Showing 1 - 20 results of 640 for search '"ЭКСПРЕССИЯ ГЕНОВ"', query time: 0.81s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  8. 8
    Academic Journal

    Source: VIII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  9. 9
  10. 10
    Academic Journal

    Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  11. 11
    Academic Journal

    Source: Школа-конференция молодых ученых, аспирантов и студентов «Генетические технологии в микробиологии и микробное разнообразие».

  12. 12
    Academic Journal

    Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  13. 13
    Academic Journal

    Contributors: 0

    Source: Russian Journal of Infection and Immunity; Vol 15, No 3 (2025); 582-586 ; Инфекция и иммунитет; Vol 15, No 3 (2025); 582-586 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  14. 14
    Academic Journal

    Contributors: The work was carried out with the financial support of the Ministry of Health of the Republic of Belarus (SPSR “Fundamental and Applied Sciences – Medicine”, 2016–2020, subprogram 2 “Diagnostics and Therapy of Diseases”, task 2.146 (Reg. No. 20200252, 2020), and SPSR “Biotechnology-2”, 2021–2025, subprogram “Molecular and Cellular Biotechnology-2”, task 1.14 (Reg. No. 20220282, 2022-2024)), Работа выполнена при финансовой поддержке Министерства здравоохранения Республики Беларусь (ГПНИ «Фундаментальные и прикладные науки – медицине», 2016–2020, подпрограмма 2 «Диагностика и терапия заболеваний», задание 2.146 (Рег. № 20200252, 2020 год) и ГПНИ «Биотехнология-2», 2021–2025, подпрограмма «Молекулярные и клеточные биотехнологии-2», задание 1.14 (Рег. № 20220282, 2022–2024 гг.))

    Source: Doklady of the National Academy of Sciences of Belarus; Том 69, № 5 (2025); 404-415 ; Доклады Национальной академии наук Беларуси; Том 69, № 5 (2025); 404-415 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-5

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1275/1277; Steinman, R. M. Decisions about dendritic cells: past, present, and future / R. M. Steinman // Annual Review of Immunology. – 2012. – Vol. 30. – P. 1–22. https://doi.org/10.1146/annurev-immunol-100311-102839; Steinman, R. M. Taking dendritic cells into medicine / R. M. Steinman, J. Banchereau // Nature. – 2007. – Vol. 449. – P. 419–426. https://doi.org/10.1038/nature06175; Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity / P. J. Tacken, I. S. Zeelenberg, L. J. Cruz [et al.] // Blood. – 2011. – Vol. 118, N 26. – P. 6836–6844. https://doi.org/10.1182/blood-2011-07-367615; Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells / L. Naldini // Current Opinion in Biotechnology. – 1998. – Vol. 9, N 5. – P. 457–463. https://doi.org/10.1016/s0958-1669(98)80029-3; SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates / H. Lahouassa, W. Daddacha, H. Hofmann [et al.] // Nature Immunology. – 2012. – Vol. 13. – P. 223–228. https://doi.org/10.1038/ni.2236; SAMHD1 is the dendriticand myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx / N. Laguette, B. Sobhian, N. Casartelli [et al.] // Nature. – 2011. – Vol. 474. – P. 654–657. https://doi.org/10.1038/nature10117; Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein / K. Hrecka, C. Hao, M. Gierszewska [et al.] // Nature. – 2011. – Vol. 474. – P. 658–661. https://doi.org/10.1038/nature10195; With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC / C. Goujon, L. Jarrosson-Wuilleme, J. Bernaud [et al.] // Gene Therapy. – 2006. – Vol. 13. – P. 991–994. https://doi.org/10.1038/sj.gt.3302753; A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells / N. Manel, B. Hogstad, Ya. Wang [et al.] // Nature. – 2010. – Vol. 467. – P. 214–217. https://doi.org/10.1038/nature09337; Sambrook, J. F. Molecular cloning: a laboratory manual / J. Sambrook. – Cold Spring Harbor, 2001. – 3d ed.; A conserved dileucine-containing motif in p6gag governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIVmac and SIVagm / M. A. Accola, A. A. Bukovsky, M. S. Jones, H. G. Gottlinger // Journal of Virology. – 1999. – Vol. 73, N 12. – P. 9992–9999. https://doi.org/10.1128/JVI.73.12.9992-9999.1999; Solution structure of the human immunodeficiency virus type 1 p6 protein / T. Fossen, V. Wray, K. Bruns [et al.] // Journal of Biological Chemistry. – 2005. – Vol. 280, N 52. – P. 42515–42527. https://doi.org/10.1074/jbc.M507375200; Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1 / Q. Zhai, M. B. Landesman, H. Robinson [et al.] // Journal of Virology. – 2011. – Vol. 85, N 1. – P. 632–637. https://doi.org/10.1128/JVI.01683-10; Kondo, E. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr / E. Kondo, H. G. Gottinger // Journal of Virology. – 1996. – Vol. 70, N 1. – P. 159–164. https://doi.org/10.1128/JVI.70.1.159-164.1996; Zhu, H. Identification of the 15FRFG domain in HIV-1 Gag p6 essential for Vpr packaging into the virion / H. Zhu, H. Jian, L. J. Zhao // Retrovirology. – 2004. – Vol. 1. – Art. 26. https://doi.org/10.1186/1742-4690-1-26; https://doklady.belnauka.by/jour/article/view/1275

  15. 15
    Academic Journal

    Contributors: Ministry of Health of the Russian Federation as part of the implementation of the State task No. 056-00003-24-02 for 2024 and for the planning period of 2025 and 2026, approved on 03.07.2024., Минздрав России в рамках выполнения Государственного задания № 056-00003-24-02 на 2024 г. и на плановый период 2025 и 2026 гг., утвержденного 07.03.2024.

    Source: Vestnik dermatologii i venerologii; Vol 101, No 1 (2025); 59-68 ; Вестник дерматологии и венерологии; Vol 101, No 1 (2025); 59-68 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.1011

    File Description: application/pdf

  16. 16
    Academic Journal

    Contributors: This research was funded by the Ministry of Science and Higher Education of the Russian Federation in accordance with agreement No. 075-15-2022-318 on April 20, 2022 on providing a grant in the form of subsidies from the Federal budget of the Russian Federation. The grant was provided as state support for the creation and development of a World-class Scientific Center “Agrotechnologies for the Future”.

    Source: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 200-209 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 200-209 ; 2500-3259 ; 10.18699/vjgb-25-20

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4538/1941; Ali B., Pantha S., Acharya R., Ueda Y., Wu L.-B., Ashrafuzzaman M., Ishizaki T., Wissuwa M., Bulley S., Frei M. Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics. J Plant Physiol. 2019;240:152998. doi 10.1016/j.jplph.2019.152998; Anisimova O.K., Seredin T.M., Shchennikova A.V., Kochieva E.Z., Filyushin M.A. Estimation of the vitamin C content and GDP-L-galactose phosphorylase gene (VTC2) expression level in leek (Allium porrum L.) cultivars. Russ J Plant Physiol. 2021a;68(1):85-93. doi 10.1134/S1021443720060023; Anisimova O.K., Shchennikova A.V., Kochieva E.Z., Filyushin M.A. Identification and variability of the GDP-L-galactose phosphosphorylase gene ApGGP1 in leek cultivars. Russ J Genet. 2021b;57(3): 311-318. doi 10.1134/S1021443720060023; Arrigoni O., De Tullio M.C. Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta. 2002;1569(1-3):1-9. doi 10.1016/s0304-4165(01)00235-5; Bernaert N. Bioactive compounds in leek (Allium ampeloprasum var. porrum): analysis as a function of the genetic diversity, harvest time and processing techniques. Doctoral dissertation. Ghent: Ghent University, 2013 Bernaert N., De Paepe D., Bouten C., De Clercq H., Stewart D., Van Bockstaele E., De Loose M., Van Droogenbroeck B. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum). Food Chem. 2012;134:669-677. doi 10.1016/j.foodchem.2012.02.159; Broad R.C., Bonneau J.P., Hellens R.P., Johnson A.A.T. Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. Int J Mol Sci. 2020; 21:1790. doi 10.3390/ijms21051790; Bulley S., Laing W. The regulation of ascorbate biosynthesis. Curr Opin Plant Biol. 2016;33:15-22. doi 10.1016/j.pbi.2016.04.010; Celebi-Toprak F., Alan A.R. In vitro gynogenesis in leek (Allium ampeloprasum L.). Methods Mol Biol. 2021;2287:171-184. doi 10.1007/978-1-0716-1315-3_7; Considine M.J., Foyer C.H. Redox regulation of plant development. Antioxid Redox Signal. 2014;21(9):1305-1326. doi 10.1089/ars.2013.5665; Dowdle J., Ishikawa T., Gatzek S., Rolinski S., Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling. Plant J. 2007;52:673-689. doi 10.1111/j.1365-313X.2007.03266.x; Feng H., Liu W., Zhang Q., Wang X., Wang X., Duan X., Li F., Huang L., Kang Z. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiol Biochem. 2014;76:7-16. doi 10.1016/j.plaphy.2013.12.015; Filyushin M.A., Anisimova O.K., Kochieva E.Z., Shchennikova A.V. Correlation of ascorbic acid content and the pattern of monodehydroascorbate reductases (MDHARs) gene expression in leek (Allium porrum L.). Russ J Plant Physiol. 2021;68(5):849-856. doi 10.1134/S1021443721050034; García G., Clemente-Moreno M.J., Díaz-Vivancos P., García M., Hernández J.A. The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress. Antioxidants (Basel). 2020;12:67. doi 10.3390/antiox9010067; Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909-930. doi 10.1016/j.plaphy.2010.08.016; Grzelak-Błaszczyk K., Kołodziejczyk K., Badełek E., Adamicki F. Changes in the contents of mono-, di- and oligosaccharides in leek plants stored in cold room. Eur Food Res Technol. 2011;232(6): 1027-1033. doi 10.1007/s00217-011-1476-y; Haroldsen V.M., Chi-Ham C.L., Kulkarni S., Lorence A., Bennett A.B. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem. 2011; 49:1244-1249. doi 10.1016/j.plaphy.2011.08.003; Hemilä H. Vitamin C and infections. Nutrients. 2017;9(4):339. doi 10.3390/nu9040339; Lanubile A., Maschietto V., De Leonardis S., Battilani P., Paciolla C., Marocco A. Defense responses to mycotoxin-producing fungi Fusarium proliferatum, F. subglutinans, and Aspergillus flavus in kernels of susceptible and resistant maize genotypes. Mol Plant Microbe Interact. 2015;28(5):546-557. doi 10.1094/MPMI-09-14-0269-R; Lemma E., Yusuf Z., Desta M., Seyida S., Idris M., Mengistu S., Teneshu J. Physicochemical properties and biological activities of garlic (Allium sativum L.) bulb and leek (Allium ampeloprasum L. var. porrum) leaf oil extracts. Sci World J. 2022;2022:6573754. doi 10.1155/2022/6573754; Leterrier M., Corpas F.J., Barroso J.B., Sandalio L.M., del Río L.A. Peroxisomal monodehydroascorbate reductase, genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol. 2005;138(4):2111-2123. doi 10.1104/pp.105.066225; Lundegårdh B., Botek P., Schulzov V., Hajslov J., Strömberg A., Andersson H.C. Impact of different green manures on the content of S-alk(en)yl-L-cysteine sulfoxides and L-ascorbic acid in leek (Allium porrum). J Agric Food Chem. 2008;56(6):2102-2111. doi 10.1021/jf071710s; Qi Q., Yanyan D., Yuanlin L., Kunzhi L., Huini X., Xudong S. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci. 2020;299: 110609. doi 10.1016/j.plantsci.2020.110609; Sultana S., Khew C.Y., Morshed M.M., Namasivayam P., Napis S., Ho C.L. Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol. 2012;169:311-318. doi 10.1016/j.jplph.2011.09.004; Swamy K.R.M., Gowda R.V. Leek and shallot. In: Peter K.V. (Ed.) Handbook of Herbs and Spices. Vol. 3. 2006;365-389. doi 10.1533/9781845691717.3.365; Yamada K., Osakabe Y. Sugar compartmentation as an environmental stress adaptation strategy in plants. Semin Cell Dev Biol. 2018;83: 106-114. doi 10.1016/j.semcdb.2017.12.015; Yoon J., Cho L.H., Tun W., Jeon J.S., An G. Sucrose signaling in higher plants. Plant Sci. 2021;302:110703. doi 10.1016/j.plantsci.2020.110703; Zhang Y., Li Z., Peng Y., Wang X., Peng D., Li Y., He X., Zhang X., Ma X., Huang L., Yan Y. Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules. 2015;20:20939-20954. doi 10.3390/molecules201119741; https://vavilov.elpub.ru/jour/article/view/4538

  17. 17
    Academic Journal

    Contributors: The study was carried out under the state assignment for fundamental research № 122020200083-8., Исследование выполнено за счет средств государственного задания по теме ФНИ № 122020200083-8.

    Source: Medical Genetics; Том 24, № 2 (2025); 3-13 ; Медицинская генетика; Том 24, № 2 (2025); 3-13 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2607/1848; Spiers H., Hannon E., Schalkwyk L.C., et al. Methylomic trajectories across human fetal brain development. Genome research. 2015;25(3):338–352. DOI:10.1101/gr.180273.114; Zaletaev D.V., Nemtsova M.V., Strelnikov V.V., et al. Diagnostics of epigenetic alterations in hereditary and oncological disorders. Molecular biology. 2004;38(2): 174-182.; Law P.P., Holland M.L. DNA methylation at the crossroads of gene and environment interactions. Essays in biochemistry. 2019;63(6):717–726. DOI:10.1042/EBC20190031; Koukoura O., Sifakis S., Spandidos D.A. DNA methylation in the human placenta and fetal growth. Molecular medicine reports. 2012;5(4):883–889. DOI:10.3892/mmr.2012.763; Madeleneau D., Buffat C., Mondon F., et al. Transcriptomic analysis of human placenta in intrauterine growth restriction. Pediatric Research. 2015;77(6):799–807. DOI:10.1038/pr.2015.40; Ding Y., Cui H. Integrated analysis of genome-wide DNA methylation and gene expression data provide a regulatory network in intrauterine growth restriction. Life Sciences. 2017;179:60–65. DOI:10.1016/j.lfs.2017.04.020; Chabrun F., Huetz N., Dieu X., et al. Data-mining approach on transcriptomics and methylomics placental analysis highlights genes in fetal growth restriction. Frontiers in Genetics. 2020;10:1292. DOI:10.3389/fgene.2019.01292; Lee S., Kim Y.N., Im D., et al. DNA Methylation and gene expression patterns are widely altered in fetal growth restriction and associated with FGR development. Animal Cells and Systems. 2021;25(3):128–135. DOI:10.1080/19768354.2021.1925741; Roifman M., Choufani S., Turinsky A.L., et al. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clinical epigenetics. 2016;8(1):1–13. DOI:10.1186/s13148-016-0238-x; Shi D., Zhou X., Cai L., et al. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. The FASEB Journal. 2023;37(10): e23207. DOI:10.1096/fj.202300742R; Ding J., Maxwell A., Adzibolosu N., et al. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferonstimulated genes signaling during pregnancy. Immunological reviews. 2022;308(1):9–24. DOI:10.1111/imr.13077; Karar J., Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in molecular neuroscience. 2011;4:51. DOI:10.3389/fnmol.2011.00051; Yoshimura Y. Integrins: expression, modulation, and signaling in fertilization, embryogenesis and implantation. The Keio journal of medicine. 1997;46(1):16–24. DOI:10.2302/kjm.46.16; Hohn H.P., Denker H.W. Experimental modulation of cell-cell adhesion, invasiveness and differentiation in trophoblast cells. Cells Tissues Organs. 2002;172(3):218–236. DOI:10.1159/000066965; Lokk K., Modhukur V., Rajashekar B., et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome biology. 2014;1594):1–14. DOI:10.1186/gb-2014-15-4-r54; Miller R.H., Pollard C.A., Brogaard K.R., et al. Tissue-specific DNA methylation variability and its potential clinical value. Frontiers in Genetics. 2023;14:1125967. DOI:10.3389/fgene.2023.1125967; Sood R., Zehnder J.L., Druzin M.L., et al. Gene expression patterns in human placenta. Proceedings of the National Academy of Sciences. 2006;103(14):5478–5483. DOI:10.1073/pnas.0508035103; Suryawanshi H., Morozov P., Straus A., et al. A single-cell survey of the human first-trimester placenta and decidua. Science advances. 2018;4(10):eaau4788. DOI:10.1126/sciadv.aau4788; Lo H.F., Tsai C.Y., Chen C.P., et al. Association of dysfunctional synapse defective 1 (SYDE1) with restricted fetal growth–SYDE1 regulates placental cell migration and invasion. The Journal of Pathology. 2017;241(3):324–336. DOI:10.1002/path.4835; Cross J.C., Nakano H., Natale D.R., et al. Branching morphogenesis during development of placental villi. Differentiation. 2006;74(7):393–401. DOI:10.1111/j.1432-0436.2006.00103.x; Nalivaeva N.N., Turner A.J., Zhuravin I.A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Frontiers in neuroscience. 2018;12:825. DOI:10.3389/fnins.2018.00825; Løhaugen G.C., Østgård H.F., Andreassen S., et al. Small for gestational age and intrauterine growth restriction decreases cognitive function in young adults. The Journal of pediatrics. 2013;163(2):447– 453. DOI:10.1016/j.jpeds.2013.01.060; Belot M.P., Nadéri K., Mille C., et al. Role of DNA methylation at the placental RTL1 gene locus in type 1 diabetes. Pediatric Diabetes. 2017;18(3):178–187. DOI:10.1111/pedi.12387; Lundholm C., Örtqvist A.K., Lichtenstein P., et al. Impaired fetal growth decreases the risk of childhood atopic eczema: a Swedish twin study. Clinical & Experimental Allergy. 2010;40(7):1044–1053. DOI:10.1111/j.1365-2222.2010.03519.x; Wang K.C., James A.L., Noble P.B. Fetal growth restriction and asthma: is the damage done?. Physiology. 2021;36(4):256–266. DOI:10.1152/physiol.00042.2020; Sehgal A., Dassios T., Nold M.F., et al. Fetal growth restriction and neonatal-pediatric lung diseases: Vascular mechanistic links and therapeutic directions. Paediatric respiratory reviews. 2022;44:19– 30. DOI:10.1016/j.prrv.2022.09.002; Gantenbein K.V., Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Frontiers in endocrinology. 2022;13:1041718. DOI:10.3389/fendo.2022.1041718; Hales C.N., Barker D.J. The thrifty phenotype hypothesis: Type 2 diabetes. British medical bulletin. 2011;60(1):5-20. DOI:10.1093/bmb/60.1.5; Yzydorczyk C., Armengaud J.B., Peyter A.C., et al. Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. Journal of developmental origins of health and disease. 2017;8(4):448–464. DOI:10.1017/S2040174417000265; Armengaud J.B., Yzydorczyk C., Siddeek B., et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reproductive Toxicology. 2021;99:168–176. DOI:10.1016/j.reprotox.2020.10.005; Zhu Y.N., Pan F., Gan X.W., et al. The Role of DNMT1 and C/ EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology. 2024;165(2):bqad195. DOI:10.1210/endocr/bqad195; Liu S., Zhu N., Chen H. Expression patterns of human DAB2IP protein in fetal tissues. Biotechnic & Histochemistry. 2012;87(5):350–359. DOI:10.3109/10520295.2012.664658; Shan N., Xiao X., Chen Y., et al. Expression of DAB2IP in human trophoblast and its role in trophoblast invasion. The Journal of Maternal-Fetal & Neonatal Medicine. 2016;29(3):393–399. DOI:10.3109/14767058.2014.1001974; Zhang J.Y., Jiang Y., Wei L.J., et al. LncRNA HCG27 promotes glucose uptake ability of HUVECs by MiR-378a-3p/MAPK1 pathway. Current Medical Science. 2023;43(4):784-793. DOI:10.1007/s11596-023-2738-1; Zeng S., Wu Y., Zhou M., et al. Association between genetic polymorphisms of leptin receptor and preeclampsia in Chinesewomen. The Journal of Maternal-Fetal & Neonatal Medicine. 2023;36(1):2207708. DOI:10.1080/14767058.2023.2207708; Saad A., Adam I., Elzaki S.E.G., et al. Leptin receptor gene polymorphisms c. 668A> G and c. 1968G> C in Sudanese women with preeclampsia: a case-control study. BMC Medical Genetics. 2020;21:1–8. DOI:10.1186/s12881-020-01104-z; Galindo-Cáceres M.A., Parra-Unda R., Murillo-Llanes J., et al. Association of leptin receptor expression in placenta and peripheral blood mononuclear cell with maternal weight in birth outcomes. Cytokine. 2021;138:155362. DOI:10.1016/j.cyto.2020.155362; Marginean C., Marginean C.O., Iancu M., et al. The FTO rs9939609 and LEPR rs1137101 mothers–newborns gene polymorphisms and maternal fat mass index effects on anthropometric characteristics in newborns: a cross-sectional study on mothers–newborns gene polymorphisms—The FTO-LEPR Study (STROBE-compliant article). Medicine. 2016; 95(49):e5551. DOI:10.1097/MD.0000000000005551; Su C., Yu T., Zhao R., et al. Subclinical thyroid disease and single nucleotide polymorphisms in reproductive-age women in areas of Shanxi Province, China, where iodine exposure is excessive. Asia Pacific Journal of Clinical Nutrition. 2018;27(6): 1366–1373. DOI:10.6133/apjcn.201811_27(6).0024; Wan J.P., Zhao H., Li T., et al. The common variant rs11646213 is associated with preeclampsia in Han Chinese women. PloS one. 2013;8(8):e71202. DOI:10.1371/journal.pone.0071202; Fekete A., Vér Á., Bögi K., et al. Is preeclampsia associated with higher frequency of HSP70 gene polymorphisms? European Journal of Obstetrics & Gynecology and Reproductive Biology. 2006;126(2):197–200. DOI:10.1016/j.ejogrb.2005.08.021; Kaartokallio T., Cervera A., Kyllönen A., et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Scientific reports. 2015;5(1):14107. DOI:10.1016/j.isci.2024.109047; Zhou Y., Gormley M.J., Hunkapiller N.M., et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. The Journal of clinical investigation. 2013;123(7):2862–2872. DOI:10.1172/JCI6696; Eude-Le Parco I., Dallot E., Breuiller-Fouché M. Protein kinase C and human uterine contractility. BMC Pregnancy and Childbirth. 2007;7:S11. DOI:10.1186/1471-2393-7-S1-S11; Metsalu T., Viltrop T., Tiirats A., et al. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics. 2014;9(10):1397-1409. DOI:10.4161/15592294.2014.970052; Xu Y., Li W., Liu X., et al. Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. International journal of molecular medicine. 2013;32(5):1115-1125. DOI:10.3892/ijmm.2013.1499; Li Y., Sun C., Guo Y., et al. DIP2C polymorphisms are implicated in susceptibility and clinical phenotypes of autism spectrum disorder. Psychiatry Research. 2022;316: 114792. DOI:10.1016/j.psychres.2022.114792; Ha T., Morgan A., Bartos M.N., et al. De novo variants predicting haploinsufficiency for DIP2C are associated with expressive speech delay. American Journal of Medical Genetics Part A. 2024:e63559. DOI:10.1002/ajmg.a.63559; Camerota M., Lester B.M., McGowan E.C., et al. Contributions of prenatal risk factors and neonatal epigenetics to cognitive outcome in children born very preterm. Developmental Psychology. 2024;60(9):1606–1619. DOI:10.1037/dev0001709; Mathews E., Dewees K., Diaz D., Favero C. White matter abnormalities in fetal alcohol spectrum disorders: focus on axon growth and guidance. Experimental Biology and Medicine. 2021;246(7):812–821. DOI:10.1177/1535370220980398; Schulze K.V., Bhatt A., Azamian M.S., et al. Aberrant DNA methylation as a diagnostic biomarker of diabetic embryopathy. Genetics in Medicine. 2019;21(11):2453–2461. DOI:10.1038/s41436-019-0516-z; Yang M.N., Huang R., Zheng T., et al. Genome-wide placental DNA methylations in fetal overgrowth and associations with leptin, adiponectin and fetal growth factors. Clinical Epigenetics. 2022;14(1):192. DOI:10.1186/s13148-022-01412-6; Wang W.J., Huang R., Zheng T., et al. Genome-wide placental gene methylations in gestational diabetes mellitus, fetal growth and metabolic health biomarkers in cord blood. Frontiers in endocrinology. 2022;13:875180. DOI:10.3389/fendo.2022.875180; Williams L., Seki Y., Delahaye F., et al. DNA hypermethylation of CD3+ T cells from cord blood of infants exposed to intrauterine growth restriction. Diabetologia. 2016;59:1714–1723. DOI:10.1007/s00125-016-3983-7; Gavrilenko M.M., Trifonova E.A., Stepanov V.A. Genome-Wide Analysis in the Study of the Fetal Growth Restriction Pathogenetics. Russian Journal of Genetics. 2024;60(8):1001–1013.; Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;14(12):1141–1163. DOI:10.1080/15592294.2019.1638701; Botto F., Seree E., Elkhyari S., et al. Hypomethylation and hypoexpression of human CYP2E1 gene in lung tumors. Biochemical and biophysical research communications. 1994;205(2):1086–1092. DOI:10.1006/bbrc.1994.2777; Rauluseviciute I., Drabløs F., Rye M.B. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC medical genomics. 2020;13:1–15. DOI:10.1186/s12920-020-0657-6; Zhao B., Tumaneng K., Guan K.L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature cell biology. 2011;13(8):877–883. DOI:10.1038/ncb2303; Albers R.E., Kaufman M.R., Natale B.V., et al. Trophoblast-specific expression of Hif-1α results in preeclampsia-like symptoms and fetal growth restriction. Scientific Reports. 2019;9(1):2742. DOI:10.1038/s41598-019-39426-5

  18. 18
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда №23-15-00137, http://rscf.ru/project/23-15-00137/

    Source: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    File Description: application/pdf

  19. 19
    Academic Journal

    Source: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 108-112
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 108-112

    File Description: application/pdf

  20. 20