Showing 1 - 20 results of 431 for search '"ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА"', query time: 0.81s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда № 24-29-00004

    Source: Alternative Energy and Ecology (ISJAEE); № 6 (2024); 59-79 ; Альтернативная энергетика и экология (ISJAEE); № 6 (2024); 59-79 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2432/1978; Renewables 2022 [Online]. Available: https://www.iea.org/reports/renewables-2022 [accessed 15 August 2023]; Renewable Energy Market Update – June 2023 [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-june-2023 [accessed 20 September 2023]; Solar (photovoltaic) panel prices: [Online]. URL: https://ourworldindata.org/grapher/solar-pvprices?time=earliest.latest [accessed 20 September 2023]; Suvorov A., Askarov A., Kievets A., Rudnik V. A comprehensive assessment of the stateof-the-art virtual synchronous generator models // Electric Power Systems Research, 2022, 209, 108054. https://doi.org/10.1016/j.epsr.2022.108054; Ruban N., Rudnik V., Askarov A., Maliuta B. Frequency control by the PV station in electric power systems with hydrogen energy storage // International Journal of Hydrogen Energy, 2023, 48(73), pp 28262-28276. https://doi.org/10.1016/j.ijhydene.2023.04.048; Ilyushin P., Filippov S., Kulikov A., Suslov K., Karamov D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities // Machines, 2022, 10, 693. https://doi.org/10.3390/machines10080693.; Suvorov A., Askarov A., Bay Y., Ufa R. Freely Customized virtual generator model for grid-forming converter with hydrogen energy storage // International Journal of Hydrogen Energy, 2022, 47(82), pp. 34739-34761. https://doi.org/10.1016/j.ijhydene.2022.08.119.; Al-Ghussain L. Ahmad A. D., Abubaker A. M., Hassan M. A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100 % solar-wind renewable energy system. International Journal of Hydrogen Energy, 2022, 47, pp. 21613-21633. https://doi.org/10.1016/j.ijhydene.2022.04.289; Şevik S. Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. International Journal of Hydrogen Energy, 47 (2022), pp. 23935-23956. https://doi.org/10.1016/j.ijhydene.2022.05.193; Huang S.H, et al. Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience // IEEE PES General Meeting, San Diego. – CA, 2012, pp. 1-7. https://doi.org/10.1109/PESGM.2012.6344713; Ramasubramanian D, et al. Positive Sequence Voltage Source Converter Mathematical Model for Use in Low Short Circuit Systems // IET Generation Transmission and Distribution, 2020, 14, pp. 87-97. https://doi.org/10.1049/iet-gtd.2019.0346; Cheng Y, et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. IEEE Transactions on Power Systems, 2023, 38(1), pp. 316-330. https://doi.org/10.1109/TPWRS.2022.3161418; Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems // Hoboken, NJ, USA: Wiley. – 2010.; Teodorescu R., Liserre M., Rodriguez P. Grid Converters For Photovoltaic and Wind Power Systems // Hoboken, NJ, USA: Wiley. – 2011.; Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies, IEEE Power and Energy Society, Tech. Rep. PESTR77, May 2020. [Online]. Available: https://resourcecenter.ieeepes.org/technical-publications/technicalreports/PES_TP_TR77_PSDP_stability_051320.html [accessed 14 September 2023]; Bialek J, et al. Benchmarking and Validation of Cascading Failure Analysis Tools // IEEE Transactions on Power Systems, 2016, 31(6), pp. 4887-4900. https://doi.org/10.1109/TPWRS.2016.2518660; Ramasubramanian D., Yu D., Ayyanar D. Vittal V., Undrill J. Converter Model for Representing Converter Interfaced Generation in Large Scale Grid Simulations // IEEE Transactions on Power Systems, 2017, 32(1), pp. 765-773. https://doi.org/10.1109/TPWRS.2016.2551223; IEEE Std 1204-1997. IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. https://doi.org/10.1109/IEEESTD.1997.85949; Grid-Forming Inverter-Based Resources Workshop. October 13, 2021: [Online]. Available: https://www.esig.energy/event/wecc-esig-grid-forminginverter-based-resources-workshop/ [accessed 15 August 2023]; Liu H, et al Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks // IEEE Transactions on Power Systems, 2017, 32(6), PP. 4708-4720. https://doi.org/10.1109/TPWRS.2017.2682197; Wang C., Mishra C., Jones K. D., Vanfretti L. Identifying oscillations injected by inverterbased solar energy sources in dominion energy’s service territory using synchrophasor data and point-on-wave data. [Online]. Available: https://naspi.org/sites/default/files/2021-04/D1S1_02_wang_dominion_naspi_20210413.pdf [accessed 15 August 2023]; Wang C, et al. Identifying Oscillations Injected by Inverter-Based Solar Energy Sources // IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5. https://doi.org/10.48550/arXiv.2202.11579; Li Y. et al. A Multi-Rate Co-Simulation of Combined Phasor-Domain and Time-Domain Models for Large-Scale Wind Farms. IEEE Transactions on Energy Conversion, 2020, 35(1), рр. 324-335. https://doi.org/10.1109/TEC.2019.2936574; Ruban N. Y., et al. Software and Hardware Decision Support System for Operators of Electrical Power Systems // IEEE Transactions on Power Systems, 2021, 36(5), pp. 3840-3848. https://doi.org/10.1109/TPWRS.2021.3063511; Martino M. et al. Main hydrogen production processes: an overview. Catalysts, 2021, 11(5), p. 547. https://doi.org/10.3390/catal11050547; Leijiao Ge. et al. A review of hydrogen generation, storage, and applications in power system //journal of Energy Storage, 2024, 75, 109307, https://doi.org/10.1016/j.est.2023.109307; Diabate M., Vriend T., Krishnamoorthy H. S., Shi J. Hydrogen and Battery – Based Energy Storage System (ESS) for Future DC Microgrids // IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2022, pp. 1-6. https://doi.org/10.1109/PEDES56012.2022.10080550; Wen T. et al. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm GridConnection // in IEEE Access, 2020, 8, pp. 79347-79356. https://doi.org/10.1109/ACCESS.2020.2990581; Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications // International journal of hydrogen energy, 2013, 38 (5), 2039-2061. https://doi.org/10.1016/j.ijhydene.2012.12.010; Susan S., Keller J. Commercial potential for renewable hydrogen in California // International journal of hydrogen energy, 2017, 42(19), 13321-13328. https://doi.org/10.1016/j.ijhydene.2017.01.005; Ufa R. A., Rudnik V. E., Malkova Y. Y., Bay Y. D., Kosmynina N. M. Impact of renewable generation unit on stability of power systems // International Journal of Hydrogen Energy, 2022, 47(46), 19947-19954. https://doi.org/10.1016/j.ijhydene.2022.04.141; Ufa R. A., Vasilev A. S., Gusev A. L., Pankratov A. V., Malkova Y. Y., Gusev A. S. Analysis of the influence of the current-voltage characteristics of the voltage rectifiers on the static characteristics of hydrogen electrolyzer load // International Journal of Hydrogen Energy, 2021, 46(68), 33670-33678. https://doi.org/10.1016/j.ijhydene.2021.07.183; Makaryan I. A., Efimov O. N., Gusev A. L. State-of-market and perspectives on development of lithium-ion batteries // International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2013, 06/1(127), 100-115.; Shi Z., Wang W., Huang Y., Li P., Dong L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control // CSEE Journal of Power and Energy Systems, 2022, 8(1), pp. 95-104. https://doi.org/10.17775/CSEEJPES.2019.01470; Xuewei S et al. Research on Energy Storage Configuration Method Based on Wind and Solar Volatility // 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 2020, pp. 464468. https://doi.org/10.1109/ICPES51309.2020.9349645; Li X. et al. Cooperative Dispatch of Distributed Energy Storage in Distribution Network With PV Generation Systems // IEEE Transactions on Applied Superconductivity, 2021, 31(8), pp. 1-4. https://doi.org/10.1109/TASC.2021.3117750; Liu X. et al. Microgrid Energy Management with Energy Storage Systems: A Review // CSEE Journal of Power and Energy Systems, 2023, 9(2), pp. 483-504. https://doi.org/10.17775/CSEEJPES.2022.04290; Naseri N. et al. Solar Photovoltaic Energy Storage as Hydrogen via PEM Fuel Cell for Later Conversion Back to Electricity // IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 4549-4554, doi: https://doi.org/10.1109/IECON.2019.8927094; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), PP. 17285-17312 0360, https://doi.org/10.1016/j.ijhydene.2022.03.208; Razzhivin I. A., Suvorov A. A., Ufa R. A., Andreev M. V., Askarov A. B. The energy storage mathematical models for simulation and comprehensive analysis of power system dynamics: A review. Part II // International Journal of Hydrogen Energy, 2023, 48(15), рр. 6034-6055, https://doi.org/10.1016/j.ijhydene.2022.11.102; Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), 2022, рр. 17285-17312, https://doi.org/10.1016/j.ijhydene.2022.03.208; Diaz I. U., de Queiróz Lamas, W., Lotero R. C. Development of an optimization model for the feasibility analysis of hydrogen application as energy storage system in microgrids // International Journal of Hydrogen Energy, 2023, 48 (43), рр. 16159-16175, https://doi.org/10.1016/j.ijhydene.2023.01.128; Tawalbeh M., Farooq A., Martis R., AlOthman A. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications // International Journal of Hydrogen Energy, 2023, https://doi.org/10.1016/j.ijhydene.2023.06.264; S. Fukaume, Y. Nagasaki, M. Tsuda. Stable power supply of an independent power source for a remote island using a Hybrid Energy Storage System composed of electric and hydrogen energy storage systems // International Journal of Hydrogen Energy, 2022, 47 (29), рр. 13887-13899, https://doi.org/10.1016/j.ijhydene.2022.02.142; N. Shamarova, K.Suslov, P. Ilyushin, I. Shushpanov. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation // Energies 2022, 15, 6967. https://doi.org/10.3390/en15196967; Zhang Z. et. Continuous operation in an electric and hydrogen hybrid energy storage system for renewable power generation and autonomous emergency power supply // International Journal of Hydrogen Energy, 2019, 44 (41), рр. 23384-23395, https://doi.org/10.1016/j.ijhydene.2019.07.028; Armghan H., Xu Y., Sun H., Ali N., Liu J. Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid // Applied Energy, 2024, Volume 355, https://doi.org/10.1016/j.apenergy.2023.122149; WECC REMTF. Solar Photovoltaic Power Plant Modeling and Validation Guideline MVWG. [Электронный ресурс]. URL: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf (дата обращения: 10.02.2023); Clark K., Miller N. W., Walling R. Modeling of GE Solar Photovoltaic Plants for Grid Studies. General Electr. Int. Rep. Ver. 1.1. 2010.; Pourbeik P. et al. Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies // IEEE Transactions on Energy Conversion, 2017, 32(3), 2017, pp. 1108-1116, https://doi.org/10.1109/PESGM.2018.8585944; Machlev R. et al. Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks // Energies, 2020, 13, https://doi.org/3191.10.3390/en13123191; Xu X. K., Bishop M., Oikarinen D. G., Hao C. Application and modeling of battery energy storage in power systems // CSEE Journal of Power and Energy Systems, 2016, 2(3), pp. 82-90, https://doi.org/10.17775/CSEEJPES.2016.00039.; Ruban N., Rudnik V., Razzhivin I., Kievec A. A hybrid model of photovoltaic power stations for model ling tasks of large power systems. EEA Electrotehnica, Electronica, Automatica, 2021, 69, pp. 43-49, https://doi. org/10.46904/eea.21.69.4.1108005; Ufa R., Vasiliev A., Ruban N., Rudnik V. Hybrid real-time simulator for setting of automatic secondary frequency and active power control // EEA Electrotehnica, Electronica, Automatica, 2020, 68(2), pp. 41-48.; Sun Yin et al. The Impact of PLL Dynamics on the Low Inertia Power Grid: A Case Study of Bonaire Island Power System // Power Electronics in Renewable Energy Systems, 2019, 12(7). https://doi.org/10.3390/en12071259; Huang L., Xin H., Wang Z. Damping LowFrequency Oscillations Through VSC-HVdc Stations Operated as Virtual Synchronous Machine. IEEE Transactions on Power Electronics, 2019, 34(6), pp. 5803-5818, https://doi.org/10.1109/TPEL.2018.2866523; Mohammadpour H. A., Santi E. SSR Damping Controller Design and Optimal Placement in Rotor-Side and Grid-Side Converters of Series-Compensated DFIGBased Wind Farm // IEEE Transactions on Sustainable Energy, 2015, 6(2), pp. 388-399, https://doi.org/10.1109/TSTE.2014.2380782; Wang X. et al. An Active Damper for Stabilizing Power-Electronics-Based AC Systems // IEEE Transactions on Power Electronics, 2014, 29(7), pp. 3318-3329, https://doi.org/10.1109/APEC.2013.6520441; Alawasa K. M., Mohamed Y. A. -R. I. A Simple Approach to Damp SSR in Series-Compensated Systems via Reshaping the Output Admittance of a Nearby VSC-Based System // IEEE Transactions on Industrial Electronics, 2015, 62(5), pp. 2673-2682. https://doi.org/10.1109/TIE.2014.2363622; https://www.isjaee.com/jour/article/view/2432

  12. 12
    Academic Journal

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 67, № 1 (2024); 16-32 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 67, № 1 (2024); 16-32 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2024-67-1

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2347/1899; Об утверждении Положения по нормированию расхода топливно-энергетических ре-сурсов на предприятиях, в учреждениях и организациях государственного производственного объединения «Белэнерго», Инструкции по расчету и обоснованию нормативов расхода электроэнергии на ее передачу по электрическим сетям [Электронный ресурс]: постановление Министерства энергетики Республики Беларусь от 16.12.2013 № 48 (в ред. пост. от 05.07.2017 № 23). Режим доступа: https://energodoc.by/document/view?id=3068.; Peek, F. W. Dielectric Phenomena in High Voltage Engineering / F. W. Peek. New York, NY, USA:McGraw-Hill Book Company, 1920.; HVDC Corona Current Characteristics and Audible Noise During Wet Weather Transitions / S. Hedtke [et al.] // IEEE Transactions on Power Delivery. 2020. Vol. 35, No 2. P. 1038–1047. https://doi.org/10.1109/tpwrd.2019.2936285.; Anguan, W. Line loss prediction and loss reduction plan for power grids / W. Anguan, N. Baoshan. John Wiley & Sons, Ltd, 2016. 361 p. https://doi.org/10.1002/9781118867273.ch13.; Кононов, Ю. Г. Методы определения потерь мощности и энергии на корону в действующих ВЛ / Ю. Г. Кононов, В. А. Костюшко О. С. Рыбасова // Энергия единой сети. 2017. № 6 (35). С. 22–40.; Костюшко, В. А. Pасчет потерь мощности на корону на воздушных линиях электропередачи переменного тока / В. А. Костюшко // Энергия единой сети. 2016. № 3 (26). С. 40–47.; Maruvada, P. S. Corona Performance of High-Voltage Transmission Lines / P. S. Maruvada. Baldock, UK:Research Studies Press, 2000. 310 p.; Kononov, Y. The Reactive Corona Effect Investigation Based on PMU Measurements in a Real 500 kV TL / Y. Kononov, A. Diachenko // 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022. Р. 1–3, doi:10.1109/ICECET55527.2022.9872716.; Matthews, J. C. The effect of weather on corona ion emission from AC high voltage power lines / J. C. Matthews // Atmospheric Research. 2012. Vol. 113. Р. 68–79. https://doi.org/10.1016/j.atmosres.2012.03.016.; Li, Q. Calculating the Surface Potential Gradient of Overhead Line Conductors / Q. Li, S. M. Rowland, R. Shuttleworth // IEEE Transactions on Power Delivery. 2015. Vol. 30, No 1. P. 43–52. https://doi.org/10.1109/tpwrd.2014.2325597.; Filed and Corona Effect [Electronic Resource]. Mode of access: https://www.pscad.com/software/face/overview. Date of access: 19.11.2023.; Руководящие указания по учету потерь на корону и помех от короны при выборе проводов воздушных линий электропередачи переменного тока 330–750 кВ и постоянного тока 800–1150 кВ. М.: СЦНТИ, 1975.; Sekatski, D. A. Comparative Analysis of Active Power Losses Per Corona of 330 kV Overhead Lines / D. A. Sekatski, A. I. Khalyasmaa, N. A. Papkova // 2023 Belarusian-Ural-Siberian Smart Energy Conference (BUSSEC). Ekaterinburg, 2023. Р. 24–27. https://doi.org/10.1109/bussec59406.2023.10296425.; Оперативное прогнозирование скорости ветра для автономной энергетической установки тяговой железнодорожной подстанции / П. B. Матренин [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. 66, № 1. С. 18–29. https://doi.org/10.21122/1029-7448-2023-66-1-18-29.; Расписание погоды [Электронный ресурс]. Режим доступа: https://rp5.by/ Дата доступа: 19.11.2023.; Секацкий, Д. А. Учет атмосферной составляющей в задаче расчета потерь мощности и электроэнрегии в линиях электропередачи на примере годовых погодных данных Минска / Д. А. Секацкий // Энергия и Менеджмент. 2016. № 5. С. 25–29.; Баламетов, А. Б. Mоделирование режимов электрических сетей на основе уравнений установившегося режима и теплового баланса / А. Б. Баламетов, Э. Д. Халилов // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2020. Т. 63, № 1. С. 66–80. https://doi.org/10.21122/1029-7448-2020-63-1-66-80.; Костюшко, В. А. Анализ расчетных и экспериментальных оценок потерь мощности на корону на воздушных линиях электропередач переменного тока / В. А. Костюшко. М.: НТФ «Энергопрогресс», 2011. 84 с.; Повышение точности прогнозирования генерации фотоэлектрических станций на основе алгоритмов k-средних и k-ближайших соседей / П. B. Матренин [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. Т. 66, № 4. С. 305–321. https://doi.org/10.21122/1029-7448-2023-66-4-305-321.; https://energy.bntu.by/jour/article/view/2347

  13. 13
    Academic Journal

    Contributors: Данная работа частично выполнена в рамках совместного научного проекта Белорусского республиканского фонда фундаментальных исследований и Министерства инновационного развития Республики Узбекистан «БРФФИ–МИРРУ-2022» (Договор Т22УЗБ-052).

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 67, № 2 (2024); 173-188 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 67, № 2 (2024); 173-188 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2024-67-2

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2367/1908; Future Distric Theating Systems and Technologies: On the Role of Smart Energy Systems and 4th Generation District Heating / H. Lund [et al.] // Energy. 2018. Vol. 165, Part A. P. 614–619. https://doi.org/10.1016/j.energy.2018.09.115.; The Status of 4th Generation District Heating: Research and Results / H. Lund [et al.] // Energy. 2018. Vol. 164. P. 147–159. https://doi.org/10.1016/j.energy.2018.08.206.; Perspectives on Fourth and Fifth Generation District Heating / H. Lund [et al.] // Energy. 2021. Vol. 227. P. 120520. https://doi.org/10.1016/j.energy.2021.120520.; Modelling of Waste Heat Integration Into an Existing District Heating Network Operating at Different Supply Temperatures / J. Stock [et al]. Smart Energy. 2023. Vol. 10. P. 100104. https://doi.org/10.1016/j.segy.2023.100104.; Latõšov, E. CO2 Emission Intensity of the Estonian DH sector / E. Latõšov, S. Umbleja, A. Volkova // Smart Energy. 2022. Vol. 6. P. 100070. https://doi.org/10.1016/j.segy.2022.100070.; Vocabulary for the Fourth Generation of District Heating and Cooling / M. Sulzer [et al.] // Smart Energy. 2021. Vol. 1. P. 100003. https://doi.org/10.1016/j.segy.2021.100003.; Performance Analysis of a Hybrid District Heating System: a Case Study of a Small Town in Croatia / R. Mikulandric [et al.] // Journal of Sustainable Development of Energy, Water and Environment Systems. 2015. Vol. 3, Iss. 3. P. 282–302. https://doi.org/10.13044/j.sdewes.2015.03.0022.; Rämä, M. Introduction of New Decentralised Renewable Heat Supply in an Existing District Heating System / M. Rämä, M. Wahlroos // Energy. 2018. Vol. 154. P. 68–79. https://doi.org/10.1016/j.energy.2018.03.105.; Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites / M. Schindler [et al.] // Energies. 2023. Vol. 16. P. 2120. https://doi.org/10.3390/en16052120.; Reiter, P. BIG Solar Graz: Solar District Heating in Graz – 500,000 m2 for 20% Solar Fraction / P. Reiter, H. Poier, C. Holter // Energy Procedia. 2016. Vol. 91. P. 578–584. https://doi.org/10.1016/j.egypro.2016.06.204.; Теплоснабжение дома от теплонасосной системы, использующей возобновляемые источники энергии / В. Харченко [и др.] // Научные труды Литовской академии прикладных наук. 2012. № 7. С. 45–52.; Domestic Heating With Compact Combination Hybrids (Gas Boiler and Heat Pump): A Simple English Stock Model of Different Heating System Scenarios / G. Bennett // Building Services Engineering Research and Technology. 2021. Vol. 43, Nо 2. P. 143–159. https://doi.org/10.1177/01436244211040449.; EnergyPLAN – Advanced analysis of Smart Energy Systems, Smart / H. Lund [et al.] // Smart Energy. 2021. Vol. 1. P. 100007. https://doi.org/10.1016/j.segy.2021.100007.; Role of Sustainable Heat Sources in Transition Towards Fourth Generation District Heating – A review / A. M. Jodeiri [et al.] // Renewable and Sustainable Energy Reviews. 2022. Vol. 158. P. 112156. https://doi.org/10.1016/j.rser.2022.112156.; Talarek, K. Challenges for District Heating in Poland / K. Talarek, A. Knitter-Piątkowska, T. Garbowski // Discover Energy. 2023. Vol. 3, Nо 5. https://doi.org/10.1007/s43937-023-00019-z.; th Generation District Heating (4GDH): Integrating Smart Thermal Grids Into Future Sustainable Energy Systems / H. Lund [et al.] // Energy. 2014. Vol. 68, P. 1–11. https://doi.org/10.1016/j.energy.2014.02.089.; Large-Scale Solar Thermal Systems in Leading Countries: A Review and Comparative Study of Denmark, China, Germany and Austria / D. Tschopp [et al.] // Applied Energy. 2020. Vol. 270. P. 114997. https://doi.org/10.1016/j.apenergy.2020.114997.; Fifth Generation District Heating and Cooling: A Comprehensive Survey / L. Minh Dang [et al.] // Energy Reports. 2024. Vol. 11. P. 1723–1741. https://doi.org/10.1016/j.egyr.2024.01.037.; Overview of Solar Photovoltaic Applications for District Heating and Cooling / S. Sukumaran, J. Laht, A. Volkova // Environmental and Climate Technologies. 2023. Vol. 27, Nо 1. P. 964–979. https://doi.org/10.2478/rtuect-2023-0070.; Kubiński, K. Dynamic Model of Solar Heating Plant with Seasonal Thermal Energy Storage / K. Kubiński, Ł. Szabłowski // Renewable Energy. 2020. Vol. 145. P. 2025–2033. https://doi.org/10.1016/j.renene.2019.07.120.; Comprehensive Analysis of hot Water Tank Sizing for a Hybrid Solar-Biomass District Heating and cooling / Juan José Roncal-Casano [et al.] // Results in Engineering. 2023. Vol. 18. P. 101160. https://doi.org/10.1016/j.rineng.2023.101160.; Gudmundsson, O. Source-to-sink Efficiency of Blue and Green District Heating and Hydrogen-based Heat Supply Systems / O. Gudmundsson, J. E. Thorsen // Smart Energy. 2022. Vol. 6. P. 100071. https://doi.org/10.1016/j.segy.2022.100071.; Седнин, В. А. Анализ эффективности технологии производства водорода на мини-ТЭЦ на местных видах топлива термохимическим методом / В. А. Седнин, Р. С. Игнатович // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023. T. 66, № 4. P. 354–373. https://doi.org/10.21122/1029-7448-2023-66-4-354-373.; Pesola, A. Cost-Optimization Model to Design and Operate Hybrid Heating Systems – Case Study of District Heating System with Decentralized Heat Pumps in Finland / A. Pesola // Energy. 2023. Vol. 281. P. 128241. https://doi.org/10.1016/j.energy.2023.128241.; Tosatto, A. Simulation-Based Performance Evaluation of Large-Scale Thermal Energy Storage Coupled with Heat Pump in District Heating Systems / A. Tosatto, A. Dahash, F. Ochs // Journal of Energy Storage. 2023. Vol. 61. P. 106721. https://doi.org/10.1016/j.est.2023.106721.; Werner, S. Network Configurations for Implemented Low-Temperature District Heating / S. Werner // Energy. 2022. Vol. 254, Part B. P. 124091. https://doi.org/10.1016/j.energy.2022.124091.; Cascade Sub-Low Temperature District Heating Networks in Existing District Heating Systems / A. Volkova [et al.] // Smart Energy. 2022. Vol. 5. P. 100064. https://doi.org/10.1016/j.segy.2022.100064.; A Review of Low-Temperature Sub-Networks in Existing District Heating Networks: Examples, Conditions, Replicability / S. Puschnigg [et al.] // Energy Reports. 2021. Vol. 7, Suppl. 4. P. 18–26. https://doi.org/10.1016/j.egyr.2021.09.044.; Современное состояние, тенденции и задачи интеллектуализации систем теплоснабжения (обзор) / Н. Н. Новицкий [и др.] // Теплоэнергетика. 2022. № 5. С. 65–83. https://doi.org/10.1134/S0040363622040051.; Sednin, A. V. Approach to Data Processing for the Smart District Heating System / A. V. Sednin, A. V. Zherelo // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2022. Т. 65, No 3. С. 240–249. https://doi.org/10.21122/1029-7448-2022-65-3-240-249.; Fault and Anomaly Detection in District Heating Substations: A Survey on Methodology and Data sets / M. Neumayer [et al.] // Energy. 2023. Vol. 276. 127569. https://doi.org/10.1016/j.energy.2023.127569.; Intelligent Approaches to Fault Detection and Diagnosis in District Heating: Current Trends, Challenges, and Opportunities / J. van Dreven [et al.] // Electronics. 2023. Vol. 12, Nо 6. P. 1448. https://doi.org/10.3390/electronics12061448.; Седнин, А. В. Энергоэффективность применения гибридных тепловых пунктов в условиях интеграции электрических и тепловых сетей городских микрорайонов. Ч. 1: Обоснование целесообразности применения гибридных тепловых пунктов / А. В. Седнин, М. И. Позднякова // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2023. Т. 66, № 6. С. 552–566. https://doi.org/10.21122/1029-7448-2023-66-6-552-566.; https://energy.bntu.by/jour/article/view/2367

  14. 14
    Academic Journal

    Source: Electronics and Control Systems; Vol. 3 No. 69 (2021); 43-47
    Электроника и системы управления; Том 3 № 69 (2021); 43-47
    Електроніка та системи управління; Том 3 № 69 (2021); 43-47

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20