Εμφανίζονται 1 - 20 Αποτελέσματα από 52 για την αναζήτηση '"ЭКСТРАЦЕЛЛЮЛЯРНЫЙ МАТРИКС"', χρόνος αναζήτησης: 0,69δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Influence of transcription factor κB on remodeling of extracellular matrix of rat liver under conditions of chronic alcohol intoxication / A. O. Mykytenko, O. Ye. Akimov, G. A. Yeroshenko, K. S. Neporada // Світ медицини та біології. – 2022. – № 2 (80). – P. 214–217.; https://repository.pdmu.edu.ua/handle/123456789/19238

  4. 4
    Academic Journal

    Πηγή: Medical Visualization; Том 26, № 3 (2022); 77-86 ; Медицинская визуализация; Том 26, № 3 (2022); 77-86 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1089/752; https://medvis.vidar.ru/jour/article/downloadSuppFile/1089/1362; https://medvis.vidar.ru/jour/article/downloadSuppFile/1089/1363; Lockhart M., Wirrig E., Phelps A., Wessels A. Extracellular matrix and heart development. Birth. Defects Res. Part A – Clin. Mol. Teratol. 2011; 91 (6): 535–550. http://doi.org/10.1002/bdra.20810; Илов Н.Н., Арнаудова К.Ш., Нечепуренко А.А., Ясенявская А.Л., Башкина О.А. СМА. Роль внеклеточного матрикса сердца в возникновении и прогрессировании хронической сердечной недостаточности. Российский кардиологический журнал. 2021; 26 (2S): 4362. https://doi.org/10.15829/1560-4071-2021-4362; De Jong S., Van Veen T.A.B, De Bakker J.M.T. et al. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 2011; 57 (5). 522–535. http://doi.org/10.1097/FJC.0b013e31821823d9; Wong C.X., Brown A., Lau D.H. et al. Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives. Hear Lung Circ. 2019; 28 (1). 6–14. http://doi.org/10.1016/j.hlc.2018.08.026; González A., Schelbert E.B., Díez J., Butler J. Myocardial Interstitial Fibrosis in Heart Failure: Biological and Translational Perspectives. J. Am. Coll. Cardiol. 2018; 71 (15): 1696–1706. http://doi.org/10.1016/j.jacc.2018.02.021; Schelbert E.B., Testa S.M., Meier C.G. et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: Slow infusion versus bolus. J. Cardiovasc. Magn. Reson. 2011; 13 (1): 16. http://doi.org/10.1186/1532-429X-13-16; Dubourg B., Dacher J.N., Durand E. et al. Single-source dual energy CT to assess myocardial extracellular volume fraction in aortic stenosis before transcatheter aortic valve implantation (TAVI). Diagn. Interv. Imaging. 2021; 102 (9): 561–570. http://doi.org/10.1016/j.diii.2021.03.003; Disertori M., Rigoni M., Pace N. et al. Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV Dysfunction: A Meta-Analysis. JACC Cardiovasc. Imaging. 2016; 9 (9): 1046–1055. http://doi.org/10.1016/j.jcmg.2016.01.033; Su M.Y.M., Lin L.Y., Tseng Y.H.E. et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc. Imaging. 2014; 7 (10): 991–997. http://doi.org/10.1016/j.jcmg.2014.04.022; Rommel K.P., Von Roeder M., Latuscynski K. et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 2016; 67 (15). 1815–1825. http://doi.org/10.1016/j.jacc.2016.02.018; Patel A.R., Kramer C.M. Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc. Imaging. 2017; 10 (10 Pt A): 1180–1193. http://doi.org/10.1016/j.jcmg.2017.08.005; Moustafa A., Khan M.S., Alsamman M.A. et al. Prognostic significance of T1 mapping parameters in heart failure with preserved ejection fraction: a systematic review. Heart Fail. Rev. 2020; 26 (6):1325–1331. http://doi.org/10.1007/s10741-020-09958-4; Bandula S., White S.K., Flett A.S. et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: Validation against histologic findings. Radiology. 2013; 269 (2): 396–403. http://doi.org/10.1148/radiol.13130130; Kurita Y., Kitagawa K., Kurobe Y. et al. Data on correlation between CT-derived and MRI-derived myocardial extracellular volume. Data Brief. 2016; 7: 1045–1047. http://doi.org/10.1016/j.dib.2016.03.073; Kurita Y., Kitagawa K., Kurobe Y. et al. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J. Cardiovasc. Comput. Tomogr. 2016; 10 (3): 237–241. http://doi.org/10.1016/j.jcct.2016.02.001; Takafuji M., Kitagawa K., Nakamura S. et al. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J. Cardiovasc. Comput. Tomogr. 2020; 14 (6): 524–528. http://doi.org/10.1016/j.jcct.2020.01.013; Nacif M.S., Kawel N., Lee J.J. et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012; 264 (3): 876–883. http://doi.org/10.1148/radiol.12112458; Nacif M.S., Liu Y., Yao J. et al. 3D left ventricular extracellular volume fraction by low-radiation dose cardiac CT: Assessment of interstitial myocardial fibrosis. J. Cardiovasc. Comput. Tomogr. 2013; 7 (1): 51–57. http://doi.org/10.1016/j.jcct.2012.10.010; Gupta A., Kikano E.G., Bera K. et al. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians. Eur. J. Radiol. Open. 2021; 20; 8: 100324. http://doi.org/10.1016/j.ejro.2021.100324; Yamada A., Kitagawa K., Nakamura S. et al. Quantification of extracellular volume fraction by cardiac computed tomography for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Sci. Rep. 2020; 10 (1): 15367. http://doi.org/10.1038/s41598-020-72417-5; Qi R.X., Shao J., Jiang J.S. et al. Myocardial extracellular volume fraction quantitation using cardiac dual-energy CT with late iodine enhancement in patients with heart failure without coronary artery disease: A single-center prospective study. Eur. J. Radiol. 2021; 140: 109743. http://doi.org/10.1016/j.ejrad.2021.109743; Ohta Y., Kitao S., Yunaga H. et al. Quantitative evaluation of non-ischemic dilated cardiomyopathy by late iodine enhancement using rapid kV switching dual-energy computed tomography: A feasibility study. J. Cardiovasc. Comput. Tomogr. 2019; 13 (2): 148–156. http://doi.org/10.1016/j.jcct.2018.10.028; Abadia A.F., van Assen M., Martin S.S. et al. Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dualenergy CT. J. Cardiovasc. Comput. Tomogr. 2020; 14 (2): 162–167. http://doi.org/10.1016/j.jcct.2019.09.008; Si-Mohamed S.A., Restier L.M., Branchu A. et al. Diagnostic Performance of Extracellular Volume Quantified by Dual-Layer Dual-Energy CT for Detection of Acute Myocarditis. J. Clin. Med. 2021; 10 (15): 3286. http://doi.org/10.3390/jcm10153286; Lee H.J., Im D.J., Youn J.C. et al. Myocardial extracellular volume fraction with dual-energy equilibrium contrastenhanced cardiac ct in nonischemic cardiomyopathy: A prospective comparison with cardiac MR imaging. Radiology. 2016; 280 (1). 49–57. http://doi.org/10.1148/radiol.2016151289; Danad I., Fayad Z.A., Willemink M.J., Min J.K. New applications of cardiac computed tomography: Dualenergy, spectral, and molecular CT imaging. JACC Cardiovasc. Imaging. 2015; 8 (6): 710–723. http://doi.org/10.1016/j.jcmg.2015.03.005; Wang R., Liu X., Schoepf U.J. et al. Extracellular volume quantitation using dual-energy CT in patients with heart failure: Comparison with 3T cardiac MR. Int. J. Cardiol. 2018; 268: 236–240. http://doi.org/10.1016/j.ijcard.2018.05.027; Ohta Y., Kishimoto J., Kitao S. et al. Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dualenergy CT: Segmental comparison with MRI T1 mapping. J. Cardiovasc. Comput. Tomogr. 2020; 14 (4): 349–355. http://doi.org/10.1016/j.jcct.2019.12.032; Oda S., Emoto T., Nakaura T. et al. Myocardial late iodine enhancement and extracellular volume quantification with dual-layer spectral detector dual-energy cardiac CT. Radiol. Cardiothorac. Imaging. 2019; 1 (1): e180003. http://doi.org/10.1148/ryct.2019180003; https://medvis.vidar.ru/jour/article/view/1089

  5. 5
  6. 6
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 19, № 4 (2020); 215-225 ; Бюллетень сибирской медицины; Том 19, № 4 (2020); 215-225 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4171/2890; https://bulletin.tomsk.ru/jour/article/view/4171/2923; Шехтер А.Б., Серов В.В. Воспаление, адаптивная регенерация и дисрегенерации (анализ межклеточных взаимодействий). Архив патологии. 1991; 7: 7–14.; Казначеев В.П., Субботин М.Я. Этюды к теории общей патологии. 2-е изд. Новосибирск, 2006: 256.; Наумова Л.А. Общепатологические аспекты атрофического поражения слизистой оболочки желудка: особенности клинических и структурно-функциональных проявлений различных морфогенетических вариантов атрофического процесса. URL: https://surgumed.elpub.ru/jour/article/view/176?locale=ru_RU.; Walker C., Mojares E., Hernández A Del Río. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018; 19 (10). DOI:10.3390/ijms19103028.; Kaushik S., Pickup M.W., Weaver V.M. From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 2016; 35 (4): 655–667. DOI:10.1007/s10555-016-9650-0.; Sun Zhiqi, Guo Shengzhen S., Fässler R. Integrin- mediated mechanotransduction. JBC. 2016; 215 (4): 445–456. DOI:10.1083/jcb.201609037.; Karsdal M.A., Nielsen M.J., Sand J.M., Henriksen K., Genovese F., Bay-Jensen A.C., Smith V., Adamkewicz J.I., Christiansen C., Leeming D.J. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev. Technol. 2013; 11 (2): 70–92. DOI:10.1089/adt.2012.474.; Houg D.S., Bijlsma M.F. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol. Cancer. 2018; 17 (1): 95. DOI:10.1186/s12943-018-0842-9.; Humphries J.D., Chastney M.R., Askari J.A., Humphries M.J. Signal transduction via integrin adhesion complexes. Cur. Opin. Cell Biol. 2019; 56: 14–21. DOI:10.1016/j.ceb.2018.08.004.; Сандбо Н., Смольянинова Л.В., Орлов С.Н., Дулин Н.О. Регуляция дифференцировки и функционирования миофибробластов сигнальной системой цитоскелета. Успехи биологической химии. 2016; 56 (13): 259–282.; Kechagia J.Z., Ivaska J., Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019; 20 (8): 457–473. DOI:10.1038/s41580-019-0134-2.; Habbig S., Bartram M.P., Müller R.U., Schwarz R., Andriopoulos N., Chen S., Sägmüller J.G., Hoehne M., Burst V., Liebau M.C., Reinhardt H.C., Benzing T., Schermer B. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. JBC. 2011; 193 (4): 633–642. DOI:10.1083/jcb.201009069.; Chacón-Martínez C.A., Koester J., Wickström S.A. Signaling in the stem cell niche: regulating cell fate, function and plasticity. The Company of Biologists. 2018; 145 (15). DOI:10.1242/dev.165399.; Pennings S., Liu K.J., Qian H. The stem cell niche: interactions between stem cells and their environment. Stem Cells Int. 2018; 1–2: 1–2. DOI:10.1155/2018/4879379.; Miller C., Crampin E., Osborne J. Maintaining the stem cell niche in multicellular models of epithelia. arXiv:1811.10781v1 [q-bio.TO] 27. 2018. https://arxiv.org/pdf/1811.10781.; Lucas B., Pérez L.M., Gálvez B.G. Importance and regulation of adult stem cell migration. J. Cell Mol. Med. 2018; 22 (2): 746–754. DOI:10.1111/jcmm.13422.; Semba S., Kodama Y., Ohnuma K., Mizuuchi E., Masuda R., Yashiro M., Hirakavwa K., Yokozaki H. Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br. J. Cancer. 2009; 101 (8): 1365–1373. DOI:10.1038/sj.bjc.6605309.; Gonzalez D.M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling. 2014; 7 (344): re8. DOI:10.1126/scisignal.2005189.; Ye X., Weinberg R.A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015; 25 (11): 675–686. DOI:10.1016/j.tcb.2015.07.012.; Li H., Xu F., Li S., Zhong A., Meng X., Lai M. The tumor microenvironment: an irreplaceable element of tumor budding and epithelial-mesenchymal transition- mediated cancer metastasis. Cell Adh. Migr. 2016; 10 (4): 434–446. DOI:10.1080/19336918.2015.1129481.; Chen C., Zimmermann M., Tinhofer I., Kaufmann A.M., Albers A.E. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett. 2013; 338 (1): 47–56. DOI:10.1016/j.canlet.2012.06.013.; Hao J., Zhang Y., Deng M., Ye R., Zhao S., Wang Y., Li J., Zhao Z. MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int. J. Cancer. 2014; 135 (5): 1019–1027. DOI:10.1002/ijc.28761.; Liu X., Fan D. The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Current Pharmaceutical Design. 2015; 21 (10): 1279–1291. DOI:10.2174/1381612821666141211115611.; Hollier B.G., Evans K., Mani S.A. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J. Mammary Gland Biol. Neoplasia. 2009; 14 (1): 29–43. DOI:10.1007/s10911-009-9110-3.; Förster S., Gretschel S., Jöns T., Yashiro M., Kemmner W. THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod. Pathol. 2011; 24 (10): 1390–1403. DOI:10.1038/modpathol.2011.99.; West J., Bianconi G., Severini S., Teschendorff A.E. Differential network entropy reveals cancer system hallmarks. Scientific Reports. 2012; 802. DOI:10.1038/srep00802.; Spinelli F.M., Vitale D.L., Demarchi G., Cristina C., Alaniz L. The immunological effect of hyaluronan in tumor angiogenesis. Clin. Transl. Immunology. 2015; 4 (12): 1–9. DOI:10.1038/cti.2015.35.; Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014; 4: 62. DOI:10.3389/fonc.2014.00062.; Kasashima H., Yashiro M., Nakamae H., Masuda G., Kinoshita H., Morisaki T., Fukuoka T., Hasegawa T., Sakurai K., Toyokawa T., Kubo N., Tanaka H., Muguruma K., Ohira M., Nakane T., Hino M., Hirakawa K. Bone marrow-derived stromal cells are associated with gastric cancer progression. Br. J. Cancer. 2015; 113 (3): 443–452. DOI; 1038/bjc.2015.236.; Gascard Ph., Tlsty Th.D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016; 30 (9): 1002–1019. DOI:10.1101/gad.279737.116.; Shi Y., Du L., Wang Y. Tumor-assiciated mesenchymal stem/stromal cell: emerging therapeutic targets. Nat. Rev. Drug Discov. 2017; 16: 35–52. DOI:10.1038/nrd.2016.193.; Miki D., Zhu P., Zhang W., Mao Y., Feng Zh., Huang H., Zhang H., Li Y., Liu R., Zhang H., Qi Y., Zhu J.-K. Efficient generation of diRNAs requires components in the posttranscriptional gene-silencing pathway. Scientific Reports. 2017; 7: 301. DOI:10.1038/s41598-017-00374-7.; Cohen N., Shani O., Raz Y., Sharon Y., Hoffman D., Abramovitz L., Erez N. Fibroblast drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of сhitinase 3-like 1. Oncogene. 2017; 36 (31): 4457–; Dhanota N., Arora S.K. Cancer stem cells: a cause or a consequence of field cancerization. International Journal of Translational Research. 2018; 1 (1): 14–16.; De Filippis R.A., Fordyce C., Patten K., Chang H., Zhao J., Fontenay G.V., Kerlikowske K., Parvin B., Tlsty Th. D. stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density. Cancer Res. 2014; 74 (18): 5032–5044. DOI:10.1158/0008-5472.CAN-13-3390.; Kang N., Shah V.H., Urrutia R. Membrane-to-nucleus signals and epigenetic mechanisms for myofibroblastic activation and desmoplastic stroma: potential therapeutic targets for liver metastasis? Mol. Cancer Res. 2015; 13 (4): 604–612. DOI:10.1158/1541-7786. MCR-14-0542.; Afik R., Zigmond E., Vugman M., Klepfish M., Shimshoni E., Pasmanik-Chor M., Shenoy A., Bassat E., Halpern Z., Geiger T., Sagi I., Varol C. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 2016; 213 (11): 2315–2331. DOI:10.1084/jem.20151193.; Лазарев А.Ф., Бобров И.П., Черданцева Т.М., Климачев В.В., Брюханов В.М., Авдалян А.М., Лубенников В.А., Гервальд В.Я. Тучные клетки и опухолевый рост. Сибирский онкологический журнал. 2011; 4 (46): 59–63.; Рыков В.А. Опухолевое поле. Архив патологии. 1981; 10: 67–69.; Stearman R., Dwyer-Nield L., Grady M.C., Malkinson A.M., Yeraci M.W. A macrophage gene expression signature defines a field effect in the lung tumor microenvironment. Cancer Res. 2008; 68 (1): 34–43. DOI:10.1158/0008-5472.CAN-07-0988.; Curtius K., Wright N.A., Graham T.A. An evolutionary perspective on field cancerization. Nat. Rev. Cancer. 2017; 18 (1): 19–32. DOI:10.1038/nrc.2017.102.; Braakhuis B.J.M., Brakenhoff R.H., Leemans C.R. Second field tumor: a new opportunity for cancer preventing? The Oncologist. 2005; 10 (7): 493–500. DOI:10.1634/theoncologist.10-7-493 theoncologist.alphamedpress.org/content/10/7/493.; Redente E.F., Orlicky D.J., Bouchard R.J. Tumour signaling to the bone marrow changes to the phenotype of monocytes and pulmonary macrophages during urethane-induced primary lung tumourogenesis in A/J mice. Am. J. Pathol. 2007; 170; (2): 693–708. DOI:10.2353/ajpath.2007.060566.; Франк Г.А. Рецидив злокачественной опухоли: понятие, сущность, терминология. Архив патологии. 2006; 3: 23–26.; Tabor M.P., Brakenhoff R.H., Ruijter-Schippers H.J., van der Wal J.E. et al. Multiple head and neck tumor frequently original from a single preneoplastic lesion. Am. J. Pathol. 2002; 161: 105–106. DOI:10.1016/S0002-9440(10)64266-6.; Christensen S.R. Recent advances in field cancerization and management of multiple cutaneous squamous cell carcinomas. Journal List. F1000Research. 2018; 7: 690. DOI:10.12688/f1000research.12837.1.; Pereira A.L., Magalhães L., Moreira F.C., Reis- das-Mercês L., Vidal A.F., Ribeiro-Dos-Santos A.M., Demachki S., Anaissi A.K.M., Burbano R.M.R., Albuquerque P., Dos Santos S.E.B., de Assumpção P.P., Ribeiro-Dos-Santos Â.K.C. Epigenetic field cancerization in gastric cancer: microRNAs as promising biomarkers. Journal of Cancer. 2019; 10 (6): 1560–1569. DOI:10.7150/jca.27457.; Кит О.И., Франциянц Е.М., Геворкян Ю.А., Комарова Е.Ф., Сальникова М.М., Малейко М.Л. Состояние стероидного гомеостаза опухолевой ткани различных морфологических форм рака желудка. Паллиативная медицина и реабилитация. 2011; 4: 35–38.; Doglioni G., Parik S., Fendt S.M. Interactions in the (pre)metastatic niche support metastasis formation. Frontiers in Oncology. 2019; 9: 219. DOI:10.3389/fonc.2019.00219.; Guo Ya., Ji X., Liu J., Fan D., Zhou Q., Chen Ch., Wang W., Wang G., Wang H., Yuan W., Ji Zh., Sun Zh. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer. 2019; 18 (39): 39. DOI:10.1186/s12943-019-0995-1.; https://bulletin.tomsk.ru/jour/article/view/4171

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Συγγραφείς: Popandopulo, A., Savchuk, M., Yudickiy, D.

    Πηγή: Biotechnologia Acta, Vol 8, Iss 1, Pp 82-87 (2015)

    Περιγραφή αρχείου: text/html

  12. 12
  13. 13
    Academic Journal

    Συγγραφείς: Kyseliov, S. M.

    Πηγή: Буковинський медичний вісник; Том 19, № 1 (73) (2015): Буковинський медичний вісник; 68-73
    Буковинский медицинский вестник; Том 19, № 1 (73) (2015): Буковинский медицинский вестник; 68-73
    Bukovinian Medical Herald; Том 19, № 1 (73) (2015): Bukovinian Medical Herald; 68-73

    Περιγραφή αρχείου: application/pdf

  14. 14
    Academic Journal

    Συνεισφορές: Federal Target Program of the Ministry of Education and Science of the Russian Federation (agreement 14.575.21.0164, ID number RFMEFI57517X0164) “Research and innovations in priority areas of development of Russian scientific and technological complex for 2014–2020”, Минобрнауки России, соглашение № 14.575.21.0164 от 26.09.17 (уникальный идентификатор RFMEFI57517Х0164) в рамках Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014– 2020 годы»

    Πηγή: Bulletin of Siberian Medicine; Том 17, № 3 (2018); 217-228 ; Бюллетень сибирской медицины; Том 17, № 3 (2018); 217-228 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1301/841; https://bulletin.tomsk.ru/jour/article/view/1301/867; Terskikh V.V., Vasiliev A.V., Vorotelyak E.A. Stem Cell Niches. Biology Bull. 2007; 34 (3): 211–220. DOI:10.1134/S1062359007030016.; The global market for stem cells (Report ID: 2274672, March 2018): 162 p. URL: https://www.reportbuyer.com/product/2274672/the-global-market-for-stem-cells.html; last visit 12.05.2018.; Çорин В.Л., Çорина А.И., Черкасов В.Р. Анализ зарубежного рынка регенеративной медицины. Клеточная трансплантология и тканевая инженерия. 2009; 4: 68–78.; Holmes D.R. Jr. State of the art in coronary intervention. Am. J. Cardiol. 2003; 91: 50A–53A.; Schrattenholz A., Klemm M. How human embryonic cell research can impact in-vitro drug screening technologies of the future. Drug Testing In Vitro: Breakthroughs and Trends in Cell Culture Technology. Weinheim: WILEY-VCH Verlag Gmbh Co., 2007: 205–228.; Rabkin E., Schoen F.J. Cardiovascular tissue engineering. Cardiovasc. Pathol. 2002; 11 (6): 305–317. https://doi.org/10.1016/S1054-8807(02)00130-8.; Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science: an introduction to Materials in Medicine. 2nd ed. San Diego: Elsevier Academic Press, 2004: 864.; Khlusov I.A., Shevtsova N.M., Khlusova M.Y. Detection in vitro and quantitative estimation of artificial microterritories which promote osteogenic differentiation and maturation of stromal stem cells. Methods Mol. Biol. 2013; 1035: 103–119. DOI:10.1007/978-1-62703-508-8_9.; Lander A.D., Kimble J., Clevers H., Fuchs E., Montarras D., Buckingham M., Calof A.L., Trumpp A., Oskarsson T. What does the concept of the stem cell niche really mean today? BMC Biology. 2012; 10: 19. DOI:10.1186/1741-7007-10-19.; Owen M., Friedenstein A.J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 1988; 136: 42–60.; Caplan A.I. Mesenchymal stem cells. J. Orthop. Res. 1991; 9: 641–650.; Da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006; 119: 2204–2213. DOI:10.1242/jcs.02932; Aerts F., Wagemaker G. Mesenchymal stem cell engineering and transplantation. In: Nolta J.A., Ed. Genetic engineering of mesenchymal stem cells. The Netherlands: Springer, 2006: 1–44. DOI:10.1007/1-4020-3959-X_1.; Bianco P., Robey P.G. Skeletal stem cells. In: Lanza R., Ed. Handbook of Stem Cells. V. 2. New York: Academic Press. 2004: 415–424. DOI:10.1016/B978-0124366435/50129-2.; Kfoury Y., David T., Scadden D.T. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015; 16: 239–253. http://dx.doi.org/10.1016/j.stem.2015.02.019.; Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8: 315–317. DOI:10.1080/14653240600855905.; Han W., Yu Y., Liu X.Y. Local signals in stem cell-based bone marrow regeneration. Cell Research. 2006; 16: 189–195. DOI:10.1038/sj.cr.7310026.; Ho A.D., Wagner W., Franke W. Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy. 2008; 10: 320–330. DOI:10.1080/14653240802217011.; Docheva D., Popov C., Mutschler W., Schieker M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell Mol. Med. 2007; 11 (1): 21–38. DOI:10.1111/j.15824934.2007.00001.x.; Armstrong L., Lako M., Buckley N., Lappin T.R., Murphy M.J., Nolta J.A., Pittenger M., Stojkovic M. Editorial: Our Top 10 Developments in Stem Cell Biology over the Last 30 Years. Stem sells. 2012; 30: 2–9. DOI:10.1002/stem.1007.; Pittenger M.F., Mackay A.M., Beck S.C., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147. DOI:10.1126/science.284.5411.143.; Tuljapurkar S.R., Jackson J.D., Brusnahan S.K., O’Kane B.J., Sharp J.G. Characterization of a mesenchymal stem cell line that differentiates to bone and provides niches supporting mouse and human hematopoietic stem cells. Stem Cell Discovery. 2012; 2 (1): 5–14. DOI:10.4236/scd.2012.21002.; Nardi N.B., da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol. 2006; 174: 249–282.; Shi S., Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 2003; 18: 696–704. DOI:10.1359/jbmr.2003.18.4.696.; Kolf C.M., Cho E., Tuan R.S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 2007; 9 (1): 204–219. DOI:10.1186/ar2116.; Doherty M.J., Canfield A.E. Gene expression during vascular pericyte differentiation. Crit. Rev. Eukaryot Gene Expr. 1999; 9: 1–17.; Grayson W.L., Zhao F., Izadpanah R., Bunnell B., Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J. Cell Physiol. 2006; 207: 331–339. DOI:10.1002/jcp.20571.; Khlusov I.A., Khlusova M.Yu., Zaitsev K.V., Kolokol’tsova T.D., Sharkeev Yu.P., Pichugin V.F., Legostaeva E.V., Trofimova I.E., Klimov A.S., Zhdanova A.I. Pilot in vitro study of the parameters of artificial niche for osteogenic differentiation of human stromal stem cell pool. Bull. Exp. Biol. Med. 2011; 150 (4): 535–542. DOI:10.1007/s10517-011-1184-4.; Tavassoli M. Studies on hemopoietic microenvironments. Exp. Hematol. 1975; 3: 213–226.; Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science. 2009; 324 (5935): 1673–1677. DOI:10.1126/science.1171643.; Dygai A.M., Zhdanov V.V. Theory of hematopoiesis control. In: SpringerBriefs in Cell Biology. V.5. Switzerland: Springer International Publishing, 2014: 1–93.; Ingber D.E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 2002; 91: 877–887.; Taichman R.S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood. 2005; 105 (7): 2631–2639. DOI:10.1182/blood-2004-06-2480.; Stabenfeldt S.E., Brown A.C., Barker T.H. Engineering ECM complexity into biomaterials for directing cell fate. In: Gefen Amit, Ed. Studies in Mechanobiology, Tissue Engineering and Biomaterials. V. 2. Roy K., Ed. Biomaterials as Stem Cell Niche. Berlin Heidelberg: Springer-Verlag, 2010: 1–18. DOI: 10,1007/8415_2010_32.; Gerecht S., Burdick J.A., Ferreira L.S., Townsend S.A., Langer R., Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 2007; 104 (27): 11298–11303. DOI:10.1073/pnas.0703723104.; Iwasaki H., Suda T. Hematopoietic stem cells and their niche. In: Kondo M., Ed. Hematopoietic Stem Cell Biology, Stem Cell Biology and Regenerative Medicine. New York: Humana Press, 2010: 37–55. DOI:10.1007/978-160327-347-3.; Chung C., Burdick J.A. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng. Part A. 2009; 15 (2): 243–254. DOI:10.1089/ten.tea.2008.0067.; Djouad F., Delorme B., Maurice M., Bony C., Apparailly F., Louis-Plence P., Canovas F., Charbord P., Noël D., Jorgensen C. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res. Ther. 2007; 9 (2): R33. DOI:10.1186/ar2153.; Datta N., Holtorf H.L., Sikavitsas V.I., Jansen J.A., Mikos A.G. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005; 26 (9): 971–977. DOI:10.1016/j.biomaterials.2004.04.001.; Phadke A., Chang C.-W., Varghese S. Functional biomaterials for controlling stem cell differentiation. In: Gefen Amit, Ed. Studies in Mechanobiology, Tissue Engineering and Biomaterials. V. 2. Roy K., Ed. Biomaterials as Stem Cell Niche. Berlin Heidelberg: Springer-Verlag, 2010: 19–44.; Scadden D.T. The stem cell niche in health and leukemic disease. Best Pract. Res. Clin. Haematol. 2007; 20 (1): 19–27. DOI:10.1016/j.beha.2006.11.001.; McNeil S.E., Hobson S.A., Nipper V., Rodland K.D. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J. Biol. Chem. 1998; 273: 1114–1120.; Theman T.A., Collins M.T. The Role of the calcium-sensing receptor in bone biology and pathophysiology. Curr. Pharm. Biotechnol. 2009; 10 (3): 289–301.; Liu Y.K., Lu Q.Z., Pei R., Ji H.J., Zhou G.S., Zhao X.L., Tang R.K., Zhang M. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed. Mater. 2009; 4 (2): 025004. DOI:10.1088/1748-6041/4/2/025004.; Purton L.E., Scadden D.T. The hematopoietic stem cell niche. In: The Stem Cell Research Community ed. StemBook. Cambridge (MA): Harvard Stem Cell Institute, 2008. URL: doi/10.3824/stembook.1.28.1.; Sundelacruz S., Levin M., Kaplan D.L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One. 2008; 3 (11): e3737. DOI:10.1371/journal.pone.0003737.; Undelacruz S., Levin M., Kaplan D.L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. 2009; 5: 231–246. DOI:10.1007/s12015-009-9080-2.; Riggs B.L., Melton III L.J. Osteoporosis: Etiology, diagnosis, and management. 2nd ed. Philadelphia. New York: Lippincott-Raven Publ., 1995: 524.; Dellatore S.M., Garsia A.S., Miller W.M. Mimicking stem cell niches to increase stem cell expansion. Curr. Opin. Biotechnol. 2008; 19 (5): 534–540. DOI:10.1016/j.copbio.2008.07.010.; Khlusov I.A., Shevtsova N.M., Khlusova M.Yu., Zaytsev K.V., Sharkeev Y.P., Pichugin V.F., Legodtaeva E.V. Niche-relief conception for stem cells as a basis of biomimetic approach to bone and hemopoietic tissues engineering. Cellular Transplantation and Tissue Engineering. 2011; 6 (2): 55–64.; Pacifici R. The immune system and bone. Arch. Biochem. Biophys. 2010; 503 (1): 41–53. DOI:10.1016/j.abb.2010.05.027.; Saprina T., Khlusov I., Borodulina A. Change of properties of mononuclear leukocytes at patients with an osteogenesis imperfecta after operative treatment with using nanosized hydroxylapatite coatings. Bone. 2010; 46 (Suppl. 1): S69–70.; Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate. Nature. 2009; 462: 433–441. DOI:10.1038/nature08602.; Metallo C.M., Mohr J.C., Detzel C.J., de Pablo J.J., Van Wie B.J., Palecek S.P. Engineering the stem cell microenvironment. Biotechnol. Prog. 2007; 23: 18–23. DOI:10.1021/bp060350a.; Saha K., Pollock J.F., Schaffer D.V., Healy K.E. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 2007; 11: 381–387. DOI:10.1016/j.cbpa.2007.05.030.; Kobel S., Lutolf M.P. Biomaterials meet microfluidics: building the next generation of artificial niches. Curr. Opin. Biotechnol. 2011; 22 (5): 690–697. DOI:10.1016/j.copbio.2011.07.001.; Dawson E., Mapili G., Erickson K., Taqvi S., Roy K. Biomaterials for stem cell differentiation. Adv. Drug Deliv. Rev. 2008; 60: 215–228. DOI:10.1016/j.addr.2007.08.037.; Ponsonnet L., Reybier K., Jaffrezic N., Comte V., Lagneau C., Lissac M., Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Mater. Sci. Eng. C. 2003; 23 (4): 551–560. DOI:10.1016/S0928-4931(03)00033-X.; Ueshima M., Tanaka S., Nakamura S., Yamashita K. Manipulation of bacterial adhesion and proliferation by surface charges of electrically polarized Hydroxyapatite. J. Biomed. Mater. Res. 2002; 60: 578–584. DOI:10.1002/jbm.10113.; Dekhtyar Yu., Dvornichenko M.V., Karlov A.V., Khlusov I.A., Polyaka N., Sammons R., Zaytsev K.V. Electrically functionalized hydroxyapatite and calcium phosphate surfaces to enhance immobilization and proliferation of osteoblasts in vitro and modulate osteogenesis in vivo. IFMBE Proc. 2009; 25/10: 245–248. https://doi.org/10.1007/978-3-642-03900-3_70.; Martinez E., Engel E., Planell J.A., Samitier J. Effects of artificial microand nano-structured surfaces on cell behaviour. Ann. Anat. 2009; 191: 126–135. DOI:10.1016/j.aanat.2008.05.006.; Yu L.M.Y., Leipzig N.D., Shoichet M.S. Promoting neuron adhesion and growth. Materials Today. 2008; 11: 36–43. DOI:10.1016/S1369-7021(08)70088-9.; Bershadsky A.D., Balaban N.Q., Geiger B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 2003; 19: 677–695. DOI:10.1146/annurev.cellbio.19.111301.153011.; Discher D.E., Janmey P.A., Wang Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310: 1139–1143. DOI:10.1126/science.1116995.; Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002; 3: 349–363. DOI:10.1038/nrm809.; Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126 (4): 677–689. DOI:10.1016/j.cell.2006.06.044.; Parmar K., Mauch P., Vergilio J.A., Sackstein R., Down J.D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. USA. 2007; 104 (13): 5431–5436. DOI:10.1073/pnas.0701152104.; McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 2004; 6 (4): 483–495.; Gauthier O., Bouler J.-M., Aguado E., Pilet P., Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998; 19 (1-3): 133–139. DOI:10.1016/S0142-9612(97)00180-4.; Sous M., Bareille R., Rouais F., Clement D., Amedee J., Dupuy B. Cellular biocompatibility and resistance to compression of macroporous beta-tricalcium phosphate ceramics. Biomaterials. 1998; 19: 2147–2153. DOI:10.1016/S0142-9612(98)00118-5.; Sasaki D., Shimizu T., Masuda S., Kobayashi J., Itoga K., Tsuda Y., Yamashita J.K., Yamato M., Okano T. Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method. Biomaterials. 2009; 30 (26): 4384–4389. DOI:10.1016/j.biomaterials.2009.05.003.; Peerani R., Rao B.M., Bauwens C., Yin T., Wood G.A., Nagy A., Kumacheva E., Zandstra P.W. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 2007; 26 (22): 4744–4755. DOI:10.1038/sj.emboj.7601896.; de Barros A.P.D.N., Takiya C.M., Garzoni L.R., Leal-Ferreira M.L., Dutra H.S., Chiarini L.B., Meirelles M.N., Borojevic R., Rossi M.I.D. Osteoblasts and bone marrow mesenchemal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One. 2010; 5 (2): e9093–9111. DOI:10.1371/journal.pone.0009093.; Curtis A.S.G., Wilkinson C. Topographical control of cells. Biomaterials. 1998; 18: 1573–1583.; Meyer U., Buchter A., Wiesmann H.P., Joos U., Jones D.B. Basic reactions of osteoblasts on structured material surface. Eur. Cells Mat. 2005; 9: 39–49.; Yim E.K., Pang S.W., Leong K.W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 2007; 313 (9): 1820–1829. DOI:10.1016/j.yexcr.2007.02.031.; Jing D., Fonseca A.-V., Alakel N., Fierro F.A., Muller K., Bornhauser M., Ehninger G., Corbeil D., Ordemann R. Hematopoietic stem cells in co-culture with mesenchymal stromal cells – modeling the niche compartments in vitro. Haematologica. 2010; 95: 542–550. DOI:10.3324/haematol.2009.010736.; Klein C., de Groot K., Chen W., Li Y., Zhang X. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials. 1994; 15: 31–34. DOI:10.1016/0142-9612(94)90193-7.; Huang J.I., Yoo J.U., Goldberg V.M. Orthopaedic applications of stem cells. In: Blau H., Melton D., Moore M. Eds. Handbook of stem cells. V. 2. New York: Elsevier Inc., 2004: 773–784. DOI:10.1016/B978-0124366435/50160-7.; Gattazzo F., Urciuolo A., Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta. 2014; 1840 (8): 2506–2519. DOI:10.1016/j.bbagen.2014.01.010.; Asada N., Takeishi S., Frenette P.S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 2017; 106 (1): 45–54. DOI:10.1007/s12185-017-2 262-9.; https://bulletin.tomsk.ru/jour/article/view/1301

  15. 15
    Academic Journal

    Πηγή: National Journal glaucoma; Том 14, № 4 (2015); 13-20 ; Национальный журнал Глаукома; Том 14, № 4 (2015); 13-20 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/79/80; Еричев В.П., Егоров Е.А. Патогенез первичной открытоугольной глаукомы. Вестник офтальмологии 2014; 6:98-105; Prata T.S., Lima V.C., Guedes L.M., Biteli L.G., Teixeira S.H., de Moraes C.G., Ritch R., Paranhos A. Jr. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exper Ophthalmol 2012; 40(7):682-688. doi : 10.1111/j.1442-9071.2012.02790.x; Журавлева А.Н., Нероев В.В., Андреева Л.Д. Изучение фибронектина склеры при первичной открытоугольной глаукоме (Иммуногистохимическое исследование). Вестник офтальмологии 2009; 3:12-15; Иомдина Е.Н., Киселева О.А., Светикова Л.А., Любимов Г.А., Моисеева И.Н., Штейн А.А. Новый алгоритм оценки гидродинамических показателей глаза при глаукоме. Вестник офтальмологии 2014; 4:8-13; Brown C.T., Vural M., Johnson M., Trinkaus-Randell V. Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Aging Dev 1994; 77:97-107. doi :10.1016/0047-6374(94) 90018-3; Albon J., Purslow P.P., Karwatowski W.S., Easty D.L. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 2000; 84:318-323. doi : 10.1136/bjo.84.3.318; Маянский Д.Н. Лекции по клинической патологии. Москва: ГЭОТАР-Медиа, 2008. 201 с; Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточные взаимодействия. Москва: Медицина, 2003. 228 с; Schlötzer-Schrehardt U., Lommatzsch J., Küchle M., Konstas A.G., Naumann G.O. Matrixmetalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/ glaucoma and primary open-angle glaucoma. J Glaucoma 2005; 14(1):64-69; Määttii M., Tervahartiala T., Harju M., Airaksinen J., Autio-Harmainen Н., Sorsa T. Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. Invest Ophthalmol Vis Sci 1998; 39(13):2649-2658.; Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8:221-233. doi : 10.1038/nrm2125.; Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. Cataract Refract Surg 2005; 31(1):156-162. doi.org/10.1016/j.jcrs.2004.10.044.; Congdon N.G., Broman A.T., Bandeen-Roche K., Grover D., Quigley H.A. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 2006; 141(5):868-875. doi.org/10.1016/j.ajo.2005.12.007.; Mangouritsas G., Morphis G., Mourtzoukos S., Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 2009; 87(8):901-905. doi : 10.1111/j.1755-3768.2008.01370.x.; Kaushik S., Pandav S.S., Banger A., Aggarwal K., Gupta A. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol 2012; 153(5):840-849.e2. doi : 10.1016/j.ajo.2011.10.032.; Sen E., Elgin K.U., Yüksekkaya P., Tirhiş M.H., Aksakal F.N., Teke M.Y., Oztürk F. Age-related changes in biomechanical parameters of the cornea and intraocular pressure in a healthy Turkish population. Turk J Med Sci 2014; 44(4):687-690.; Kotecha A., Russell R.A., Sinapis A., Pourjavan S., Sinapis D., Garway-Heath D.F. Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes. BMC Ophthalmol 2014; 14:11. doi : 10.1186/1471-2415-14-11.; Rosa N., Lanza M., De Bernardo M., Signoriello G., Chiodini P. Relationship between corneal hysteresis and corneal resistance factor with other ocular parameters. Semin Ophthalmol 2014. doi :10.3109/08820538.2013.874479; Аветисов С.Э., Бубнова И.А., Антонов А.А. Исследование биомеханических свойств роговицы у пациентов с нормотензивной и первичной открытоугольной глаукомой. Вестник офтальмологии 2008; 5: 14-16; Fountoulakis N., Labiris G., Aristeidou A., Katsanos A., Tentes I., Kortsaris A., Kozobolis V.P. Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance. BMC Ophthalmology 2013; 13:69. doi : 10.1186/1471-2415-13-69; Agarval R., Agarval P. Glaucomatous neurodegeneration: An eye on tumor necrosis factor-alpha. Indian J Ophthalmol 2012; 60(4):255-261. doi : 10.4103/0301-4738.98700; https://www.glaucomajournal.ru/jour/article/view/79

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20