-
1Academic Journal
Authors: Пузакова, Дарья Владимировна, orcid:0009-0003-3442-, Спирина, Мария Александровна, Сергачев, Андрей Валерьевич, Трофимов, Александр Владимирович, Власова, Татьяна Ивановна
Subject Terms: боль, хроническая боль, биомаркеры, инструментальная диагностика боли, электрофизиология боли
Relation: https://zenodo.org/records/17185898; oai:zenodo.org:17185898
-
2Academic Journal
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2S (2024); 22-36 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2S (2024); 22-36 ; 0137-0952
Subject Terms: электрофизиология сердца, cation-chloride cotransporters, chloride-bicarbonate exchanger, chloride transport, chloride current, cardiac electrophysiology, катион-хлорные котранспортеры, хлор-бикарбонатный обменник, хлорный транспорт, хлорные токи
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1378/679; https://vestnik-bio-msu.elpub.ru/jour/article/downloadSuppFile/1378/1025; Duran C., Thompson C.H., Xiao Q., Hartzell H.C. Chloride channels: often enigmatic, rarely predictable. Annu. Rev. Physiol. 2009;72:95–121.; Miller A.N., Vaisey G., Long S.B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin. Elife. 2019;8: e43231.; Li B., Hoel C.M., Brohawn S.G. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization. Nat. Commun. 2021;12(1):6913.; Okada Y., Sabirov R.Z., Merzlyak P.G., Numata T., Sato-Numata K. Properties, structures, and physiological roles of three types of anion channels molecularly identified in the 2010’s. Front. Physiol. 2021;12: 805148.; Locher K.P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 2016;23(6):487–493.; Csanády L., Vergani P., Gadsby D.C. Structure, gating, and regulation of the CFTR anion channel. Physiol. Rev. 2019;99(1):707–738.; Tabcharani J.A., Rommens J.M., Hou Y.X., Chang X.B., Tsui L.C., Riordan J.R., Hanrahan J.W. Multiion pore behaviour in the CFTR chloride channel. Nature. 1993;366(6450):79–82.; Berger H.A., Anderson M.P., Gregory R.J., Thompson S., Howard P.W., Maurer R.A., Mulligan R., Smith A.E., Welsh M.J. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Invest. 1991;88(4):1422–1431.; Anderson M.P., Berger H.A., Rich D.P., Gregory R.J., Smith A.E., Welsh M.J. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell. 1991;67(4):775–784.; Jia Y., Mathews C.J., Hanrahan J.W. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem. 1997;272(8):4978–4984.; Hallows K.R., Raghuram V., Kemp B.E., Witters L.A., Foskett J.K. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J. Clin. Invest. 2000;105(12):1711–1721.; Billet A., Jia Y., Jensen T., Riordan J.R., Hanrahan J.W. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. FASEB J. 2015;29(9):3945–3956.; Luo J., Pato M.D., Riordan J.R., Hanrahan J.W. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. Am. J. Physiol. Cell Physiol. 1998;274(5):C1397–C1410.; Uramoto H., Takahashi N., Dutta A.K., Sabirov R.Z., Ando-Akatsuka Y., Morishima S., Okada Y. Ischemia-induced enhancement of CFTR expression on the plasma membrane in neonatal rat ventricular myocytes. Jpn. J. Physiol. 2003;53(5):357–365.; Jentsch T.J., Pusch M. CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol. Rev. 2018;98(3):1493–1590.; Okamoto Y., Nagasawa Y., Obara Y., Ishii K., Takagi D., Ono K. Molecular identification of HSPA8 as an accessory protein of a hyperpolarization-activated chloride channel from rat pulmonary vein cardiomyocytes. J. Biol. Chem. 2019;294(44):16049–16061.; De Jesús-Pérez J.J., Castro-Chong A., Shieh R.C., Hernández-Carballo C.Y. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. J. Gen. Physiol. 2016;147:576–613.; Weinreich F., Jentsch T.J. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 2001;276(4):2347–2353.; Arreola J., Begenisich T., Melvin J.E. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons. J. Physiol. 2002;541(1):103–112.; Palmada M., Dieter M., Boehmer C., Waldegger S., Lang F. Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochem. Biophys. Res. Commun. 2004;321(4):1001–1006.; Park K., Begenisich T., Melvin J.E. Protein kinase A activation phosphorylates the rat ClC-2 Cl- channel but does not change activity. J. Membr. Biol. 2001;182(1):31–37.; Caputo A., Caci E., Ferrera L., Pedemonte N., Barsanti C., Sondo E., Pfeffer U., Ravazzolo R., ZegarraMoran O., Galietta L.J.V. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–594.; Yannoukakos D., Stuart-Tilley A., Fernandez H.A., Fey P., Duyk G., Alper S.L. Molecular cloning, expression, and chromosomal localization of two isoforms of the AE3 anion exchanger from human heart. Circ. Res. 1994;75(4):603–614.; Dang S., Feng S., Tien J., et al. Cryo-EM structures of the TMEM16A calciumactivated chloride channel. Nature. 2017;552(7685):426–429.; Paulino C., Kalienkova V., Lam A.K.M., Neldner Y., Dutzler R. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature. 2017;552(7685):421–425.; Paulino C., Neldner Y., Lam A.K.M., Kalienkova V., Brunner J.D., Schenck S., Dutzler R. Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. eLife. 2017;6:e26232.; Hartzell H.C., Yu K., Xiao Q., Chien L.T., Qu Z. Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J. Physiol. 2009;587(Pt. 10):2127–2139.; Horváth B., Váczi K., Hegyi B., Gönczi M., Dienes B., Kistamás K., Bányász T., Magyar J. Sarcolemmal Ca2+-entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl- current in canine ventricular myocytes. J. Mol. Cell Cardiol. 2016;97:125–139.; Sipido K.R., Callewaert G., Carmeliet E. [Ca2+]i transients and [Ca2+]i -dependent chloride current in single Purkinje cells from rabbit heart. J. Physiol. 1993;468:641–667.; Li G.R., Sun H., To J., Tse H.F., Lau C.P. Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J. Mol. Cell Cardiol. 2004;36(4):495–504.; El Chemaly A., Norez C., Magaud C., Bescond J., Chatelier A., Fares N., Findlay I., Jayle C., Becq F., Faivre J.F., Bois P. ANO1 contributes to Angiotensin-IIactivated Ca2+-dependent Cl- current in human atrial fibroblasts. J. Mol. Cell Cardiol. 2014;68:12–19.; Berg J., Yang H., Jan L.Y. Ca2+-activated Clchannels at a glance. J. Cell Sci. 2012;125(Pt. 6):1367–1371.; Pedemonte N., Galietta L.J.V. Structure and function of tmem16 proteins (anoctamins). Physiol. Rev. 2014;94(2):419–459.; Kuruma A., Hartzell H.C. Bimodal control of a Ca2+-activated Cl- channel by different Ca2+ signals. J. Gen. Physiol. 2000;115(1):59–80.; Yang Y.D., Cho H., Koo J.Y., Tak M.H., Cho Y., Shim W.S., Park S.P., Lee J., Lee B., Kim B.M., Raouf R., Shin Y.K., Oh U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–1215.; Brunner J.D., Lim N.K., Schenck S., Duerst A., Dutzler R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature. 2014;516(7530):207–212.; Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev. 2010;62(4):632–667.; Ma K., Wang H., Yu J., Wei M., Xiao Q. New Insights on the regulation of Ca2+-activated chloride channel TMEM16A. J. Cell Physiol. 2017;232(4):707–716.; Chun H., Cho H., Choi J., Lee J., Kim S.M., Kim H., Oh U. Protons inhibit anoctamin 1 by competing with calcium. Cell Calcium. 2015;58(5):431–441.; Ferrera L., Caputo A., Galietta L.J.V. TMEM16A protein: A new identity for Ca2+-dependent Cl- channels. Physol. 2010;25(6):357–363.; Pifferi S., Dibattista M., Menini A. TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch. Eur. J. Physiol. 2009;458(6):1023–1038.; Jung J., Nam J.H., Park H.W., Oh U., Yoon J.H., Lee M.G. Dynamic modulation of ANO1 /TMEM16A HCO3 - permeability by Ca2+/calmodulin. Proc. Natl. Acad. Sci. U.S.A. 2013;110(1):360–365.; Vocke K., Dauner K., Hahn A., Ulbrich A., Broecker J., Keller S., Frings S., Möhrlen F. Calmodulindependent activation and inactivation of anoctamin calcium-gated chloride channels. J. Gen. Physiol. 2013;142(4):381–404.; Cipriani G., Serboiu C.S., Gherghiceanu M., Simonetta Faussone-Pellegrini M., Vannucchi M.G. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1-/- mouse ileum. J. Cell Mol. Med. 2011;15(11):2411–2420.; Pritchard H., Leblanc N., Albert A.P., Greenwood I.A. Inhibitory role of phosphatidylinositol 4,5-bisphosphate on TMEM16A-encoded calcium-activated chloride channels in rat pulmonary artery. Br. J. Pharmacol. 2014;171(18):4311–4321.; Bulley S., Neeb Z.P., Burris S.K., Bannister J.P., Thomas-Gatewood C.M., Jangsangthong W., Jaggar J.H. TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 2012;111(8):1027–1036.; Balderas E., Ateaga-Tlecuitl R., Rivera M., Gomora J.C., Darszon A. Niflumic acid blocks native and recombinant T-type channels. J. Cell Physiol. 2012;227(6):2542–2555.; De La Fuente R., Namkung W., Mills A., Verkman A.S. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol. Pharmacol. 2008;73(3):758–768.; Huang F., Zhang H., Wu M., et al. Calciumactivated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. U.S.A. 2012;109 (40):16354–16359.; Oh S.J., Hwang S.J., Jung J., Yu K., Kim J., Choi J.Y., Hartzell H.C., Roh E.J., Lee C.J. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1. Mol. Pharmacol. 2013;84(5):726–735.; Ghouli M.R., Fiacco T.A., Binder D.K. Structure-function relationships of the LRRC8 subunits and subdomains of the volume-regulated anion channel (VRAC). Front. Cell Neurosci. 2022;16:962714.; Lutter D., Ullrich F., Lueck J.C., Kempa S., Jentsch T.J. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J. Cell Sci. 2017;130(6):1122–1133.; Jentsch T.J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat. Rev. Mol. Cell Biol. 2016;17(5):293–307.; Deneka D., Sawicka M., Lam A.K.M, Paulino C., Dutzler R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature. 2018;558(7709):254–259.; Kasuya G., Nakane T., Yokoyama T., Jia Y, Inoue M., Watanabe K., Nakamura R., Nishizawa T., Kusakizako T., Tsutsumi A., Yanagisawa H., Dohmae N., Hattori M., Ichijo H., Yan Z., Kikkawa M., Shirouzu M., Ishitani R., Nureki O. Cryo-EM structures of the human volumeregulated anion channel LRRC8. Nat. Struct. Mol. Biol. 2018;25(9):797–804.; Qiu Z., Dubin A.E., Mathur J., Tu B., Reddy K., Miraglia L.J., Reinhardt J., Orth A.P., Patapoutian A. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157(2):447–458.; Voss F.K., Ullrich F., Munch J., Lazarow K., Lutte D., Mah N., Andrade-Navarro M.A., von Kries J.P., Stauber T., Jentsch T.J. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344 (6184):634–638.; Okada T., Islam M.R., Tsiferova N.A., Okada Y., Sabirov R.Z. Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR). Channels. 2017;11(2):109–120.; Pervaiz S., Kopp A., von Kleist L., Stauber T. Absolute protein amounts and relative abundance of volume-regulated anion channel (VRAC) LRRC8 subunits in cells and tissues revealed by quantitative immunoblotting. Int. J. Mol. Sci. 2019;20(23):5879; Egorov Y.V., Lang D., Tyan L., Turner D., Lim E., Piro Z.D., Hernandez J.J., Lodin R., Wang R., Schmuck E.G., Raval A.N., Ralphe C.J., Kamp T.J., Rosenshtraukh L.V., Glukhov A.V. Caveolae-mediated activation of mechanosensitive chloride channels in pulmonary veins triggers atrial arrhythmogenesis. J. Am. Heart Assoc. 2019;8(20):e012748.; Centeio R., Ousingsawat J., Schreiber R., Kunzelmann K. Ca2+ dependence of volume-regulated VRAC/LRRC8 and TMEM16A Cl- channels. Front. Cell Dev. Biol. 2020;8:596879.; Liu Y., Zhang H., Men H., Du Y., Xiao Z., Zhang F., Huang D., Du X., Gamper N., Zhang H. Volume-regulated Cl- current: Contributions of distinct Clchannels and localized Ca2+ signals. Am. J. Physiol. Cell Physiol. 2019;317(3):C466–C480.; Nilius B., Eggermont J., Voets T., Buyse G., Manolopoulos V., Droogmans G. Properties of volumeregulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 1997;68(1):69–119.; Rudkouskaya A., Chernoguz A., Haskew-Layton R.E., Mongin A.A. Two conventional protein kinase C isoforms, α and βI, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J. Neurochem. 2008;105(6):2260–2270.; Fisher S.K., Cheema T.A., Foster D.J., Heacock A.M. Volume-dependent osmolyte efflux from neural tissues: Regulation by G-protein-coupled receptors. J. Neurochem. 2008;106(5):1998–2014.; Nilius B., Voets T., Prenen J., Barth H., Aktories K., Kaibuchi K., Droogmans G., Eggermont J. Role of Rho and Rho kinase in the activation of volumeregulated anion channels in bovine endothelial cells. J. Physiol. 1999;516(Pt. 1):67–74.; Modi A.D., Khan A.N., Cheng W.Y.E., Modi D.M. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function. Acta Histochem. 2023;125(4):152045.; Wang H.S. Critical role of bicarbonate and bicarbonate transporters in cardiac function. World J. Biol. Chem. 2014;5(3):334.; Meor Azlan N.F., Zhang J. Role of the cationchloride-cotransporters in cardiovascular disease. Cells. 2020;9(10):2293.; Hartmann A.M., Nothwang H.G. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Front. Cell Neurosci. 2015;8:470.; Nan J., Yuan Y., Yang X., Shan Z., Liu H., Wei F., Zhang W., Zhang Y. Cryo-EM structure of the human sodium-chloride cotransporter NCC. Sci. Adv. 2022;8(45):eadd7176.; Lang F., Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin. Investig. Drugs. 2013;22(6):701–714.; Orlov S.N., Tremblay J., Hamet P. Cell volume in vascular smooth muscle is regulated by bumetanide-sensitive ion transport. Am. J. Physiol. Cell Physiol. 1996;270(5 Pt. 1):C1388– C1397.; Smith J.B., Smith L. Na+/K+/Cl- cotransport in cultured vascular smooth muscle cells: Stimulation by angiotensin II and calcium ionophores, inhibition by cyclic AMP and calmodulin antagonists. J. Membr. Biol. 1987;99(1):51–63.; Adragna N.C., White R.E., Orlov S.N., Lauf P.K. K-Cl cotransport in vascular smooth muscle and erythrocytes: Possible implication in vasodilation. Am. J. Physiol. Cell Physiol. 2000;278(2):C381–C390.; Kahle K.T., Rinehart J., Ring A., Gimenez I., Gamba G., Hebert S.C., Lifton R.P. WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology (Bethesda). 2006;21:326–335.; Orlov S.N., Koltsova S.V., Kapilevich L.V., Dulin N.O., Gusakova S.V. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension. Biochemistry (Mosc.). 2014;79(13):1546–1561.; Mount D.B., Mercado A., Song L., Xu J., George A.L., Jr., Delpire E., Gamba G. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J. Biol. Chem. 1999;274(23):16355–16362.; Lytle C., McManus T. Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am. J. Physiol Cell Physiol. 2002;283(5):C1422–C1431.; Delpire E. Advances in the development of novel compounds targeting cation-chloride cotransporter physiology. Am. J. Physiol. Cell Physiol. 2021;320(3):C324–C340.; Gagnon M., Bergeron M.J., Lavertu G., et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 2013;19(11):1524–1528.; Garneau A.P., Marcoux A.A., Slimani S., Tremblay L.E., Frenette-Cotton R., Mac-Way F., Isenring P. Physiological roles and molecular mechanisms of K+ – Cl- cotransport in the mammalian kidney and cardiovascular system: where are we? J. Physiol. 2019;597(6):1451–1465.; Uhlen M., Uhlén M., Fagerberg L., et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.; Karlsson M., Zhang C., Méar L., et al. A single– cell type transcriptomics map of human tissues. Sci. Adv. 2021;7(31):eabh2169.; Litviňuková M., Talavera-López C., Maatz H., et al. Cells of the adult human heart. Nature. 2020;588(7838):466–472.; Ludwig A., Rivera C., Uvarov P. A noninvasive optical approach for assessing chloride extrusion activity of the K-Cl cotransporter KCC2 in neuronal cells. BMC Neurosci. 2017;18(1):23.; Garneau A.P., Marcoux A.A., Noël M., FrenetteCotton R., Drolet M.C., Couet J., Larivière R., Isenring P. Ablation of potassium-chloride cotransporter type 3 (Kcc3) in mouse causes multiple cardiovascular defects and isosmotic polyuria. PLoS One. 2016;11(5):e0154398.; Alvarez B.V., Kieller D.M., Quon A.L., Markovich D., Casey J.R. Slc26a6: A cardiac chloride-hydroxyl exchanger and predominant chloride-bicarbonate exchanger of the mouse heart. J. Physiol. 2004;561(Pt. 3):721–734.; Bonar P.T., Casey J.R. Plasma membrane Cl- / HCO3- exchangers: Structure, mechanism and physiology. Channels. 2008;2(5):337–345.; Kudrycki K.E., Newman P.R., Shull G.E. cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl- /HCO3 - exchanger. J. Biol. Chem. 1990;265(1):462–471.; Alvarez B.V., Kieller D.M., Quon A.L., Robertson M., Casey J.R. Cardiac hypertrophy in anion exchanger 1-null mutant mice with severe hemolytic anemia. Am. J. Physiol. Heart Circ. Physiol. 2007;292(3):H1301–H1312.; Lohi H., Lamprecht G., Markovich D., Heil A., Kujala M, Seidler U., Kere J. Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am. J. Physiol. Cell Physiol. 2003;284(3): C769– C779.; Chernova M.N., Jiang L., Friedman D.J., Darman R.B., Lohi H., Kere J., Vandorpe D.H., Alper S.L. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: Differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 2005;280(9):8564–8580.; Cingolani H.E., Chiappe G.E., Ennis I.L., Morgan P.G., Alvarez B.V., Casey J.R., Dulce R.A., Pérez N.G., Camilión de Hurtado M.C. Influence of Na+-Independent Cl- -HCO3 - exchange on the slow force response to myocardial stretch. Circ. Res. 2003;93(11):1082–1088.
-
3Academic Journal
Authors: E. M. Frantsiyants, I. V. Kaplieva, E. A. Sheiko, E. I. Surikova, E. O. Vasileva, I. V. Neskubina, M. A. Gusareva, O. V. Bykadorova, L. K. Trepitaki, N. D. Cheryarina, E. V. Serdyukova, A. A. Vereskunova, Е. М. Франциянц, И. В. Каплиева, Е. А. Шейко, Е. И. Сурикова, Е. О. Васильева, И. В. Нескубина, М. А. Гусарева, О. В. Быкадорова, Л. К. Трепитаки, Н. Д. Черярина, Е. В. Сердюкова, А. А. Верескунова
Contributors: The work was carried out within the framework of planned research work at the expense of federal budget funds allocated for the implementation of the State assignment, Работа выполнена в рамках плановой НИР за счет средств федерального бюджета, выделяемых на выполнение Государственного задания
Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 3 (2024); 156-163 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 3 (2024); 156-163 ; 2713-265X ; 2713-2927
Subject Terms: экспериментальная модель, hyperthyroidism, comorbid pathology, cardiac electrophysiology, electrocardiography, mice, experimental model, гипертиреоз, коморбидная патология, электрофизиология сердца, электрокардиография, мыши
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2437/1005; Gauthier B.R., Sola-García A., Cáliz-Molina M.Á., Lorenzo P.I., Cobo-Vuilleumier N., Capilla-González V. et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260. DOI:10.1111/acel.13260.; Razvi S., Jabbar A., Pingitore A., Danzi S., Biondi B., Klein I. et al. Thyroid hormones and cardiovascular function and diseases. J. Am. Coll. Cardiol. 2018;71(16):1781–1796. DOI:10.1016/j.jacc.2018.02.045.; Чаулин А.М., Григорьева Ю.В. Современные представления о сердечно-сосудистых эффектах гипо- и гипертиреоза. Современные проблемы науки и образование. Сетевое издание. 2021;(6). DOI:10.17513/spno.31202.; Krashin E., Piekiełko-Witkowska A., Ellis M., Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front. Endocrinol. (Lausanne). 2019;10:59. DOI:10.3389/fendo.2019.00059.; Кит О.И., Каплиева И.В., Франциянц Е.М., Трепитаки Л.К., Погорелова Ю.А. Особенности тиреоидного статуса при экспериментальном метастазировании в печень. Экспериментальная и клиническая гастроэнтерология. 2016;(11):53–58. URL: https://www.nogr.org/jour/article/view/324/324 (19.08.2024).; Goemann I.M., Romitti M., Meyer E.L.S., Wajner S.M., Maia A.L. Role of thyroid hormones in the neoplastic process: an overview. Endocr. Relat. Cancer. 2017;24(11):R367–R385. DOI:10.1530/ERC-17-0192.; Reddy V., Taha W., Kundumadam S., Khan M. Atrial fibrillation and hyperthyroidism: A literature review. Indian Heart J. 2017;69(4):545–550. DOI:10.1016/j.ihj.2017.07.004.; Locati E.T., Bagliani G., Padeletti L. Normal ventricular repolarization and QT interval: Ionic background, modifiers, and measurements. Card. Electrophysiol. Clin. 2017;9(3):487–513. DOI:10.1016/j.ccep.2017.05.007.; Овсепян А.А., Панченков Д.Н., Прохорчук Е.Б., Телегин Г.Б., Жигалова Н.А., Голубев Е.П. и др. Моделирование инфаркта миокарда на мышах: методология, мониторинг, патоморфология. Acta Naturae. 2011;3(1):107–115. DOI:10.32607/20758251-2011-3-1-107-115.; Nakamura M., Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018;15(7):387–407. DOI:10.1038/s41569-018-0007-y.; Джуманиязова И.Х., Смирнова О.В. Влияние тиреоидных гормонов на электрические и механические параметры сердца. Физиология человека. 2020;46(5):115–125. DOI:10.31857/S0131164620050045.; Takawale A., Aguilar M., Bouchrit Y., Hiram R. Mechanisms and management of thyroid disease and atrial fibrillation: Impact of atrial electrical remodeling and cardiac fibrosis. Cells. 2022;11(24):4047. DOI:10.3390/cells11244047.; Go M.T., George A.M., Tahsin B., Fogelfeld L. Tachycardia in hyperthyroidism: Not so common. PLoS One. 2022;17(9):e0273724. DOI:10.1371/journal.pone.0273724.; McDermott M.T. Hyperthyroidism. Ann. Intern. Med. 2020;172(7):ITC49– ITC64. DOI:10.7326/AITC202004070.; Davis P.J., Leonard J.L., Lin H.Y., Leinung M., Mousa S.A. Molecular basis of nongenomic actions of thyroid hormone. Vitam. Horm. 2018;106:67–96. DOI:10.1016/bs.vh.2017.06.001.; Meijers W.C., Maglione M., Bakker S.J.L., Oberhuber R., Kieneker L.M., de Jong S. et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138(7):678–691. DOI:10.1161/CIRCULATIONAHA.117.030816.; Awwad L., Aronheim A. Cardiac dysfunction promotes cancer progression via multiple secreted factors. Cancer Res. 2022;82(9):1753–1761. DOI:10.1158/0008-5472.CAN-21-2463.; Avraham S., Abu-Sharki S., Shofti R., Haas T., Korin B., Kalfon R. et al. Early cardiac remodeling promotes tumor growth and metastasis. Circulation. 2020;142(7):670–683. DOI:10.1161/CIRCULATIONAHA.120.046471.; Achlaug L., Awwad L., Langier Goncalves I., Goldenberg T., Aronheim A. Tumor growth ameliorates cardiac dysfunction and suppresses fibrosis in a mouse model for duchenne muscular dystrophy. Int. J. Mol. Sci. 2023;24(16):12595. DOI:10.3390/ijms241612595.; Da Silva I.B., Gomes D.A., Alenina N., Bader M., Dos Santos R.A., Barreto-Chaves M.L.M. Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart Vessels. 2018;33(6):671–681. DOI:10.1007/s00380-017-1101-5.; https://www.sibjcem.ru/jour/article/view/2437
-
4Book
Contributors: Шилина, М. В.
Subject Terms: синапсы, электрофизиология, транспорт веществ, клетка (биол), электромеханическое сопряжение, биоэлектрические потенциалы, мышцы, физиология клетки, биологические мембраны, физиология человека, синаптическая передача, клеточная электрофизиология
File Description: application/pdf
Access URL: https://rep.vsu.by/handle/123456789/30183
-
5Academic Journal
-
6Academic Journal
Authors: I. A. Labetov, G. V. Kovalev, O. V. Volkova, R. R. Shakirova, A. A. Berdichevskaya, D. D. Shkarupa, И. А. Лабетов, Г. В. Ковалев, О. В. Волкова, Р. Р. Шакирова, А. А. Бердичевская, Д. Д. Шкарупа
Contributors: The study was conducted by SPSU Clinic, no other centers were funded., Исследование проводилось КВМТ СПбГУ, финансирования других центров не предусмотрено
Source: Urology Herald; Том 11, № 2 (2023); 65-73 ; Вестник урологии; Том 11, № 2 (2023); 65-73 ; 2308-6424 ; 10.21886/2308-6424-2023-11-2
Subject Terms: электрофизиология, chronic pain, pudendal neuroalgia, prostatic pain syndrome, reflex, electroneuromyography, electrophysiology, нейропатия полового нерва, простатический болевой синдром, элетронейромиография
File Description: application/pdf
Relation: https://www.urovest.ru/jour/article/view/721/467; Doggweiler R, Whitmore KE, Meijlink JM, Drake MJ, Frawley H, Nordling J, Hanno P, Fraser MO, Homma Y, Garrido G, Gomes MJ, Elneil S, van de Merwe JP, Lin ATL, Tomoe H. A standard for terminology in chronic pelvic pain syndromes: A report from the chronic pelvic pain working group of the international continence society. Neurourol Urodyn. 2017;36(4):984-1008. DOI:10.1002/nau.23072; Zondervan K, Barlow DH. Epidemiology of chronic pelvic pain. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(3):403-14. DOI:10.1053/beog.1999.0083; Suskind AM, Berry SH, Ewing BA, Elliott MN, Suttorp MJ, Clemens JQ. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: results of the RAND Interstitial Cystitis Epidemiology male study. J Urol. 2013;189(1):141-5. DOI:10.1016/j.juro.2012.08.088; Лабетов И.А., Ковалев Г.В., Волкова О.В., Шульгин А.С., Шкарупа Д.Д. Эффективность сфокусированной ударно-волновой терапии в лечении хронического простатита / синдрома хронической тазовой боли у мужчин. Вестник урологии. 2022;10(3):28-35. .DOI:10.21886/2308-6424-2022-10-3-28-35; Hetrick DC, Ciol MA, Rothman I, Turner JA, Frest M, Berger RE. Musculoskeletal dysfunction in men with chronic pelvic pain syndrome type III: a case-control study. J Urol. 2003 Sep;170(3):828-31. DOI:10.1097/01.ju.0000080513.13968.56; Nickel JC, Alexander RB, Anderson R, Berger R, Comiter CV, Datta NS, Fowler JE, Krieger JN, Landis JR, Litwin MS, McNaughton-Collins M, O'Leary MP, Pontari MA, Schaeffer AJ, Shoskes DA, White P, Kusek J, Nyberg L; Chronic Prostatitis Collaborative Research Network Study Groups. Category III chronic prostatitis/chronic pelvic pain syndrome: insights from the National Institutes of Health Chronic Prostatitis Collaborative Research Network studies. Curr Urol Rep. 2008;9(4):320-7. DOI:10.1007/s11934-008-0055-7; Bonder JH, Chi M, Rispoli L. Myofascial Pelvic Pain and Related Disorders. Phys Med Rehabil Clin N Am. 2017;28(3):501-515. DOI:10.1016/j.pmr.2017.03.005; Clemens JQ, Mullins C, Ackerman AL, Bavendam T, van Bokhoven A, Ellingson BM, Harte SE, Kutch JJ, Lai HH, Martucci KT, Moldwin R, Naliboff BD, Pontari MA, Sutcliffe S, Landis JR; MAPP Research Network Study Group. Urologic chronic pelvic pain syndrome: insights from the MAPP Research Network. Nat Rev Urol. 2019;16(3):187-200. DOI:10.1038/s41585-018-0135-5; Elkins N, Hunt J, Scott KM. Neurogenic Pelvic Pain. Phys Med Rehabil Clin N Am. 2017;28(3):551-569. DOI:10.1016/j.pmr.2017.03.007; Ishigooka M, Zermann DH, Doggweiler R, Schmidt RA. Similarity of distributions of spinal c-Fos and plasma extravasation after acute chemical irritation of the bladder and the prostate. J Urol. 2000;164(5):1751-6. PMID: 11025764; Hibner M, Desai N, Robertson LJ, Nour M. Pudendal neuralgia. J Minim Invasive Gynecol. 2010;17(2):148-53. DOI:10.1016/j.jmig.2009.11.003; Labat JJ, Riant T, Robert R, Amarenco G, Lefaucheur JP, Rigaud J. Diagnostic criteria for pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). Neurourol Urodyn. 2008;27(4):306-10. DOI:10.1002/nau.20505; Antolak S Jr, Antolak C, Lendway L. Measuring the Quality of Pudendal Nerve Perineural Injections. Pain Physician. 2016;19(4):299-306. PMID: 27228517; Ford JM, Owen DJ, Coughlin LB, Byrd LM. A critique of current practice of transvaginal pudendal nerve blocks: a prospective audit of understanding and clinical practice. J Obstet Gynaecol. 2013;33(5):463-5. DOI:10.3109/01443615.2013.771155; Schneider MC, Eisenach JC. Obstetric Anesthesia, 2nd Edition. Anesthesiology. 2001;94:721–2. DOI:10.1097/00000542-200104000-00042; Tetzschner T, Sørensen M, Lose G, Christiansen J. Pudendal nerve function during pregnancy and after delivery. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8(2):66-8. DOI:10.1007/BF02764820; Previnaire JG. The importance of the bulbocavernosus reflex. Spinal Cord Ser Cases. 2018;4:2. DOI:10.1038/s41394-017-0012-0; Previnaire JG, Soler JM, Alexander MS, Courtois F, Elliott S, McLain A. Prediction of sexual function following spinal cord injury: a case series. Spinal Cord Ser Cases. 2017;3:17096. DOI:10.1038/s41394-017-0023-x; Lee JC, Yang CC, Kromm BG, Berger RE. Neurophysiologic testing in chronic pelvic pain syndrome: a pilot study. Urology. 2001;58(2):246-50. DOI:10.1016/s0090-4295(01)01143-8; Siroky MB, Sax DS, Krane RJ. Sacral signal tracing: the electrophysiology of the bulbocavernosus reflex. J Urol. 1979;122(5):661-4. DOI:10.1016/s0022-5347(17)56549-0; Lavoisier P, Proulx J, Courtois F, De Carufel F. Bulbocavernosus reflex: its validity as a diagnostic test of neurogenic impotence. J Urol. 1989;141(2):311-4. DOI:10.1016/s0022-5347(17)40749-x; Granata G, Padua L, Rossi F, De Franco P, Coraci D, Rossi V. Electrophysiological study of the bulbocavernosus reflex: normative data. Funct Neurol. 2013;28(4):293-5. DOI:10.11138/FNeur/2013.28.4.293; Padma-Nathan H. Neurologic evaluation of erectile dysfunction. Urol Clin North Am. 1988;15(1):77-80. PMID: 3344558.; Litwin MS, McNaughton-Collins M, Fowler FJ Jr, Nickel JC, Calhoun EA, Pontari MA, Alexander RB, Farrar JT, O'Leary MP. The National Institutes of Health chronic prostatitis symptom index: development and validation of a new outcome measure. Chronic Prostatitis Collaborative Research Network. J Urol. 1999;162(2):369-75. DOI:10.1016/s0022-5347(05)68562-x; Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77-92. DOI:10.1016/j.neuron.2006.09.021; Lefaucheur JP, Labat JJ, Amarenco G, Herbaut AG, Prat-Pradal D, Benaim J, Aranda B, Arne-Bes MC, Bonniaud V, Boohs PM, Charvier K, Daemgen F, Dumas P, Galaup JP, Sheikh Ismael S, Kerdraon J, Lacroix P, Lagauche D, Lapeyre E, Lefort M, Leroi AM, Opsomer RJ, Parratte B, Prévinaire JG, Raibaut P, Salle JY, Scheiber-Nogueira MC, Soler JM, Testut MF, Thomas C. What is the place of electroneuromyographic studies in the diagnosis and management of pudendal neuralgia related to entrapment syndrome? Neurophysiol Clin. 2007;37(4):223-8. DOI:10.1016/j.neucli.2007.07.004; Padua L, Padua R, Lo Monaco M, Aprile I, Tonali P. Multiperspective assessment of carpal tunnel syndrome: a multicenter study. Italian CTS Study Group. Neurology. 1999;53(8):1654-9. DOI:10.1212/wnl.53.8.1654; https://www.urovest.ru/jour/article/view/721
-
7Conference
Subject Terms: интерфейсы, электрофизиология, анализ, классификация, сравнение, сигналы, электрическая активность, распознавание, мозг, команды, алгоритмы
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/71243
-
8Conference
Subject Terms: сравнение, анализ, алгоритмы, классификация, интерфейсы, сигналы, электрическая активность, мозг, электрофизиология, распознавание, команды
File Description: application/pdf
Relation: Молодежь и современные информационные технологии : сборник трудов XIX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 21-25 марта 2022 г., г. Томск; http://earchive.tpu.ru/handle/11683/71243
Availability: http://earchive.tpu.ru/handle/11683/71243
-
9Academic Journal
Authors: Nopin, S.V., Koryagina, Yu.V., Abutalimova, S.M., Ter-Akopov, G.N.
Subject Terms: электрофизиология, electromyography, двигательная система, УДК 612.741.1, weightlifting, электромиография, electrophysiology, нервно-мышечный аппарат, neuromuscular system, биомеханика, biomechanics, тяжелоатлетический спорт, motor system
File Description: application/pdf
-
10Academic Journal
Source: Mathematical Biology and Bioinformatics
Математическая биология и биоинформатикаSubject Terms: 0301 basic medicine, 2. Zero hunger, ЭЛЕКТРОФИЗИОЛОГИЯ, 0303 health sciences, MYOCARDIUM HETEROGENEITY, МАТЕМАТИЧЕСКАЯ ФИЗИОЛОГИЯ, МОДЕЛЬ КАРДИОМИОЦИТОВ, CALCIUM OVERLOAD, ЖЕЛУДОЧКОВАЯ ЭКСТРАСИСТОЛИЯ, CARDIOMYOCYTE MODEL, ELECTROPHYSIOLOGY, 3. Good health, 03 medical and health sciences, PREMATURE VENTRICULAR BEATS, КАЛЬЦИЕВАЯ ПЕРЕГРУЗКА, MATHEMATICAL PHYSIOLOGY, НЕОДНОРОДНОСТЬ МИОКАРДА
File Description: application/pdf
Access URL: https://www.matbio.org/article_pdf.php?id=373
https://science.urfu.ru/ru/publications/%D0%B8%D1%81%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%BF%D0%B5%D1%80%D0%B5%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B8-%D0%BA%D0%B0%D1%80%D0%B4%D0%B8%D0%BE%D0%BC%D0%B8%D0%BE%D1%86%D0%B8%D1%82%D0%BE%D0%B2-%D0%BA%D0%B0%D0%BB%D1%8C%D1%86%D0%B8%D0%B5%D0%BC-%D0%BD%D0%B0-%D0%BE%D0%B4%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D0%B9-%D0%BC%D0%BE%D0%B4
http://elar.urfu.ru/handle/10995/75151
https://www.matbio.org/article_pdf.php?id=373
http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85059258099 -
11Academic Journal
Authors: H. Zhang, G. S. Glukhov, K. B. Pustovit, Yu. G. Kacher, V. S. Rusinova, I. I. Kiseleva, V. N. Komolyatova, L. M. Makarov, E. V. Zaklyazminskaya, O. S. Sokolova, Х. Чжан, Г. С. Глухов, К. Б. Пустовит, Ю. Г. Качер, В. С. Русинова, И. И. Киселева, В. Н. Комолятова, Л. М. Макаров, Е. В. Заклязьминская, О. С. Соколова
Contributors: Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 20-54-15004).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 76, № 3 (2021); 169-174 ; Вестник Московского университета. Серия 16. Биология; Том 76, № 3 (2021); 169-174 ; 0137-0952
Subject Terms: электрофизиология, Kir2.1, KCNJ2, prolonged QT interval syndrome, primary channelopathies, electrophysiology, синдром удлиненного интервала QT, первичные каналопатии
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1027/562; Соколова О.С., Кирпичников М.П., Шайтан К.В. и др. Современные методы изучения структуры и функции ионных каналов. М.: Товарищество науч. изд. КМК, 2020. 316 с.; Imbrici P., Liantonio A., Camerino G.M., De Bellis M., Camerino C., Mele A., Giustino A., Pierno S., De Luca A., Tricarico D., Desaphy J.F. Conte D. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery // Front. Pharmacol. 2016. Vol. 7. P. 121.; Munger T.M., Wu L.-Q., Shen W.K. Atrial fibrillation // J. Biomed. Res. 2014. Vol. 28. N 1. P. 1–17.; Plaster N.M., Tawil R., Tristani-Firouzi M., et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome // Cell. 2001. Vol. 105. N 4. P. 511–519.; Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology // Genet. Med. 2015. Vol. 17. N 5. P. 405–424.; Lopez-Izquierdo A., Ponce-Balbuena D., Ferrer T., Sachse F.B., Tristani-Firouzi M., Sanchez-Chapula J.A. Chloroquine blocks a mutant Kir2.1 channel responsible for short QT syndrome and normalizes repolarization properties in silico // Cell. Physiol. Biochem. 2009. Vol. 24. N 3–4. P. 153–160.; Xia M., Jin Q., Bendahhou S. et al. A Kir2.1 gain-offunction mutation underlies familial atrial fibrillation // Biochem. Biophys. Res. Commun. 2005. Vol. 332. N 4. P. 1012–1019.; Kharche S., Garratt C.J., Boyett M.R., Inada S., Holden A.V., Hancox J.C., Zhang H. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation – a simulation study // Prog. Biophys. Mol. Biol. 2008. Vol. 98. N 2–3. P. 186–197.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/1027
-
12Academic Journal
Authors: V. V. Demidchik, P. V. Hryvusevich, M. A. Vaitsiakhovich, J. V. Talkachova, A. V. Kulinkovich, A. I. Sokolik, В. В. Демидчик, П. В. Гриусевич, М. А. Войтехович, Ю. В. Толкачева, А. В. Кулинкович, А. И. Соколик
Source: Doklady of the National Academy of Sciences of Belarus; Том 65, № 3 (2021); 320-329 ; Доклады Национальной академии наук Беларуси; Том 65, № 3 (2021); 320-329 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2021-65-3
Subject Terms: Helianthus annuus, anion transport, calcium signaling, patch-clamp, plant electrophysiology, aequorin luminometry, Arabidopsis thaliana, Triticum aestivum, анионный транспорт, кальциевая сигнализация, метод локальной фиксации потенциала, электрофизиология растений, эквориновая люминометрия
File Description: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/977/974; Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils / J. López-Bucio [et al.] // Plant Sci. – 2000. – Vol. 160, N 1. – P. 1–13. https://doi.org/10.1016/s0168-9452(00)00347-2; Igamberdiev, A. U. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants / A. U. Igamberdiev, N. V. Bykova // Free Radic. Biol. Med. – 2018. – Vol. 122. – P. 74–85. https://doi.org/10.1016/j.freeradbiomed.2018.01.016; Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation / S. Meyer [et al.] // Plant Journal. – 2011. – Vol. 67, N 2. – P. 247–257. https://doi.org/10.1111/j.1365-313x.2011.04587.x; Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli / A. Canarini [et al.] // Front. Plant Sci. – 2019. – Vol. 10. – Art. 157. https://doi.org/10.3389/fpls.2019.00157; Anion channels/transporters in plants: from molecular bases to regulatory networks / H´el`ene Barbier-Brygoo [et al.] // Annu. Rev. Plant Biol. – 2011. – Vol. 62, N 1. – P. 25–51. https://doi.org/10.1146/annurev-arplant-042110-103741; Hedrich, R. Biology of SLAC1-type anion channels – from nutrient uptake to stomatal closure / R. Hedrich, D. Geiger // New Phytol. – 2017. – Vol. 216, N 1. – P. 46–61. https://doi.org/10.1111/nph.14685; Cytosolic malate and oxaloacetate activate S‐type anion channels in Arabidopsis guard cells / C. Wang [et al.] // New Phytologist. – 2018. – Vol. 220, N 1. – P. 178–186. https://doi.org/10.1111/nph.15292; Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation / E. Diatloff [et al.] // Plant Physiol. – 2004. – Vol. 136, N 4. – P. 4136–4149. https://doi.org/10.1104/pp.104.046995; Zhang, W-H. Citrate-permeable channels in the plasma membrane of cluster roots from white lupin / W.-H. Zhang, P. R. Ryan, S. D. Tyerman // Plant Physiology. – 2004. – Vol. 136, N 4. – P. 3771–3783. https://doi.org/10.1104/pp.104.046201; Демидчик, В. В. Неселективные катионные каналы плазматической мембраны клеток корня высших растений / В. В. Демидчик. – Минск, 2014. – 172 с.; The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security / T. Sharma [et al.] // Front. Plant Sci. – 2016. – Vol. 7. – Art. 1488. https://doi.org/10.3389/fpls.2016.01488; Miller, A. J. Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status? / A. J. Miller, S. J. Smith // Annals of Botany. – 2008. – Vol. 101, N 4. – P. 485–489. https://doi.org/10.1093/aob/mcm313; Lipton, D. S. Citrate, malate, and succinate concentration in exudates from p-sufficient and p-stressed Medicago sativa L. seedlings / D. S. Lipton, R. W. Blanchar, D. G. Blevins // Plant Physiol. – 1987. – Vol. 85, N 2. – P. 315–317. https://doi.org/10.1104/pp.85.2.315; Demidchik, V. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology / V. Demidchik // Environmental and experimental botany. – 2015. – Vol. 109. – P. 212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021; Calcium transport across plant membranes: mechanisms and functions / V. Demidchik [et al.] // New Phytologist. – 2018. – Vol. 220, N 1. – P. 49–69. https://doi.org/10.1111/nph.15266; https://doklady.belnauka.by/jour/article/view/977
-
13Academic Journal
Authors: N. S. Davydova
Source: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 0, Iss 4, Pp 5-11 (2019)
Subject Terms: двигательный навык человека, структурно-функциональная диагностика, биомеханика, электрофизиология, электромиографический портрет движения, Electronics, TK7800-8360
File Description: electronic resource
-
14Book
Source: RU05CLSL05CBOOKS030205C1284030
Subject Terms: Рецепторы ацетилхолина нейрона -- Электрофизиология -- Авторефераты диссертаций, 03.00.02
Access URL: https://openrepository.ru/article?id=162851
-
15
-
16
-
17Academic Journal
Authors: Станислав Игоревич Артемов
Source: Российские биомедицинские исследования, Vol 2, Iss 1 (2019)
Subject Terms: электрофизиология, электроэнцефалография, исследование восприятия, интерфейс, мозг-компьютер, Medicine (General), R5-920
File Description: electronic resource
-
18Academic Journal
Source: Российские биомедицинские исследования, Vol 2, Iss 1 (2019)
Subject Terms: электрофизиология, электроэнцефалография, исследование восприятия, интерфейс, мозг-компьютер, Medicine (General), R5-920
-
19Book
Authors: Бугров Р. К. (Роман Кутдусович)
Source: RU05CLSL05CBOOKS030205C2622337
Subject Terms: Биологические науки, Сердце у крыс -- Физиология -- Авторефераты диссертаций, Сердце -- Ритм -- Регуляция при болезнях сердечно-сосудистой системы -- Авторефераты диссертаций, Сердечно-сосудистая система -- Болезни -- Электрофизиология -- Авторефераты диссертаций, 1.5.5
Relation: http://dspace.kpfu.ru/xmlui/bitstream/net/177009/-1/2023-045.pdf; https://dspace.kpfu.ru/xmlui/handle/net/177009
Availability: https://dspace.kpfu.ru/xmlui/handle/net/177009
-
20Academic Journal
Authors: A. V. Babalyan, A. O. Karelin
Source: Учёные записки Санкт-Петербургского государственного медицинского университета им. Акад. И.П. Павлова, Vol 22, Iss 4, Pp 16-19 (2015)
Subject Terms: гематоэнцефалический барьер, 2. Zero hunger, электрофизиология, mobile phone, Medicine (General), brain, головной мозг, мобильный телефон, blood-brain barrier, излучение, electrophysiology, 3. Good health, 03 medical and health sciences, R5-920, 0302 clinical medicine, emission, symptoms, когнитивные функции, жалобы, cognitive function