Showing 1 - 20 results of 306 for search '"ЭЛЕКТРОСОПРОТИВЛЕНИЕ"', query time: 0.83s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 3(129) (2022): Vestnik of Brest State Technical University; 27-30
    Вестник Брестского государственного технического университета; № 3(129) (2022): Вестник Брестского государственного технического университета; 27-30

    File Description: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 60, № 2 (2024); 162-176 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 60, № 2 (2024); 162-176 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2024-60-2

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/783/604; Структура и микромеханические свойства покрытий TiAlSiN, TiAlSiCN, сформированных методом реактивного магнетронного распыления / Ф. Ф. Комаров [и др.] // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2023. – T. 59, № 3. – С. 241–252. https://doi.org/10.29235/1561-2430-2023-59-3-241-252; Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry / J. Jyothi [et al.] // Appl. Phys. A. – 2017. – Vol. 123. – Art. ID 496. https://doi.org/10.1007/s00339-017-1103-2; Spacecraft Thermal Control Handbook. Volume 1: Fundamental Technologies / ed. D. G. Gilmore. – El Segundo, California: 2nd The Aerospace Press, 2002. – 836 p. https://doi.org/10.2514/4.989117; Titanium-aluminum-nitride coatings for satellite temperature control / M. Brogren [et al.] // Thin Solid Films. – 2000. – Vol. 370. – P. 268–277. https://doi.org/10.1016/S0040-6090(00)00914-7; Терморегулирующее покрытие К-208СР. Технология получения, свойства и их изменения в процессе эксплуатации при воздействии факторов космического пространства / В. П. Свечкин [и др.] // Космич. техника и технологии. – 2017. – Т. 17, № 2. – С. 99–107.; Zhang, J. The microstructural, mechanical and thermal properties of TiAlVN, TiAlSiN monolithic and TiAlVN/TiAlSiN multilayered coatings / J. Zhang, L. Chen, Y. Kong // J. Alloys Compd. – 2022. – Vol. 899. – P. 163332. https://doi.org/10.1016/j.jallcom.2021.163332; Thermal stability, mechanical properties, and tribological performance of TiAlXN coatings: understanding the effects of alloying additions / W. Y. H. Liew [et al.] // J. Mat. Res. Technol. – 2022. – Vol. 17. – P. 961–1012. https://doi.org/10.1016/j.jmrt.2022.01.005; A review of high-temperature selective absorbing coatings for solar thermal applications / K. Xu [et al.] // J. Materiomics. – 2020. – Vol. 6, № 1. – P. 167–182. https://doi.org/10.1016/j.jmat.2019.12.012; VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts / A. Hendaoui [et al.] // Sol. Energy Mater. Sol. Cells. – 2013. – Vol. 117. – P. 494–498. https://doi.org/10.1016/j.solmat.2013.07.023; Analytical and numerical models for thermal related design of a new pico-satellite / M. Bonnici [et al.] // Appl. Therm. Eng. – 2019. – Vol. 159. – P. 113908. https://doi.org/10.1016/j.applthermaleng.2019.113908; Effects of Si addition on structure and mechanical properties of TiAlSiCN coatings / X. Zhang [et al.] // Surf. Coat. Technol. – 2019. – Vol. 362. – P. 21–26. https://doi.org/10.1016/j.surfcoat.2019.01.056; Understanding the wear failure mechanism of TiAlSiCN nanocomposite coating at evaluated temperatures / F. Guo [et al.] // Trib. Int. – 2021. – Vol. 154. – P. 106716. https://doi.org/10.1016/j.triboint.2020.106716; Valleti, K. Functional multi-layer nitride coatings for high temperature solar selective applications / K. Valleti, D. M. Krishna, S. V. Joshi // Sol. Energy Mater. Sol. Cells. – 2014. – Vol. 121. – P. 14–21. https://doi.org/10.1016/j.solmat.2013.10.024; Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition / S.-Y. Lee [et al.] // Thin Solid Films. – 2006. – Vol. 515, № 3. – P. 1069–1073. https://doi.org/10.1016/j.tsf.2006.07.172; Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition / E.-Y. Yun [et al.] // J. Mater. Sci. Technol. – 2017. – Vol. 33, № 3. – P. 295–299. https://doi.org/10.1016/j.jmst.2016.11.027; Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dualtarget magnetron sputtering / U. Wahlström [et al.] // Thin Solid Films. – 1993. – Vol. 235, № 1–2. – P. 62–70. https://doi.org/10.1016/0040-6090(93)90244-J; Nanostructured TiAlCuN and TiAlCuCN coatings for spacecraft: effects of reactive magnetron deposition regimes and compositions // F. F. Komarov [et al.] // RSC Advanced. – 2023. – № 13. – P. 18898–18907. https://doi.org/10.1039/D3RA02301J; Структурно-фазовые состояния и микромеханические свойства наноструктурированных покрытий TiAlCuN / С. В. Константинов [и др.] // Докл. Нац. акад. наук Беларуси. – 2023. – Т. 67, № 2. – С. 101–110. https://doi.org/10.29235/1561-8323-2023-67-2-101-110; Ашкрофт, Н. Физика твердого тела / Н. Ашкрофт, Н. Мермин. – М.: Мир, 1979. – Т. 2. – 419 с.; Оptimization of TiAlN/TiAlON/Si3N4 solar absorber coatings / L. An [et al.] // Sol. Energy. – 2015. – Vol. 118. – P. 410–418. https://doi.org/10.1016/j.solener.2015.05.042; Бродский, А. Ж. Влияние микроскопической структуры поверхностей металлов на их оптические свойства / А. Ж. Бродский, М. И. Урбах // УФН. – 1982. – Т. 138, вып. 3. – С. 413–453.; Wainstein, D. L. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system / D. L. Wainstein, V. O. Vakhrushev, A. I. Kovalev // J. Phys.: Conf. Ser. – 2017. – Vol. 857. – Art. ID 012054. https://doi.org/10.1088/1742-6596/857/1/012054; Veszelei, M. Optical properties and equilibrium temperatures of titanium-nitride-and graphite-coated Langmuir probes for space application / M. Veszelei, E. Veszelei // Thin Solid Films. – 1993. – Vol. 236, № 1–2. – P. 46–50. https://doi.org/10.1016/0040-6090(93)90640-b; Kauder, L. Spacecraft Thermal Control Coatings References / L. Kauder. – NASA Goddard Space Flight Center Greenbelt, MD, United States, 2005. – 130 p.; Климович, И. М. Влияние температуры нагрева подложек и потенциала смещения на оптические характеристики Ti–Al–C–N покрытий / И. М. Климович, Ф. Ф. Комаров, В. А. Зайков // Докл. Нац. акад. наук Беларуси. – 2018. – Т. 62, № 4. – С. 415–422. https://doi.org/10.29235/1561-8323-2018-62-4-415-422; CRC Handbook of Chemistry and Physics / ed. W. M. Haynes. – 95th ed. – Boca Raton: CRC Press, 2014. – 2704 p. https://doi.org/10.1201/b17118; Eranna, G. Crystal Growth and Evaluation of Silicon for VLSI and ULSI / G. Eranna. – Boca Raton: CRC Press, 2014. – 430 p. https://doi.org/10.1201/b17812; Solid state properties of group IVb carbonitrides. / W. Lengauer [et al.] // J. Alloys Compd. – 1995. – Vol. 217, № 1. – P. 137–147. https://doi.org/10.1016/0925-8388(94)01315-9; Electrophysical properties of TiAlN coatings prepared using controlled reactive magnetron sputtering / I. M. Klimovich [et al.] // Materials and Structures of Modern Electronics: Collection of Scientific Works: proc. of the 6th Int. sci. and tech. conf., Minsk, Oct. 8–9, 2014, BSU. – Minsk, 2014. – P. 5–8.; Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS / W. Tillmann [et. al.] // Surf. Coat. Technol. – 2021. – Vol. 406. – P. 126664. https://doi.org/10.1016/j.surfcoat.2020.126664; Effects of Proton Irradiation on the Structural-Phase State of Nanostructured TiZrSiN Coatings and Their Mechanical Properties / F. F. Komarov [et al.] // J. Eng. Phys. Thermophys. – 2021. – Vol. 94, № 6. – P. 1609–1618. https://doi.org/10.1007/s10891-021-02442-2; Konstantinov, S. V. Effects of nitrogen selective sputtering and flaking of nanostructured coatings TiN, TiAlN, TiAlYN, TiCrN, (TiHfZrVNb)N under helium ion irradiation / S. V. Konstantinov, F. F. Komarov // Acta Phys. Pol. A. – 2019. – Vol. 136, № 2. – P. 303–309. https://doi.org/10.12693/APhysPolA.136.303; Wear resistance and radiation tolerance of He+ -irradiated magnetron sputtered TiAlN coatings / S. V. Konstantinov [et al.] // High Temp. Mater. Proc. – 2014. – Vol. 18, № 1–2. – P. 135–141. https://doi.org/10.1615/hightempmatproc.2015015569; https://vestifm.belnauka.by/jour/article/view/783

  10. 10
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 4 (2024); 281-289 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 4 (2024); 281-289 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-4

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/914/754; Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis / J. Zhu [et al.] // ACS Catal. – 2014. –Vol. 4, № 9. – P. 2917–2940. https://doi.org/10.1021/cs500606g; A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis / X. Li [et al.] // J. Mater. Chem. A. – 2021. – Vol. 9, № 11. – P. 6650–6670. https://doi.org/10.1039/d0ta09756j; Unique synthesis, structure determination, and optical properties of seven new layered rare earth tellurite nitrates, RE(TeO3)(NO3) (RE = La, Nd, Eu, Gd, Dy, Er, and Y) / H. E. Lee [et al.] // J. Alloys Compd. – 2021. – Vol. 851. – P. 156855. https://doi.org/10.1016/j.jallcom; Experiment and first-principles calculations of A2Mg2TeB2O10 (A = Pb, Ba): influences of the cosubstitution on the structure transformation and optical properties / M. Wen [et al.] // Inorg. Chem. – 2019. Vol. 58, № 16. – P. 11127–11132. https://doi.org/10.1021/acs.inorgchem.9b01693; Tailored fabrication of a prospective acousto–optic crystal TiTe3O8 endowed with high performance / W. Lu [et al.] // J. Mater. Chem. C. – 2018. – Vol. 6, № 10. – P. 2443–2451. https://doi.org/10.1039/c7tc05382g; Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity / K. M. Ok [et al.] // Chem. Soc. Rev. – 2006. – Vol. 35, № 8. – P. 710. https://doi.org/10.1039/b511119f; The synthesis and crystal structures of the first rare-earth alkaline-earth selenite chlorides MNd10(SeO3)12Cl8 (M=Ca and Sr) / P.S. Berdonosov [et al.] // J. Solid State Chem. – 2007. – Vol. 180. – P. 3019–3025. https://doi.org/10.1016/j.jssc.2007.08.019; Synthesis and characterization of ammonium potassium tellurium polyoxomolybdate: (NH4)2K2TeMo6O22·2H2O with one-dimensional anionic polymeric Chain [TeMo6O22]4− / L. Geng [et al.] // Crystals. – 2021. – Vol. 11, № 4. – P. 375. https://doi.org/10.3390/cryst11040375; A review of the structural architecture of tellurium oxycompounds / A. G. Christy [et al.] // Mineral. Mag. – 2016. – Vol. 80, № 3. – P. 415–545. https://doi.org/10.1180/minmag.2016.080.093; Heat capacity and thermodynamic functions of thulium tellurites in the range of 298.15–673 / K. T. Rustembekov [et al.] // Rus. J. Phys. Chem. A. – 2016. – Vol. 90, № 2. – P. 263–266. https://doi.org/10.1134/s0036024416020266; X-ray diffraction and thermodynamic characteristics for tellurite of the composition Li2 CeTeO5 / K. T. Rustembekov [et al.] // Rus. J. Phys. Chem. A. – 2017. – Vol. 91, № 4. – P. 622–626. https://doi.org/10.1134/S0036024417040252; Thermodynamic and Electrophysical Properties of La2SrNiTeO7 / K. T. Rustembekov [et al.] // Rus. J. Phys. Chem. A. – 2019. – Vol. 93, № 9. – P. 1657–1661. https://doi.org/10.1134/S0036024419090206; Кивилис, С. С. Техника измерения плотности жидкостей и твердых тел / С. С. Кивилис. – М.: Стандартгиз, 1959. – 192 с.; Измеритель RLC (LCR-781): рук. по эксплуатации. – M.: ЗАО «ПриСТ», 2012. – С. 3.; Кузнецова, Г. А. Качественный рентгенофазовый анализ: метод. указания / Г. А. Кузнецова. – Иркутск, 2005. – 28 с.; Crystallography Open Database [Electronic Resources]. – Mode of access: http://www.crystallography.net/cod/result.php. – Date of access: 11.11.2023.; Рентгенографические, термодинамические и электрофизические свойства двойного теллурита натрия-цинка / К. Т. Рустембеков [и др.] // Изв. Том. политехн. ун-та. – 2009. – Т. 315, № 3. – С. 16–19.; Thermodynamics and Electrophysics of New LaCaCuZnMnO6 Copper – Zinc Manganite of Lanthanum and Calcium / B. K. Kasenov [et al.] // High Temp. – 2022. – Vol. 60. – P. 474–478. https://doi.org/10.1134/s0018151x22020225; Сегнето-и антисегнетоэлектрики семейства титаната бария / Ю. Н. Веневцев [и др.]. – М.: Химия, 1985. – 255 с.; Введение в химию твердофазных материалов / Ю. Д. Третьяков [и др.]. – М.: Наука, 2006. – 399 c.; Химическая энциклопедия. – М.: Совет. Энцикл., 1990. – Т. 2. – С. 1110–1111.; https://vestichem.belnauka.by/jour/article/view/914

  11. 11
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2024); 59-64 ; Новые огнеупоры; № 1 (2024); 59-64 ; 1683-4518 ; 10.17073/1683-4518-2024-1

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2141/1731; CRC handbook of thermoelectrics; ed. by D. M. Rowe. ― CRC press, 2018.; Mohammed, M. A. A review of thermoelectric ZnO nanostructured ceramics for energy recovery / M. A. Mohammed, I. Sudin, A. M. Noor [et al.] // International Journal of Engineering & Technology. ― 2018. ― Vol. 7, № 2.29. ― Р. 27‒30. https://www.sciencepubco.com/index.php/ijet/article/view/13120.; Duan, B. Regulation of oxygen vacancy and reduction of lattice thermal conductivity in ZnO ceramic by high temperature and high pressure method / B. Duan, Y. Li, J. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 16. ― Р. 26176‒26181.; Zeng, C. Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics / С. Zeng, S. Butt, Y. H. Lin [et al.] // J. Am. Ceram. Soc. ― 2016. ― Vol. 99, № 4. ― Р. 1266‒1270.; Combe, E. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process / E. Combe, E. Guilmeau, E. Savary [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35, № 1. ― Р. 145‒151.; Li, W. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects / W. Li, L. Zheng, B. Ge [et al.] // Adv. Mater. ― 2017. ― Vol. 29, № 17. ― Article 1605887.; Pashkevich, A. V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co / A. V. Pashkevich, A. K. Fedotov, E. N. Poddenezhny [et al.] // J. Alloys Compd. ― 2022. ― Vol. 895. ― Article 162621.; Tsubota, T. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1997. ― Vol. 7, № 1. ― Р. 85‒90.; Abdel-Motaleb, I. M. Thermoelectric devices : principles and future trends / I. M. Abdel-Motaleb, S. M. Qadri // arXiv preprint arXiv. ― 2017. ― 1704. 07742. https://doi.org/10.48550/arXiv.1704.07742.; Radingoana, P. M. (2019). Université Paul SabatierToulouse III).; Lei, L. W. Synthesis and low field transport properties in a ZnO-doped La0.67Ca0.33MnO3 composite / L. W. Lei, Z. Y. Fu, J. Y. Zhang, H. Wang // Mater. Sci. Eng., B. ― 2006. ― Vol. 128, № 1‒3. ― Р. 70‒74.; Janotti, A. Fundamentals of zinc oxide as a semiconductor / A. Janotti, C. G. Van de Walle // Rep. Prog. Phys. ― 2009. ― Vol. 72, № 12. ― Article 126501.; Janotti, A. Native point defects in ZnO / A. Janotti, C. G. Van de Walle // Phys. Rev., B. ― 2007. ― Vol. 76, № 16. ― Article 165202.; Olorunyolemi, T. Thermal conductivity of zinc oxide: from green to sintered state / T. Olorunyolemi, A. Birnboim, Y. Carmel [et al.] // J. Am. Ceram. Soc. ― 2002. ― Vol. 85, № 5. ― Р. 1249‒1253.; Liang, X. Thermoelectric transport properties of naturally nanostructured Ga‒ZnO ceramics : effect of point defect and interfaces / X. Liang // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36, № 7. ― Р. 1643‒1650. https://www.sciencedirect.com/science/article/pii/S095522191630067X.; Lu, L. The resistivity of zinc oxide under different annealing configurations and its impact on the leakage characteristics of zinc oxide thin-tilm / L. Lu, M. Wong // IEEE Transactions on Electron Devices. ― 2014. ― Vol. 61, № 4. ― Р. 1077‒1084.; Wagner, C. D. GE Muilenberg in Handbook of Х-ray photoelectron spectroscopy : a reference book of standard data for use in Х-ray photoelectron spectroscopy / C. D. Wagner. ― Physical Electronics Division, PerkinElmer Corp., Eden Prairie, USA, 1979.; Chen, M. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films / М. Chen, Х. Wang, Y. H. Yu [et al.] // Appl. Surf. Sci. ― 2000. ― Vol. 158, № 1/2. ― P. 134‒140.; Lin, C. C. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates / C. C. Lin, H. P. Chen, H. C. Liao, S. Y. Chen // Appl. Phys. Lett. ― 2005. ― Vol. 86, № 18. ― Article 183103.; Lu, Y. F. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition / Y. F. Lu, H. Q. Ni, Z. H. Mai, Z. M. Ren // J. Appl. Phys. ― 2000. ― Vol. 88, № 1. ― Р. 498‒502.; Valtiner, M. Preparation and characterisation of hydroxide stabilised ZnO (0001)–Zn–OH surfaces / M. Valtiner, S. Borodin, G. Grundmeier // Physical Chemistry Chemical Physics. ― 2007. ― Vol. 9, № 19. ― P. 2406‒2412.; Ullah, M. Effects of Al and B co-doping on the thermoelectric properties of ZnO ceramics sintered in an argon atmosphere / M. Ullah, S. Ullah, A. Manan [et al.] // Appl. Phys., A. ― 2022. ― Vol. 128, № 2. ― Р. 1‒7.; Tsubota, T. Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1998. ― Vol. 8 (2). ― P. 409‒412.; https://newogneup.elpub.ru/jour/article/view/2141

  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 59, № 2 (2023); 95-104 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 59, № 2 (2023); 95-104 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2023-59-2

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/808/701; Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0≤ x≤ 0.5) / V. V. Vashook [et al.] // Solid State Ionics. – 1998. – Vol. 110, iss. 3-4. – P. 245–253. https://doi.org/10.1016/S0167-2738(98)00134-9; Composition and conductivity of some nickelates / V. V. Vashook [et al.] // Solid State Ionics. – 1999. – Vol. 119, iss. 1-4. – P. 23–30. https://doi.org/10.1016/S0167-2738(98)00478-0; Ruddlesden-Popper phases Sr3Ni2–xAlxO7–δ and some doped derivatives: Synthesis, oxygen nonstoichiometry and electrical properties / I. M. Kharlamova [et al.] // Solid State Ionics. – 2018. – Vol. 324. – P. 241–246. https://doi.org/10.1016/j.ssi.2018.07.016; Temperature programmed oxygen desorption and sorption processes on Pr2-хLaхNiO4+δ nickelates / A. E. Usenka [et al.] // ECS Transactions. – 2019. – Vol. 91, №1. – P. 1341–1353. https://doi.org/10.1149/09101.1341ecst; Recent advances in layered Ln2NiO4+d nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cell / A. P. Tarutin [et al.] // J. Mater. Chem. A. – 2021. – Vol. 9. – P. 154–195. https://doi.org/10.1039/d0ta08132a; Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells / E. Pikalova [et al.] // Int. J. Hydrogen Energy. – 2021. – Vol. 46, iss. 32. – P. 16932–16946. https://doi.org/10.1016/j.ijhydene.2021.03.007; Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction / J. Rodríguez-Carvajal // Physica B: Condensed Matter. – 1993. – Vol. 192, iss. 1-2. – P. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I; Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model / W. A. Dollase // J. Appl. Crystallogr. – 1986. – Vol. 19, iss. 4. – P. 267–272. https://doi.org/10.1107/S0021889886089458; Кислородная нестехиометрия и неравноценность состояний [Ni–O]+ в твердых растворах La2–xSrxNiO4 (x = 0 – 1,4) / С. П. Толочко [и др.] // Журн. неорган. химии. – 1994. – Т. 39, № 7. – С. 1092–1095.; Vashook, V. V. Oxygen solid electrolyte coulometry (OSEC) / V. V. Vashook, J. Zosel, U. Guth // J. Solid State Electrochem. – 2012. – Vol. 16, iss. 11. – P. 3401–3421. https://doi.org/10.1007/s10008-012-1876-3; Makhnach, L. V. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates La2−xSrxNiO4−δ (x = 1 and 1.4) / L. V. Makhnach, V. V. Pankov, P. Strobel // Mater. Chem. Phys. – 2008. – Vol. 111, iss. 1. – P. 125–130. https://doi.org/10.1016/j.matchemphys.2008.03.022; A structural and magnetic study of the defect perovskite from high-resolution neutron diffraction data / J. A. Alonso [et al.] // J. Phys.: Condensed Matter. – 1997. – Vol. 9, N 30. – P. 6417–6426. https://doi.org/10.1088/0953-8984/9/30/010; Oxygen vacancy ordering in superlatives of the two novel oxides, La2Ni2O5 and La2Co2O5, prepared by low temperature reduction of the parent perovskites / K. Vidyasagar [et al.] // J. Chem. Soc., Chem. Communicat. – 1985. – Iss. 1. – P. 7–8. https://doi.org/10.1039/c39850000007; Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations / S. M. Aspera [et al.] // J. Phys.: Condensed Matter. – 2012. – Vol. 24, N 40. – P. 405504. https://doi.org/10.1088/0953-8984/24/40/405504; Dann, S. E. Structure and oxygen stoichiometry in Sr3Co2O7–y (0.94 ≤ y ≤ 1.22) / S. E. Dann, M. T. Weller // J. Solid State Chem. – 1995. – Vol. 115, iss. 2. – P. 499–507. https://doi.org/10.1006/jssc.1995.1165; Crystal structure and high-temperature properties of the Ruddlesden–Popper phases; Sr3−xYx (Fe1,25Ni0,75)O7−δ (0≤ x ≤ 0,75) / L. Samain [et al.] // J. Solid State Chem. – 2015. – Vol. 227. – P. 45–54. https://doi.org/10.1016/j.jssc.2015.03.018; https://vestichem.belnauka.by/jour/article/view/808

  19. 19
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2023); 31-37 ; Новые огнеупоры; № 1 (2023); 31-37 ; 1683-4518 ; 10.17073/1683-4518-2023-1

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1918/1574; Вершинин, Ю. Н. Бетэловые токоограничивающие сопротивления большой мощности / Ю. Н. Вершинин, А. И. Долгинов, М. С. Добжинский // Электрические станции. ― 1966. ― № 9. ― С. 56‒59.; Винчелл, А. Н. Оптическая минералогия / А. Н. Винчелл, Г. Винчелл; под ред. Д. С. Белянкина. ― М. : Изд-во иностр. лит-ры, 1953. ― 561 с.; ГОСТ 7025‒91. Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости. ― М. : Изд-во стандартов, 2009. ― 10 с.; ГОСТ 473.6‒81. Изделия химически стойкие и термостойкие керамические. Метод определения предела прочности при сжатии. ― М. : Изд-во стандартов, 1981. ― 12 с.; Бабичев, А. П. Физические величины : справочник / А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский [и др.]; под ред. И. С. Григорьева, Е. З. Мейлихова. ― М. : Энергоатомиздат, 1991. ― 1232 с.; Таблицы физических величин : справочник; под ред. акад. И. К. Кикоина. ― М. : Атомиздат, 1976. ― 1008 с.; Казанцев, Е. И. Промышленные печи : справочное руководство для расчетов и проектирования / Е. И. Казанцев; 2-е изд., доп. и перераб. ― М. : Металлургия, 1975. ― 368 с.; ГОСТ 6137‒97. Мертели огнеупорные алюмосиликатные. ― М. : Изд-во стандартов, 2000. ― 10 с.; ГОСТ 30558‒2017. Глинозем металлургический. Технические условия. ― М. : Стандартинформ, 2018. ― 8 с.; Сычев, М. М. Неорганические клеи / М. М. Сычев; ― 2-е изд., перераб. и доп. ― Л. : Химия, 1986. ― 152 с.; Мартюшов, К. И. Технология производства резисторов : уч. пособие для специальности «Полупроводники и диэлектрики» / К. И. Мартюшов, Ю. В. Зайцев. ― М. : Высшая школа, 1972. ― 312 с.; Минакова Н. Н. Научные основы создания и регулирования резистивных свойств высоконаполненных эластомеров : дис. … докт. физ.-мат. наук : 01.04.07 / Минакова Н. Н. ― Томск, 2001. ― 45 с.; Андрианов, Н. Т. Практикум по технологии керамики : уч. пособие для вузов / Н. Т. Андрианов, А. В. Беляков, А. С. Власов [и др.]; под ред. проф. И. Я. Гузмана. ― М. : Стройматериалы, 2005. ― 336 с.; Левашова, А. И. Химическая технология углеродных материалов : уч. пособие / А. И. Левашова, А. В. Кравцов. ― Томск : Изд-во ТПУ, 2008. ― 112 c.; Zhang, Y. Progress of electrochemical capacitor electrode materials : a review / Y. Zhang, H. Feng, X. Wu [et al.] // Hydrogen Energy. ― 2009. ― Vol. 34. ― P. 4889‒4899.; Pandolfo, A. G. Carbon properties and their role in supercapacitors / A. G. Pandolfo, A. F. Hollenkamp // J. Pow. Sources. ― 2006. ― Vol. 157. ― P. 11‒27.; https://newogneup.elpub.ru/jour/article/view/1918

  20. 20