Εμφανίζονται 1 - 20 Αποτελέσματα από 423 για την αναζήτηση '"ЭЛЕКТРИЧЕСКИЕ ПОЛЯ"', χρόνος αναζήτησης: 0,84δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal

    Πηγή: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    Περιγραφή αρχείου: application/pdf

  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: The article was published as part of the research topic No. FNEN-2019–00011 of the state assignment of the V. M. Gorbatov Federal Research Center for Food Systems of RAS., Статья подготовлена в рамках выполнения исследований по государственному заданию № FNEN-2019–00011 Федерального научного центра пищевых систем им. В. М. Горбатова Российской академии наук.

    Πηγή: Food systems; Vol 6, No 1 (2023); 4-10 ; Пищевые системы; Vol 6, No 1 (2023); 4-10 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/223/211; Jackson, L. S., AI-Taher, F. (2022). Processing issues: acrylamide, furan, and trans fatty acids. Chapter in a book: Ensuring Global Food Safety: Exploring Global Harmonization. Academic Press, 2022. https://doi.org/10.1016/B978–0–12–816011–4.00021–5; Chiozzi, V., Agriopoulou, S., Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences (Switzerland), 12(4), Article 2202. https://doi.org/10.3390/app12042202; Chacha, J.S., Zhang, L., Ofoedu, C.E., Suleiman, R.A., Dotto, J.M., Roobab, U. et al. (2021). Revisiting non-thermal food processing and preservation methods — action mechanisms, pros and cons: A technological update (2016–2021). Foods, 10(6), Article 1430 https://doi.org/10.3390/foods10061430; Pingen, S., Sudhaus, N., Becker, A., Krischek, C., Klein, G. (2016). High pressure as an alternative processing step for ham production. Meat Science, 118, 22–27. https://doi.org/10.1016/j.meatsci.2016.03.014; Tsevdou, M., Eleftheriou, E., Taoukis, P. (2013) Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt. Innovative Food Science and Emerging Technologies, 17, 144–152. https://doi.org/10.1016/j.ifset.2012.11.004; Marangoni Junior, L., Cristianini, M., Padula, M., Anjos, C.A.R. (2019). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920–930. https://doi.org/10.1016/j.foodres.2018.10.078; Liu, H., Xu, Y., Zu, S., Wu, X., Shi, A., Zhang, J. et al. (2021). Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods, 10(8), Article 1872. https://doi.org/10.3390/foods10081872; Mahadevan, S., Karwe M. V. (2016). Effect of high-pressure processing on bioactive compounds. Food Engineering Series, 479–507. https://doi.org/10.1007/978–1–4939–3234–4_22; Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and- production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013; Wang, B., Liu, F., Luo, S., Li, P., Mu, D., Zhao, Y. et al. (2019). Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food and Bioprocess Technology, 12(2), 220–227. https://doi.org/10.1007/s11947–018–2205–3; O’Reilly, C., Kelly, L.A., Murphy, M.P., Beresford, P.T. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science and Technology, 12(2), 51–59. https://doi.org/10.1016/s0924–2244(01)00060–7; Oliveira, F.A.D, Neto, O.C., Santos, L.M.R.D., Ferreira, E.H.R., Rosenthal, A. (2017). Effect of high pressure on fish meat quality — A review. Trends in Food Science and Technology, 66, 1–19. https://doi.org/10.1016/jtifs.2017.04.014; Butz, P., Fernandez Garcıa, F., Lindauer, R., Dieterich, S., Bognar, A., Tauscher, B. (2003). Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56(2–3), 233–236. https://doi.org/10.1016/s0260–8774(02)00258–3; Lee, P. Y., Kebede, B. T., Lusk, K., Mirosa, M., Oey, I. (2017). Investigating consumers’ perception of apple juice as affected by novel and conventional processing technologies. International Journal of Food Science and Technology, 52(12), 2564–2571. https://doi.org/10.1111/ijfs.13542; Kim, Y.-S., Park, S.-J., Cho, Y.-H., Park, J. (2001). Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. Journal of Food Science, 66(9), 1355–1360. https://doi.org/10.1111/j.1365–2621.2001.tb15214.x; Dede, S., Alpas, H., Bayındırlı, A. (2007). High hydrostatic pressure treatment and storage of carrot and tomato juices: Antioxidant activity and microbial safety. Journal of the Science of Food and Agriculture, 87(5), 773–782. https://doi.org/10.1002/jsfa.2758; Melse-Boonstra, A., Verhoef, P., Konings, E.J.M., Van Dusseldorp, M., Matser, A., Hollman, P.C.H. et al. (2002). Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. Journal of Agricultural and Food Chemistry, 50(12), 3473–3478. https://doi.org/10.1021/jf0112318; Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8. https://doi.org/10.1016/j.foodcont.2016.07.019; Jin, T.Z., Zhang, H.Q. (2020). Pulsed electric fields for pasteurization: Food safety and shelf life. Food Engineering Series, 553–577. https://doi.org/10.1007/978–3–030–42660–6_21; Guerrero-Beltran, J.A., Welti-Chanes, J. (2016). Pulsed electric fields. Chapter in a book: Encyclopedia of Food and Health, Academic Press, 2016. https://doi.org/10.1016/b978–0–12–384947–2.00579–1; Jadhav, H.B., Annapure, U.S., Deshmukh, R.R. (2021). Non-thermal technologies for food processing. Frontiers in Nutrition, 8, Article 657090. https://doi.org/10.3389/fnut.2021.657090; Mendes-Oliveira, G., Jin, T.Z., Campanella, O.H. (2020). Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 282, Article 110001. https://doi.org/10.1016/j.jfoodeng.2020.110001; Shamsi, K., Sherkat, F. (2009). Application of pulsed electric field in non-thermal processing of milk. Asian Journal of Food and Agro-Industry, 2(03), 216–244.; Bhattacharjee, C., Saxena, V. K., Dutta, S. (2019). Novel thermal and nonthermal processing of watermelon juice. Trends in Food Science and Technology, 93, 234–243. https://doi.org/10.1016/j.tifs.2019.09.015; Koubaa, M., Barba, F.J, Bursać Kovačević, D., Putnik, P., Santos, M.D., Queirós R. P., et al. (2018). Pulsed electric field processing of fruit juices. Chapter in a book: Fruit Juices: Extraction, Composition, Quality and Analysis. Academic Press, 2018. https://doi.org/10.1016/B978–0–12–802230–6.00022–9; Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., et al. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science and Emerging Technologies, 54, 64–77. https://doi.org/10.1016/j.ifset.2019.03.004; Timmermans, R.A.H., Mastwijk, H.C., Berendsen, L.B.J.M., Nederhoff, A.L., Matser, A.M., Van Boekel, M.A.J.S. et al. (2019). Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298, 63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015; Roobab, U., Abida, A., Chacha, J.S., Athar, A., Madni, G.M., Ranjha, M.M.A.N. et al. (2022) Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), Article 4031. https://doi.org/10.3390/molecules27134031; Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: a review. International Journal of Food Properties, 23(1), 1036–1050. https://doi.org/10.1080/10942912.2020.1775250; Rodrigo, D., Martinez, A., Harte, F., Barbosa-Canovas, G., Rodrigo, M. (2001). Study of inactivation of kactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: Comparison of inactivation kinetics models. Journal of Food Protection, 64(2), 259–263. https://doi.org/10.4315/0362–028X-64.2.259; Aguilo-Aguayo, I., Soliva-Fortuny, R., Martín-Belloso, O. (2008). Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. European Food Research and Technology, 227(2), 599–606. https://doi.org/10.1007/s00217–007–0761–2; Ortega-Rivas, E. (2011). Critical issues pertaining to application of pulsed electric fields in microbial control and quality of processed fruit juices. Food and Bioprocess Technology, 4(4), 631–645. https://doi.org/10.1007/s11947–009–0231-x; Sharma, P., Sharma, S. R., Mittal, T. C. (2020). Effects and application of ionizing radiation on fruits and vegetables: A review. Journal of Agricultural Engineering, 57(2), 97–126.; Barbosa-Canovas, G.V., Bermúdez-Aguirre, D. (2010). Novel food processing technologies and regulatory hurdles. Chapter in a book: Ensuring Global Food Safety, Academic Press, 2010. https://doi.org/10.1016/B978–0–12–374845–4.00016–3; Mendonca A. F., Daraba, A. (2014). Non-thermal processing: Irradiation. Chapter in a book: Encyclopedia of Food Microbiology: Second Edition, Academic Press, 2014. https://doi.org/10.1016/b978–0–12–384730–0.00399–2; Boylston, T.D., Reitmeier, C. A., Moy, J. H., Mosher, G. A., Taladriz, L. (2002). Sensory quality and nutrient composition of three hawaiian fruits treated by X-irradiation. Journal of Food Quality, 25(5), 419–433. https://doi.org/10.1111/j.1745–4557.2002.tb01037.x; Alonso, M., Palou, L., Ángel del Rio, M. A., Jacas, J.-A. (2007). Effect of X-ray irradiation on fruit quality of clementine mandarin cv. ‘Clemenules’. Radiation Physics and Chemistry, 76(10), 1631–1635. https://doi.org/10.1016/j.radphyschem.2006.11.015; Fan, X., Niemera, B. A, Mattheis, J. E., Zhuang, H., Olson, D. W. (2006). Quality of fresh-cut apple slices as affected by low-dose ionizing radiation and calcium ascorbate treatment. Journal of Food Science, 70(2), S143-S148. https://doi.org/10.1111/j.1365–2621.2005.tb07119.x; McDonald, H., Arpaia, M., Caporaso, F., Obenland, D., Were, L., Rakovski, C. et al. (2013). Effect of gamma irradiation treatment at phytosanitary dose levels on the quality of ‘Lane Late’ navel oranges. Postharvest Biology and Technology, 86, 91–99. https://doi.org/10.1016/j.postharvbio.2013.06.018; Chawla, A., Lobacz, A., Tarapata, J., Zulewska, J. (2021). UV light application as a mean for disinfection applied in the dairy industry. Applied Scences (Switzerland), 11(16), Article 7285. https://doi.org/10.3390/app11167285; Priyadarshini, A., Rajauria, G., O’Donnell, C., Tiwari, B. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082–3101. https://doi.org/10.1080/10408398.2018.1483890; Lo´pez-Malo, A., Palou, E. (2004). Ultraviolet light and food preservation. Chapter in a book: Novel Food Processing Technologies. CRC Press, 2004.; Шишкина, Н.С., Карастоянова, О.В., Коровкина, Н.В., Федянина, Н.И. (2020). Комплексная технология хранения растительной продукции с применение УФ-излучения. Все о мясе, 5S, 407–411. https://doi.org/10.21323/2071–2499–2020–5S-407–411; Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology, 53(7), 813–821. https://doi.org/10.1139/W07–042; Schmalwieser, A.W., Weihs, P., Schauberger, G. (2018). UV effects on living organisms. Chapter in a book: Encyclopedia of Sustainability Science and Technology. Springer, New York, 2018. https://doi.org/10.1007/978–1–4939–2493–6_454–3; Soni, A., Oey, I., Silcock, P., Bremer, P. (2016). Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1139–1148. https://doi.org/10.1111/1541–4337.12231; Nicholson, W. L., Galeano, B. (2003). UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Applied and Environmental Microbiology, 69(2), 1327–1330. https://doi.org/10.1128/AEM.69.2.1327–1330.2003; Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., Barak, Z. (2001). Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Current Microbiology, 43(2), 140–143. https://doi.org/10.1007/s002840010276; Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal Applied Microbiology, 101(3), 514–525. https://doi.org/10.1111/j.1365–2672.2005.02736.x; Csapo, J., Prokischv, J., Albert, C., Sipos, P. (2019). Effect of UV light on food quality and safety. Acta Universitatis Sapientiae, Alimentaria, 12(1), 21–41. https://doi.org/10.2478/ausal-2019–0002; Koutchma, T. (2009). Advances in ultraviolet light technology for nonthermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947–008–0178–3; Afendi, N. A., Shah, N.N.A.K. (2022). Impact of UV–C assisted drying treatment on the quality of Malaysian stingless bee honey. Advances in Agricultural and Food Research Journal, 3(2), Article a0000306. https://doi.org/10.36877/aafrj.a0000306; https://www.fsjour.com/jour/article/view/223

  9. 9
  10. 10
    Book

    Συνεισφορές: Крутов, Анатолий Викторович, Крылова, Нина Георгиевна, Дворник, Геннадий Михайлович, Бойко, Михаил Анатольевич

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/17407

  11. 11
    Academic Journal

    Συνεισφορές: Di Caprio, Dung

    Πηγή: Solid State Ionics

    Περιγραφή αρχείου: application/pdf

    Συνδεδεμένο Πλήρες Κείμενο
  12. 12
    Academic Journal

    Πηγή: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; Том 86, № 2 (2022); 255-267 ; Известия Российской академии наук. Серия географическая; Том 86, № 2 (2022); 255-267 ; 2658-6975 ; 2587-5566

    Περιγραφή αρχείου: application/pdf

    Relation: https://izvestia.igras.ru/jour/article/view/1540/848; Васильев А.В., Бухонов В.О., Васильев В.А. Особенности и результаты мониторинга электромагнитных полей в условиях территории Самарской области // Изв. Самарского науч. центра РАН. 2013. Т. 15. № 3 (1). С. 585–590.; Григорьев О.А. Актуальные вопросы радиобиологии и гигиены неионизирующих излучений в связи с развитием новых технологий: Всероссийская конференция “Актуальные проблемы радиобиологии и гигиены неионизирующих излучений” (Москва, 12–13 ноября 2019 г.). М., 2019. С. 63–65.; Григорьев Ю.Г. Значимость адекватной информации об опасности ЭМП сотовой связи для здоровья населения в 21 веке: Всероссийская конференция “Актуальные проблемы радиобиологии и гигиены неионизирующих излучений” (Москва, 12–13 ноября 2019 г.). М., 2019. С. 12–15.; Ивлева Я.С. Мониторинг и составление карт электромагнитных полей в условиях города Оренбурга // Достижения вузовской науки. 2016. № 25 (2). С. 183–188.; Мордачев В.И. Оценка электромагнитного фона, создаваемого системами сотовой (мобильной) связи: Всероссийская конференция “Актуальные проблемы радиобиологии и гигиены неионизирующих излучений” (Москва, 12–13 ноября 2019 г.). М., 2019. С. 76–79.; Прокофьева А.С., Григорьев О.А. Оценка численности населения, проживающего вблизи воздушных линий электропередачи, по критерию экспозиции магнитным полем промышленной частоты (на примере Московского региона): Всероссийская конференция “Актуальные проблемы радиобиологии и гигиены неионизирующих излучений” (Москва, 12–13 ноября 2019 г.). М., 2019. С. 109–110.; Реймерс Н.Ф. Природопользование: Словарь-справочник. М.: Мысль, 1990. 637 с.; Сподобаев Ю.М., Кубанов В.П. Основы электромагнитной экологии. М.: Радио и связь, 2000. 240 с.; Стурман В.И. Электромагнитные поля промышленного диапазона частот в условиях городской среды как объект эколого-географического исследования // География и природные ресурсы. 2019. № 1. С. 21–28. https://doi.org/10.21782/GIPR0206-1619-2019-1(21-28); Стурман В.И., Широков М.В. Электрические и магнитные поля населенных пунктов с плотной застройкой (на примере Центрального района Санкт-Петербурга) // Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2018). VII Международная научно-техническая и научно-методическая конференция. СПб., 2018. С. 410–414.; Экологический атлас Санкт-Петербурга. СПб.: Издво Биомонитор, 1992. 10 л. карт.; Электромагнитная безопасность элементов энергетических систем: Монография / В.Н. Довбыш, М.Ю. Маслов, Ю.М. Сподобаев. Самара: ООО “ИПК “Содружество”, 2009. 198 с.; Яковлева М.И. Физиологические механизмы действия электромагнитных полей. Л.: Медицина, 1973. 175 с.; d’Amore G., Anglesio L., Benedetto A., Tasso M. Background ELF magnetic fields in a great urban area // Bersani F. (Eds). Electricity and Magnetism in Biology and Medicine. Boston: Springer, 1999. P. 327–328.; d’Amore G., Anglesio L., Tasso M., Benedetto A., Roletti S. Outdoor background ELF Magnetic fields in an urban environment // Radiat. Prot. Dosim. 2001. № 94 (4). P. 375–380.; Directive 2004/40/EC of the European Parliament and of the Council, “The Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Electromagnetic Fields)” // Official J. Europ. Union. 2004. L184. Vol. 30. № 4. P.1–9.; Gajšek P., Ravazzani P., Grellier J., Samaras T., Bakos J., Thuróczy G. Review of Studies Concerning Electromagnetic Field (EMF) Exposure Assessment in Europe: Low Frequency Fields (50 Hz–100 kHz) // Int. J. Environ. Res. and Publ. Health. 2016. Vol. 13 (9). 875. https://doi.org/10.3390/ijerph13090875; ICNIRP. “Guidelines for Limiting Exposure to Time Varying Electric and Magnetic Fields (1 Hz – 100 kHz)” // Health Physics. 2010. Vol. 99. № 6. P. 818836.; Lindgren M., Gustavsson M., Hamnerius Y., Galt S. ELF magnetic fields in a city environment // Bioelectromagnetics. 2001. № 22. P. 87–90.; Lindgren M., Gustavsson M., Hamnerius Y., Galt S. Mapping of Magnetic Fields in City Environment // Bersani F. (Ed.). Electricity and Magnetism in Biology and Medicine. Boston: Springer, 1999. P. 821–822. https://doi.org/10.1007/978-1-4615-4867-6_196; Muller B. Electrosmog. Hausgemachtes Problem // Bild Wiss. 1996. № 4. P. 12–14.; National precautionary policies on magnetic fields from power lines in Belgium, France, Germany, the Netherlands, and the United Kingdom. RIVM Report 2017– 0118. P. 56. https://doi.org/10.21945/RIVM-2017-0118; Paniagua J.M., Jiménez A., Rufo M. et al. Exposure to extremely low frequency magnetic fields in an urban area // Radiat. Environ. Biophys. 2007. № 46. P. 69–76. https://doi.org/10.1007/s00411-006-0081-0; Stacenko L.G., Bakhvalova A.A. Assessment of Electromagnetic Background Levels from Base Stations of Mobile Networks from the Point of View of Technosphere Safety // Int. science and technology conference “EarthScience”. IOP Conf. Series: Earth and Environmental Science. 2020. № 459. 052090. P. 1–7. https://doi.org/10.1088/1755-1315/459/5/05209; Straume A., Johnsson A., Oftedal G. ELF-magnetic flux densities measured in a city environment in summer and winter // Bioelectromagnetics. 2008. Vol. 29 (1). P. 20–28. https://doi.org/10.1002/bem.20357; Tang C., Yang C., Cai R.S. et al. Analysis of the relationship between electromagnetic radiation characteristics and urban functions in highly populated urban areas // Sci. of The Total Environ. 2019. Vol. 654. P. 535–540. https://doi.org/10.1016/j.scitotenv.2018.11.143; https://izvestia.igras.ru/jour/article/view/1540

  13. 13
    Academic Journal
  14. 14
  15. 15
    Conference

    Συνεισφορές: Тимченко, Сергей Николаевич

    Περιγραφή αρχείου: application/pdf

    Relation: Изотопы: технологии, материалы и применение : сборник тезисов докладов VI Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 26-29 октября 2020 г.; http://earchive.tpu.ru/handle/11683/63960

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/63960

  16. 16
    Conference

    Περιγραφή αρχείου: application/pdf

    Relation: Молодежь и современные информационные технологии : сборник трудов XVII Международной научно-практической конференции студентов, аспирантов и молодых учёных, 17-20 февраля 2020 г., г. Томск; http://earchive.tpu.ru/handle/11683/62231

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/62231

  17. 17
  18. 18
  19. 19
  20. 20
    Conference

    Συγγραφείς: Saqib, Muhammad, Amoah, Paul Atta

    Συνεισφορές: Loyko, Olga Timofeevna

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/63729