Source: Научно-технический вестник информационных технологий, механики и оптики, Vol 23, Iss 2, Pp 289-298 (2024)
Subject Terms: система управления, цифровой двойник, ансамбль искусственных нейронных сетей, электроэнергетическая система, интеллектуальные электронные устройства, показатели качества электроэнергии, Information technology, T58.5-58.64
File Description: electronic resource
-
3Academic Journal
-
4Academic Journal
Subject Terms: межсистемные линии электропередачи, адресное распределение потоков электроэнергии, электроэнергетическая система, методика адресного распределения потоков электроэнергии, межгосударственные перетоки электроэнергии, объединенная энергосистема Республики Беларусь
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/66900
-
5Conference
Authors: Valiev, R. T., Oboskalov, V. P.
Subject Terms: БАЛАНСОВАЯ НАДЕЖНОСТЬ, POWER BALANCE, ПОКАЗАТЕЛИ НАДЕЖНОСТИ, БАЛАНСЫ МОЩНОСТИ И ЭНЕРГИИ, ENERGY BALANCE, INTERCONNECTED ELECTRIC POWER SYSTEM, ADEQUACY, ADEQUACY INDICES, ОБЪЕДИНЕННАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА, АНАЛИТИЧЕСКИЕ МЕТОДЫ, ANALYTICAL METHODS
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/129508
-
6Conference
Authors: Bartolomey, P. I., Kotova, E. N., Lebedev, E. M., Semenenko, S. I.
Subject Terms: FILTERING, ФИЛЬТРАЦИЯ, ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА, ВЕКТОРНЫЕ ИЗМЕРЕНИЯ, STATE ESTIMATION, ELECTRICAL POWER SYSTEM, PHASOR MEASUREMENTS, ОЦЕНИВАНИЕ СОСТОЯНИЯ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/129449
-
7Conference
Authors: Kostin, A. A., Mezentsev, P. E., Oboskalov, V. P.
Subject Terms: ТЕОРИЯ НЕЧЕТКИХ МНОЖЕСТВ, ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА, FUZZY LOGIC THEORY, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ, ELECTRICAL POWER SYSTEM, UNCERTAINTY, SOFTWARE, НЕОПРЕДЕЛЕННОСТЬ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/129450
-
8Academic Journal
-
9Academic Journal
-
10Academic Journal
Authors:
Бехзод КOМИЛЖOНОВ Ведущий специалист управления Перпективного развития и реализации ГЧП проектов АО "Узбекгидроэнерго" Subject Terms: нижний и верхний бассейн, гидроагрегаты, гидроак- кумулирующая электростанция, электроэнергетическая система, аккумулирование электроэнергии, энергосбережение, энергоэффективность
Relation: https://zenodo.org/communities/uzkhydro/; https://zenodo.org/records/13996814; oai:zenodo.org:13996814; https://doi.org/10.5281/zenodo.13996814
-
11Academic Journal
Authors: V. E. Rudnik, A. B. Askarov, B. D. Maliuta, R. A. Ufa, A. A. Suvorov, В. Е. Рудник, А. Б. Аскаров, Б. Д. Малюта, Р. А. Уфа, А. А. Суворов
Contributors: Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004
Source: Alternative Energy and Ecology (ISJAEE); № 6 (2024); 59-79 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2024); 59-79 ; 1608-8298
Subject Terms: водородная система накопления электрической энергии, modelling, photovoltaic power plant, power converter, generic model, electric power system, hydrogen-based electric energy storage system, моделирование, фотоэлектрическая солнечная электростанция, силовой преобразователь, обобщенная модель, электроэнергетическая система
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2432/1978; Renewables 2022 [Online]. Available: https://www.iea.org/reports/renewables-2022 [accessed 15 August 2023]; Renewable Energy Market Update – June 2023 [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-june-2023 [accessed 20 September 2023]; Solar (photovoltaic) panel prices: [Online]. URL: https://ourworldindata.org/grapher/solar-pvprices?time=earliest.latest [accessed 20 September 2023]; Suvorov A., Askarov A., Kievets A., Rudnik V. A comprehensive assessment of the stateof-the-art virtual synchronous generator models // Electric Power Systems Research, 2022, 209, 108054. https://doi.org/10.1016/j.epsr.2022.108054; Ruban N., Rudnik V., Askarov A., Maliuta B. Frequency control by the PV station in electric power systems with hydrogen energy storage // International Journal of Hydrogen Energy, 2023, 48(73), pp 28262-28276. https://doi.org/10.1016/j.ijhydene.2023.04.048; Ilyushin P., Filippov S., Kulikov A., Suslov K., Karamov D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities // Machines, 2022, 10, 693. https://doi.org/10.3390/machines10080693.; Suvorov A., Askarov A., Bay Y., Ufa R. Freely Customized virtual generator model for grid-forming converter with hydrogen energy storage // International Journal of Hydrogen Energy, 2022, 47(82), pp. 34739-34761. https://doi.org/10.1016/j.ijhydene.2022.08.119.; Al-Ghussain L. Ahmad A. D., Abubaker A. M., Hassan M. A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100 % solar-wind renewable energy system. International Journal of Hydrogen Energy, 2022, 47, pp. 21613-21633. https://doi.org/10.1016/j.ijhydene.2022.04.289; Şevik S. Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. International Journal of Hydrogen Energy, 47 (2022), pp. 23935-23956. https://doi.org/10.1016/j.ijhydene.2022.05.193; Huang S.H, et al. Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience // IEEE PES General Meeting, San Diego. – CA, 2012, pp. 1-7. https://doi.org/10.1109/PESGM.2012.6344713; Ramasubramanian D, et al. Positive Sequence Voltage Source Converter Mathematical Model for Use in Low Short Circuit Systems // IET Generation Transmission and Distribution, 2020, 14, pp. 87-97. https://doi.org/10.1049/iet-gtd.2019.0346; Cheng Y, et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. IEEE Transactions on Power Systems, 2023, 38(1), pp. 316-330. https://doi.org/10.1109/TPWRS.2022.3161418; Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems // Hoboken, NJ, USA: Wiley. – 2010.; Teodorescu R., Liserre M., Rodriguez P. Grid Converters For Photovoltaic and Wind Power Systems // Hoboken, NJ, USA: Wiley. – 2011.; Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies, IEEE Power and Energy Society, Tech. Rep. PESTR77, May 2020. [Online]. Available: https://resourcecenter.ieeepes.org/technical-publications/technicalreports/PES_TP_TR77_PSDP_stability_051320.html [accessed 14 September 2023]; Bialek J, et al. Benchmarking and Validation of Cascading Failure Analysis Tools // IEEE Transactions on Power Systems, 2016, 31(6), pp. 4887-4900. https://doi.org/10.1109/TPWRS.2016.2518660; Ramasubramanian D., Yu D., Ayyanar D. Vittal V., Undrill J. Converter Model for Representing Converter Interfaced Generation in Large Scale Grid Simulations // IEEE Transactions on Power Systems, 2017, 32(1), pp. 765-773. https://doi.org/10.1109/TPWRS.2016.2551223; IEEE Std 1204-1997. IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. https://doi.org/10.1109/IEEESTD.1997.85949; Grid-Forming Inverter-Based Resources Workshop. October 13, 2021: [Online]. Available: https://www.esig.energy/event/wecc-esig-grid-forminginverter-based-resources-workshop/ [accessed 15 August 2023]; Liu H, et al Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks // IEEE Transactions on Power Systems, 2017, 32(6), PP. 4708-4720. https://doi.org/10.1109/TPWRS.2017.2682197; Wang C., Mishra C., Jones K. D., Vanfretti L. Identifying oscillations injected by inverterbased solar energy sources in dominion energy’s service territory using synchrophasor data and point-on-wave data. [Online]. Available: https://naspi.org/sites/default/files/2021-04/D1S1_02_wang_dominion_naspi_20210413.pdf [accessed 15 August 2023]; Wang C, et al. Identifying Oscillations Injected by Inverter-Based Solar Energy Sources // IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5. https://doi.org/10.48550/arXiv.2202.11579; Li Y. et al. A Multi-Rate Co-Simulation of Combined Phasor-Domain and Time-Domain Models for Large-Scale Wind Farms. IEEE Transactions on Energy Conversion, 2020, 35(1), рр. 324-335. https://doi.org/10.1109/TEC.2019.2936574; Ruban N. Y., et al. Software and Hardware Decision Support System for Operators of Electrical Power Systems // IEEE Transactions on Power Systems, 2021, 36(5), pp. 3840-3848. https://doi.org/10.1109/TPWRS.2021.3063511; Martino M. et al. Main hydrogen production processes: an overview. Catalysts, 2021, 11(5), p. 547. https://doi.org/10.3390/catal11050547; Leijiao Ge. et al. A review of hydrogen generation, storage, and applications in power system //journal of Energy Storage, 2024, 75, 109307, https://doi.org/10.1016/j.est.2023.109307; Diabate M., Vriend T., Krishnamoorthy H. S., Shi J. Hydrogen and Battery – Based Energy Storage System (ESS) for Future DC Microgrids // IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2022, pp. 1-6. https://doi.org/10.1109/PEDES56012.2022.10080550; Wen T. et al. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm GridConnection // in IEEE Access, 2020, 8, pp. 79347-79356. https://doi.org/10.1109/ACCESS.2020.2990581; Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications // International journal of hydrogen energy, 2013, 38 (5), 2039-2061. https://doi.org/10.1016/j.ijhydene.2012.12.010; Susan S., Keller J. Commercial potential for renewable hydrogen in California // International journal of hydrogen energy, 2017, 42(19), 13321-13328. https://doi.org/10.1016/j.ijhydene.2017.01.005; Ufa R. A., Rudnik V. E., Malkova Y. Y., Bay Y. D., Kosmynina N. M. Impact of renewable generation unit on stability of power systems // International Journal of Hydrogen Energy, 2022, 47(46), 19947-19954. https://doi.org/10.1016/j.ijhydene.2022.04.141; Ufa R. A., Vasilev A. S., Gusev A. L., Pankratov A. V., Malkova Y. Y., Gusev A. S. Analysis of the influence of the current-voltage characteristics of the voltage rectifiers on the static characteristics of hydrogen electrolyzer load // International Journal of Hydrogen Energy, 2021, 46(68), 33670-33678. https://doi.org/10.1016/j.ijhydene.2021.07.183; Makaryan I. A., Efimov O. N., Gusev A. L. State-of-market and perspectives on development of lithium-ion batteries // International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2013, 06/1(127), 100-115.; Shi Z., Wang W., Huang Y., Li P., Dong L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control // CSEE Journal of Power and Energy Systems, 2022, 8(1), pp. 95-104. https://doi.org/10.17775/CSEEJPES.2019.01470; Xuewei S et al. Research on Energy Storage Configuration Method Based on Wind and Solar Volatility // 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 2020, pp. 464468. https://doi.org/10.1109/ICPES51309.2020.9349645; Li X. et al. Cooperative Dispatch of Distributed Energy Storage in Distribution Network With PV Generation Systems // IEEE Transactions on Applied Superconductivity, 2021, 31(8), pp. 1-4. https://doi.org/10.1109/TASC.2021.3117750; Liu X. et al. Microgrid Energy Management with Energy Storage Systems: A Review // CSEE Journal of Power and Energy Systems, 2023, 9(2), pp. 483-504. https://doi.org/10.17775/CSEEJPES.2022.04290; Naseri N. et al. Solar Photovoltaic Energy Storage as Hydrogen via PEM Fuel Cell for Later Conversion Back to Electricity // IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 4549-4554, doi: https://doi.org/10.1109/IECON.2019.8927094; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), PP. 17285-17312 0360, https://doi.org/10.1016/j.ijhydene.2022.03.208; Razzhivin I. A., Suvorov A. A., Ufa R. A., Andreev M. V., Askarov A. B. The energy storage mathematical models for simulation and comprehensive analysis of power system dynamics: A review. Part II // International Journal of Hydrogen Energy, 2023, 48(15), рр. 6034-6055, https://doi.org/10.1016/j.ijhydene.2022.11.102; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), 2022, рр. 17285-17312, https://doi.org/10.1016/j.ijhydene.2022.03.208; Diaz I. U., de Queiróz Lamas, W., Lotero R. C. Development of an optimization model for the feasibility analysis of hydrogen application as energy storage system in microgrids // International Journal of Hydrogen Energy, 2023, 48 (43), рр. 16159-16175, https://doi.org/10.1016/j.ijhydene.2023.01.128; Tawalbeh M., Farooq A., Martis R., AlOthman A. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications // International Journal of Hydrogen Energy, 2023, https://doi.org/10.1016/j.ijhydene.2023.06.264; S. Fukaume, Y. Nagasaki, M. Tsuda. Stable power supply of an independent power source for a remote island using a Hybrid Energy Storage System composed of electric and hydrogen energy storage systems // International Journal of Hydrogen Energy, 2022, 47 (29), рр. 13887-13899, https://doi.org/10.1016/j.ijhydene.2022.02.142; N. Shamarova, K.Suslov, P. Ilyushin, I. Shushpanov. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation // Energies 2022, 15, 6967. https://doi.org/10.3390/en15196967; Zhang Z. et. Continuous operation in an electric and hydrogen hybrid energy storage system for renewable power generation and autonomous emergency power supply // International Journal of Hydrogen Energy, 2019, 44 (41), рр. 23384-23395, https://doi.org/10.1016/j.ijhydene.2019.07.028; Armghan H., Xu Y., Sun H., Ali N., Liu J. Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid // Applied Energy, 2024, Volume 355, https://doi.org/10.1016/j.apenergy.2023.122149; WECC REMTF. Solar Photovoltaic Power Plant Modeling and Validation Guideline MVWG. [Электронный ресурс]. URL: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf (дата обращения: 10.02.2023); Clark K., Miller N. W., Walling R. Modeling of GE Solar Photovoltaic Plants for Grid Studies. General Electr. Int. Rep. Ver. 1.1. 2010.; Pourbeik P. et al. Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies // IEEE Transactions on Energy Conversion, 2017, 32(3), 2017, pp. 1108-1116, https://doi.org/10.1109/PESGM.2018.8585944; Machlev R. et al. Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks // Energies, 2020, 13, https://doi.org/3191.10.3390/en13123191; Xu X. K., Bishop M., Oikarinen D. G., Hao C. Application and modeling of battery energy storage in power systems // CSEE Journal of Power and Energy Systems, 2016, 2(3), pp. 82-90, https://doi.org/10.17775/CSEEJPES.2016.00039.; Ruban N., Rudnik V., Razzhivin I., Kievec A. A hybrid model of photovoltaic power stations for model ling tasks of large power systems. EEA Electrotehnica, Electronica, Automatica, 2021, 69, pp. 43-49, https://doi. org/10.46904/eea.21.69.4.1108005; Ufa R., Vasiliev A., Ruban N., Rudnik V. Hybrid real-time simulator for setting of automatic secondary frequency and active power control // EEA Electrotehnica, Electronica, Automatica, 2020, 68(2), pp. 41-48.; Sun Yin et al. The Impact of PLL Dynamics on the Low Inertia Power Grid: A Case Study of Bonaire Island Power System // Power Electronics in Renewable Energy Systems, 2019, 12(7). https://doi.org/10.3390/en12071259; Huang L., Xin H., Wang Z. Damping LowFrequency Oscillations Through VSC-HVdc Stations Operated as Virtual Synchronous Machine. IEEE Transactions on Power Electronics, 2019, 34(6), pp. 5803-5818, https://doi.org/10.1109/TPEL.2018.2866523; Mohammadpour H. A., Santi E. SSR Damping Controller Design and Optimal Placement in Rotor-Side and Grid-Side Converters of Series-Compensated DFIGBased Wind Farm // IEEE Transactions on Sustainable Energy, 2015, 6(2), pp. 388-399, https://doi.org/10.1109/TSTE.2014.2380782; Wang X. et al. An Active Damper for Stabilizing Power-Electronics-Based AC Systems // IEEE Transactions on Power Electronics, 2014, 29(7), pp. 3318-3329, https://doi.org/10.1109/APEC.2013.6520441; Alawasa K. M., Mohamed Y. A. -R. I. A Simple Approach to Damp SSR in Series-Compensated Systems via Reshaping the Output Admittance of a Nearby VSC-Based System // IEEE Transactions on Industrial Electronics, 2015, 62(5), pp. 2673-2682. https://doi.org/10.1109/TIE.2014.2363622; https://www.isjaee.com/jour/article/view/2432
-
12Academic Journal
Authors: D. A. Sekatski, N. A. Papkova, Д. А. Секацкий, Н. А. Попкова
Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 67, № 1 (2024); 16-32 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 67, № 1 (2024); 16-32 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2024-67-1
Subject Terms: электроэнергетическая система, weather conditions, corona, electric field strength, power lines, electric power system, погодные условия, коронный разряд, напряженность электрического поля, линии электропередачи
File Description: application/pdf
Relation: https://energy.bntu.by/jour/article/view/2347/1899; Об утверждении Положения по нормированию расхода топливно-энергетических ре-сурсов на предприятиях, в учреждениях и организациях государственного производственного объединения «Белэнерго», Инструкции по расчету и обоснованию нормативов расхода электроэнергии на ее передачу по электрическим сетям [Электронный ресурс]: постановление Министерства энергетики Республики Беларусь от 16.12.2013 № 48 (в ред. пост. от 05.07.2017 № 23). Режим доступа: https://energodoc.by/document/view?id=3068.; Peek, F. W. Dielectric Phenomena in High Voltage Engineering / F. W. Peek. New York, NY, USA:McGraw-Hill Book Company, 1920.; HVDC Corona Current Characteristics and Audible Noise During Wet Weather Transitions / S. Hedtke [et al.] // IEEE Transactions on Power Delivery. 2020. Vol. 35, No 2. P. 1038–1047. https://doi.org/10.1109/tpwrd.2019.2936285.; Anguan, W. Line loss prediction and loss reduction plan for power grids / W. Anguan, N. Baoshan. John Wiley & Sons, Ltd, 2016. 361 p. https://doi.org/10.1002/9781118867273.ch13.; Кононов, Ю. Г. Методы определения потерь мощности и энергии на корону в действующих ВЛ / Ю. Г. Кононов, В. А. Костюшко О. С. Рыбасова // Энергия единой сети. 2017. № 6 (35). С. 22–40.; Костюшко, В. А. Pасчет потерь мощности на корону на воздушных линиях электропередачи переменного тока / В. А. Костюшко // Энергия единой сети. 2016. № 3 (26). С. 40–47.; Maruvada, P. S. Corona Performance of High-Voltage Transmission Lines / P. S. Maruvada. Baldock, UK:Research Studies Press, 2000. 310 p.; Kononov, Y. The Reactive Corona Effect Investigation Based on PMU Measurements in a Real 500 kV TL / Y. Kononov, A. Diachenko // 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022. Р. 1–3, doi:10.1109/ICECET55527.2022.9872716.; Matthews, J. C. The effect of weather on corona ion emission from AC high voltage power lines / J. C. Matthews // Atmospheric Research. 2012. Vol. 113. Р. 68–79. https://doi.org/10.1016/j.atmosres.2012.03.016.; Li, Q. Calculating the Surface Potential Gradient of Overhead Line Conductors / Q. Li, S. M. Rowland, R. Shuttleworth // IEEE Transactions on Power Delivery. 2015. Vol. 30, No 1. P. 43–52. https://doi.org/10.1109/tpwrd.2014.2325597.; Filed and Corona Effect [Electronic Resource]. Mode of access: https://www.pscad.com/software/face/overview. Date of access: 19.11.2023.; Руководящие указания по учету потерь на корону и помех от короны при выборе проводов воздушных линий электропередачи переменного тока 330–750 кВ и постоянного тока 800–1150 кВ. М.: СЦНТИ, 1975.; Sekatski, D. A. Comparative Analysis of Active Power Losses Per Corona of 330 kV Overhead Lines / D. A. Sekatski, A. I. Khalyasmaa, N. A. Papkova // 2023 Belarusian-Ural-Siberian Smart Energy Conference (BUSSEC). Ekaterinburg, 2023. Р. 24–27. https://doi.org/10.1109/bussec59406.2023.10296425.; Оперативное прогнозирование скорости ветра для автономной энергетической установки тяговой железнодорожной подстанции / П. B. Матренин [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. 66, № 1. С. 18–29. https://doi.org/10.21122/1029-7448-2023-66-1-18-29.; Расписание погоды [Электронный ресурс]. Режим доступа: https://rp5.by/ Дата доступа: 19.11.2023.; Секацкий, Д. А. Учет атмосферной составляющей в задаче расчета потерь мощности и электроэнрегии в линиях электропередачи на примере годовых погодных данных Минска / Д. А. Секацкий // Энергия и Менеджмент. 2016. № 5. С. 25–29.; Баламетов, А. Б. Mоделирование режимов электрических сетей на основе уравнений установившегося режима и теплового баланса / А. Б. Баламетов, Э. Д. Халилов // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2020. Т. 63, № 1. С. 66–80. https://doi.org/10.21122/1029-7448-2020-63-1-66-80.; Костюшко, В. А. Анализ расчетных и экспериментальных оценок потерь мощности на корону на воздушных линиях электропередач переменного тока / В. А. Костюшко. М.: НТФ «Энергопрогресс», 2011. 84 с.; Повышение точности прогнозирования генерации фотоэлектрических станций на основе алгоритмов k-средних и k-ближайших соседей / П. B. Матренин [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. Т. 66, № 4. С. 305–321. https://doi.org/10.21122/1029-7448-2023-66-4-305-321.; https://energy.bntu.by/jour/article/view/2347
-
13Academic Journal
Authors: A. V. Sednin, K. M. Dyussenov, А. B. Седнин, К. М. Дюсенов
Contributors: Данная работа частично выполнена в рамках совместного научного проекта Белорусского республиканского фонда фундаментальных исследований и Министерства инновационного развития Республики Узбекистан «БРФФИ–МИРРУ-2022» (Договор Т22УЗБ-052).
Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 67, № 2 (2024); 173-188 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 67, № 2 (2024); 173-188 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2024-67-2
Subject Terms: эффективность, hybridity, integration, information space, reliability, modernization, object, system, heat load, heat, district heating, integrated electric power system, control, electricity, efficiency, гибридность, интеграция, информационное пространство, надежность, модернизация, объект, система, тепловая нагрузка, теплота, теплоснабжение, объединенная электроэнергетическая система, управление, электроэнергия
File Description: application/pdf
Relation: https://energy.bntu.by/jour/article/view/2367/1908; Future Distric Theating Systems and Technologies: On the Role of Smart Energy Systems and 4th Generation District Heating / H. Lund [et al.] // Energy. 2018. Vol. 165, Part A. P. 614–619. https://doi.org/10.1016/j.energy.2018.09.115.; The Status of 4th Generation District Heating: Research and Results / H. Lund [et al.] // Energy. 2018. Vol. 164. P. 147–159. https://doi.org/10.1016/j.energy.2018.08.206.; Perspectives on Fourth and Fifth Generation District Heating / H. Lund [et al.] // Energy. 2021. Vol. 227. P. 120520. https://doi.org/10.1016/j.energy.2021.120520.; Modelling of Waste Heat Integration Into an Existing District Heating Network Operating at Different Supply Temperatures / J. Stock [et al]. Smart Energy. 2023. Vol. 10. P. 100104. https://doi.org/10.1016/j.segy.2023.100104.; Latõšov, E. CO2 Emission Intensity of the Estonian DH sector / E. Latõšov, S. Umbleja, A. Volkova // Smart Energy. 2022. Vol. 6. P. 100070. https://doi.org/10.1016/j.segy.2022.100070.; Vocabulary for the Fourth Generation of District Heating and Cooling / M. Sulzer [et al.] // Smart Energy. 2021. Vol. 1. P. 100003. https://doi.org/10.1016/j.segy.2021.100003.; Performance Analysis of a Hybrid District Heating System: a Case Study of a Small Town in Croatia / R. Mikulandric [et al.] // Journal of Sustainable Development of Energy, Water and Environment Systems. 2015. Vol. 3, Iss. 3. P. 282–302. https://doi.org/10.13044/j.sdewes.2015.03.0022.; Rämä, M. Introduction of New Decentralised Renewable Heat Supply in an Existing District Heating System / M. Rämä, M. Wahlroos // Energy. 2018. Vol. 154. P. 68–79. https://doi.org/10.1016/j.energy.2018.03.105.; Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites / M. Schindler [et al.] // Energies. 2023. Vol. 16. P. 2120. https://doi.org/10.3390/en16052120.; Reiter, P. BIG Solar Graz: Solar District Heating in Graz – 500,000 m2 for 20% Solar Fraction / P. Reiter, H. Poier, C. Holter // Energy Procedia. 2016. Vol. 91. P. 578–584. https://doi.org/10.1016/j.egypro.2016.06.204.; Теплоснабжение дома от теплонасосной системы, использующей возобновляемые источники энергии / В. Харченко [и др.] // Научные труды Литовской академии прикладных наук. 2012. № 7. С. 45–52.; Domestic Heating With Compact Combination Hybrids (Gas Boiler and Heat Pump): A Simple English Stock Model of Different Heating System Scenarios / G. Bennett // Building Services Engineering Research and Technology. 2021. Vol. 43, Nо 2. P. 143–159. https://doi.org/10.1177/01436244211040449.; EnergyPLAN – Advanced analysis of Smart Energy Systems, Smart / H. Lund [et al.] // Smart Energy. 2021. Vol. 1. P. 100007. https://doi.org/10.1016/j.segy.2021.100007.; Role of Sustainable Heat Sources in Transition Towards Fourth Generation District Heating – A review / A. M. Jodeiri [et al.] // Renewable and Sustainable Energy Reviews. 2022. Vol. 158. P. 112156. https://doi.org/10.1016/j.rser.2022.112156.; Talarek, K. Challenges for District Heating in Poland / K. Talarek, A. Knitter-Piątkowska, T. Garbowski // Discover Energy. 2023. Vol. 3, Nо 5. https://doi.org/10.1007/s43937-023-00019-z.; th Generation District Heating (4GDH): Integrating Smart Thermal Grids Into Future Sustainable Energy Systems / H. Lund [et al.] // Energy. 2014. Vol. 68, P. 1–11. https://doi.org/10.1016/j.energy.2014.02.089.; Large-Scale Solar Thermal Systems in Leading Countries: A Review and Comparative Study of Denmark, China, Germany and Austria / D. Tschopp [et al.] // Applied Energy. 2020. Vol. 270. P. 114997. https://doi.org/10.1016/j.apenergy.2020.114997.; Fifth Generation District Heating and Cooling: A Comprehensive Survey / L. Minh Dang [et al.] // Energy Reports. 2024. Vol. 11. P. 1723–1741. https://doi.org/10.1016/j.egyr.2024.01.037.; Overview of Solar Photovoltaic Applications for District Heating and Cooling / S. Sukumaran, J. Laht, A. Volkova // Environmental and Climate Technologies. 2023. Vol. 27, Nо 1. P. 964–979. https://doi.org/10.2478/rtuect-2023-0070.; Kubiński, K. Dynamic Model of Solar Heating Plant with Seasonal Thermal Energy Storage / K. Kubiński, Ł. Szabłowski // Renewable Energy. 2020. Vol. 145. P. 2025–2033. https://doi.org/10.1016/j.renene.2019.07.120.; Comprehensive Analysis of hot Water Tank Sizing for a Hybrid Solar-Biomass District Heating and cooling / Juan José Roncal-Casano [et al.] // Results in Engineering. 2023. Vol. 18. P. 101160. https://doi.org/10.1016/j.rineng.2023.101160.; Gudmundsson, O. Source-to-sink Efficiency of Blue and Green District Heating and Hydrogen-based Heat Supply Systems / O. Gudmundsson, J. E. Thorsen // Smart Energy. 2022. Vol. 6. P. 100071. https://doi.org/10.1016/j.segy.2022.100071.; Седнин, В. А. Анализ эффективности технологии производства водорода на мини-ТЭЦ на местных видах топлива термохимическим методом / В. А. Седнин, Р. С. Игнатович // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023. T. 66, № 4. P. 354–373. https://doi.org/10.21122/1029-7448-2023-66-4-354-373.; Pesola, A. Cost-Optimization Model to Design and Operate Hybrid Heating Systems – Case Study of District Heating System with Decentralized Heat Pumps in Finland / A. Pesola // Energy. 2023. Vol. 281. P. 128241. https://doi.org/10.1016/j.energy.2023.128241.; Tosatto, A. Simulation-Based Performance Evaluation of Large-Scale Thermal Energy Storage Coupled with Heat Pump in District Heating Systems / A. Tosatto, A. Dahash, F. Ochs // Journal of Energy Storage. 2023. Vol. 61. P. 106721. https://doi.org/10.1016/j.est.2023.106721.; Werner, S. Network Configurations for Implemented Low-Temperature District Heating / S. Werner // Energy. 2022. Vol. 254, Part B. P. 124091. https://doi.org/10.1016/j.energy.2022.124091.; Cascade Sub-Low Temperature District Heating Networks in Existing District Heating Systems / A. Volkova [et al.] // Smart Energy. 2022. Vol. 5. P. 100064. https://doi.org/10.1016/j.segy.2022.100064.; A Review of Low-Temperature Sub-Networks in Existing District Heating Networks: Examples, Conditions, Replicability / S. Puschnigg [et al.] // Energy Reports. 2021. Vol. 7, Suppl. 4. P. 18–26. https://doi.org/10.1016/j.egyr.2021.09.044.; Современное состояние, тенденции и задачи интеллектуализации систем теплоснабжения (обзор) / Н. Н. Новицкий [и др.] // Теплоэнергетика. 2022. № 5. С. 65–83. https://doi.org/10.1134/S0040363622040051.; Sednin, A. V. Approach to Data Processing for the Smart District Heating System / A. V. Sednin, A. V. Zherelo // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2022. Т. 65, No 3. С. 240–249. https://doi.org/10.21122/1029-7448-2022-65-3-240-249.; Fault and Anomaly Detection in District Heating Substations: A Survey on Methodology and Data sets / M. Neumayer [et al.] // Energy. 2023. Vol. 276. 127569. https://doi.org/10.1016/j.energy.2023.127569.; Intelligent Approaches to Fault Detection and Diagnosis in District Heating: Current Trends, Challenges, and Opportunities / J. van Dreven [et al.] // Electronics. 2023. Vol. 12, Nо 6. P. 1448. https://doi.org/10.3390/electronics12061448.; Седнин, А. В. Энергоэффективность применения гибридных тепловых пунктов в условиях интеграции электрических и тепловых сетей городских микрорайонов. Ч. 1: Обоснование целесообразности применения гибридных тепловых пунктов / А. В. Седнин, М. И. Позднякова // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. Т. 66, № 6. С. 552–566. https://doi.org/10.21122/1029-7448-2023-66-6-552-566.; https://energy.bntu.by/jour/article/view/2367
-
14Academic Journal
Authors: Alexandra Churina
Source: Electronics and Control Systems; Vol. 3 No. 69 (2021); 43-47
Электроника и системы управления; Том 3 № 69 (2021); 43-47
Електроніка та системи управління; Том 3 № 69 (2021); 43-47Subject Terms: математичне програмування, математическое программирование, электроэнергетическая система, електроенергетична система, electric power system, mathematical programming
File Description: application/pdf
-
15Academic Journal
Authors: Valeriy Marugin, Vilena Peyzel, Petr Revenko, Aleksandr Stepanov
Source: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 31-35 (2022)
Subject Terms: электроэнергетическая система, распределительная сеть, математическое ожидание, дисперсия, вероятность, power system, distribution network, mathematical expectation, variance, probability, Economics as a science, HB71-74
File Description: electronic resource
-
16Academic Journal
Source: Грозненский естественнонаучный бюллетень. 8
Subject Terms: MATLAB, электромобили, Simulink, электроэнергетическая система, асинхронный, direct current, генератор, 7. Clean energy, electric power system, high-speed asynchronous generator, electric filling stations, электрозаправочные колонки, постоянный ток, SimPowerSystems, быстроходный, электрозаправочные станции, electric vehicles
-
17Academic Journal
Authors: Razzhivin, I.A., Andreev, M.V., Suvorov, A.A., Ufa, R.A.
Source: Bulletin of the South Ural State University series "Power Engineering". 20:36-48
Subject Terms: ветроэнергетическая установка, distributed generation, УДК 621.311.001.57, электроэнергетическая система, wind farm, 0211 other engineering and technologies, 02 engineering and technology, electric power system, grid, 7. Clean energy, 13. Climate action, 11. Sustainability, распределенная генерация, 0202 electrical engineering, electronic engineering, information engineering, гибридное моделирование, hybrid simulation
File Description: application/pdf
Access URL: https://vestnik.susu.ru/power/article/download/9921/7826
https://cyberleninka.ru/article/n/gibridnoe-modelirovanii-raspredelennoy-generatsii-v-elektroenergeticheskih-sistemah
https://vestnik.susu.ru/power/article/view/9921
https://vestnik.susu.ru/power/article/download/9921/7826
http://dspace.susu.ru/xmlui/handle/00001.74/45328 -
18Academic Journal
Authors: Gusev, Yu.P., Kayumov, A.G.
Source: Bulletin of the South Ural State University series "Power Engineering". 20:76-84
Subject Terms: короткое замыкание, электроэнергетическая система, 0211 other engineering and technologies, short circuit, 02 engineering and technology, electric power system, 7. Clean energy, техническое состояние, 13. Climate action, 11. Sustainability, 0202 electrical engineering, electronic engineering, information engineering, technical condition of electrical equipment, УДК 621.311, электрическое оборудование
File Description: application/pdf
Access URL: https://vestnik.susu.ru/power/article/download/10373/8155
https://vestnik.susu.ru/power/article/download/10373/8155
https://cyberleninka.ru/article/n/obzor-tehnicheskogo-sostoyaniya-elektrooborudovaniya-v-razvivayuscheysya-energosisteme-respubliki-tadzhikistan
https://vestnik.susu.ru/power/article/view/10373
http://dspace.susu.ru/xmlui/handle/00001.74/45290 -
19
-
20