-
1Academic Journal
Authors: E. S. Krivina, M. A. Sinetova, V. V. Red’kina, A. V. Soromotin, A. D. Temraleeva, Е. С. Кривина, М. А. Синетова, В. В. Редькина, А. В. Соромотин, Н. В. Жеребятьева, А. Д. Темралеева
Contributors: The research was funded by Russian Science Foundation, project number 24-16-00163., Работа выполнена при финансовой поддержке Российского научного фонда (проект №24-16-00163).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 3 (2024); 193-201 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 3 (2024); 193-201 ; 0137-0952
Subject Terms: пальмитолеиновая кислота, ITS2, bioprospecting, biotechnological potential, eicosapentaenoic acid, palmitoleic acid, биопроспектинг, биотехнологический потенциал, эйкозапентаеновая кислота
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1407/691; Blasio M., Balzano S. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Front. Microbiol. 2021;12:718933.; Maltsev Y., Maltseva K. Fatty acids of microalgae: diversity and applications. Rev. Environ. Sci. Biotechnol. 2021;20(2):515–547.; Gao B., Xia S., Lei X., Zhang C. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem. J. Appl. Phycol. 2018;30(1):215–229.; Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A., Zayadan B.K., Bolatkhan K., Los D.A. Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection. Appl. Biochem. Microbiol. 2020;56(7):794–808.; Sidorov R.A., Starikov A.Y., Sinetova M.A., Guilmisarian E.V., Los D.A. Identification of conjugated dienes of fatty acids in Vischeria sp. IPPAS C-70 under oxidative stress. Int. J. Mol. Sci. 2024;25(6):323.; Lenihan-Geels G., Bishop K., Ferguson L. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 2013;5(4):1301.; Coniglio S., Shumskaya M., Vassiliou E. Unsaturated fatty acids and their immunomodulatory properties. Biology. 2023;12(2):279.; Jack A., Adegbeye M., Ekanem D., Faniyi T., Fajemisin A.N., Elghandour M.M., Salem A.Z.M., Rivas-Caceres R.R., Adewumi K., Edoh O. Microalgae application in feed for ruminants. Handbook of Food and Feed from Microalgae. Eds. E. Jacob-Lopez, M.I. Queiroz, M.M. Maroneze, and L.Q. Zepka. Academic Press; 2023:397–409.; De Souza J., Lock A.L. Milk production and nutrient digestibility responses to triglyceride or fatty acid supplements enriched in palmitic acid. J. Dairy Sci. 2019;102(5):4155–4164.; Staples C.R., Burke J.M., Thatcher W.W. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy. Sci. 1998;81(3):856–871.; Kholif A.E., Gouda A.G., Hatem A.H. Performance and milk composition of nubian goats as affected by increasing level of Nannochloropsis oculata microalgae. Animals. 2020;10(12):2453.; Wu Y., Li R., Hildebrand D.F. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog. Lipid Res. 2012;51(4):340–349.; Kolouchová I., Sigler K., Schreiberová O., Masák J., Řezanka T. New yeast-based approaches in production of palmitoleic acid. Bioresour. 2015;192:726–734.; Okullo A.A., Temu A.K., Ogwok P., Ntalikwa J.W. Physico-chemical properties of biodiesel from jatropha and castor oils. Int. J. Renew. Energy Res. 2012;2(1):47–52.; Shinde S., Kale A., Kulaga T., Licamele J.D., Tonkovich A.L. Omega 7 rich compositions and methods of isolating omega 7 fatty acids. US20130129775 A1. 2013.; Yang B.R., Kallio H.P. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J. Agric. Food. Chem. 2001;49(4):1939–1947.; Knothe G. Biodiesel derived from a model oil enriched in palmitoleic acid macadamia nut oil. Energy Fuels. 2010;24(3):2098–2103.; Abdelhamid A.S., Brown T.J., Brainard J.S., Biswas P., Thorpe G.C., Moore H.J., Deane K.H., AlAbdulghafoor F.K., Summerbell C.D., Worthington H.V., Song F., Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018;7(7):CD003177.; Forbes S.C., Holroyd-Leduc J.M., Poulin M.J., Hogan D.B. Effect of тutrients, вietary ыupplements and мitamins on сognition: a systematic review and metaanalysis of randomized controlled trials. Can. Geriatr. J. 2015;18(4):231–245.; Alex A., Abbott K.A., McEvoy M., Schofield P.W., Garg M.L. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: a systematic review and meta-analysis. Nutr. Rev. 2020;78(7):563–578.; Lands B. A critique of paradoxes in current advice on dietary lipids. Prog. Lipid Res. 2008;47(2):77–106.; Зайцева Л.В., Нечаев А.П. Полиненасыщенные жирные кислоты в питании: современный взгляд. Пищевая промышленность. 2014;4:14–19.; Krivina E., Portnov A., Temraleeva A. A description of Aliichlorella ignota gen. et sp. nov. and a comparison of the efficiency of species delimitation methods in the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Phycol. Res. 2024;72(3):180–190.; Procházková K. Diverzita a druhový koncept u komplexu Vischeria/Eustigmatos (Eustigmatophyceae). Praha: Karlova univerzita; 2012. 79 pp.; Темралеева А.Д., Портная Е.А. Морфологический и молекулярно-генетический анализ рода Vischeria (Eustigmataceae, Ochrophyta) в альгологической коллекции ACSSI. Бот. журн. 2022;107(2):132–148.; Kryvenda A., Rybalka N., Wolf M., Friedl T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 2018;53(4):471–491.; Xu J., Li T., Li C.L., Zhu S.N., Wang Z.M., Zeng E.Y. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae). Algal Res. 2020;48:101910.; Wang F., Gao B., Huang L., Su M., Dai C., Zhang C. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresour Technol. 2018;270:30–37.; Sinetova M.A., Sidorov R.A., Medvedeva A.A., Starikov A.Y., Markelova A.G., Allakhverdiev S.I., Los D.A. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 2021;331:63–73.; Gao B., Yang J., Lei X., Xia S., Li A., Zhang C. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J. Appl. Phycol. 2016;28(2):821–830.; Krzemińska I., Nosalewicz A., Reszczyńska E., Pawlik-Skowrońska B. Enhanced light-induced biosynthesis of fatty acids suitable for biodiesel production by the yellowgreen alga Eustigmatos magnus. Energies. 2020;13(22):6098.; Kaijser A., Dutta P.C., Savage. G.P. Oxidative stability and lipid composition of macadamia nuts grown in New Zealand. Food Chem. 2020;71(1):67–70.
-
2Academic Journal
Source: Педиатрия. Восточная Европа. :259-267
Subject Terms: 0301 basic medicine, 2. Zero hunger, 0303 health sciences, eicosapentaenoic acid, докозагексаеновая кислота, длинноцепочечные полиненасыщенные жирные кислоты, дети, docosahexaenoic acid, эйкозапентаеновая кислота, immunity, 3. Good health, long-chain polyunsaturated fatty acids, иммунитет, 03 medical and health sciences, nutrition, children, arachidonic acid. cognitive functions, когнитивные функции, питание, арахидоновая кислота
-
3Academic Journal
Authors: B. R. Gvasalia, A. V. Isaeva, M. U. Babaev, Б. Р. Гвасалия, А. В. Исаева, М. У. Бабаев
Source: Andrology and Genital Surgery; Том 24, № 4 (2023); 59-66 ; Андрология и генитальная хирургия; Том 24, № 4 (2023); 59-66 ; 2412-8902 ; 2070-9781
Subject Terms: эйкозапентаеновая кислота, idiopathic infertility, oxidative stress, antioxidant therapy, DNA fragmentation, L-carnitine, omega-3, docosahexaenoic acid, eicosapentaenoic acid, идиопатическое бесплодие, оксидативный стресс, антиоксидантная терапия, фрагментация ДНК, L-карнитин, омега-3, докозагексаеновая кислота
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/705/550; Salonia A., Bettocchi C., Capogrosso P. et al. EAU guidelines on sexual and reproductive health. European Association of Urology, 2023.; De Ligny W., Smits R.M., Mackenzie-Proctor R. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022;5(5):CD007411. DOI:10.1002/14651858.CD007411.pub5; Minhas S., Bettocchi C., Boeri L. et al. European Association of Urology guidelines on male sexual and reproductive health: 2021 update on male infertility. Eur Urol 2021;80(5):603–20. DOI:10.1016/j.cururo.2021.08.014; Wright C., Milne S., Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014;28(6):684–703. DOI:10.1016/j.rbmo.2014.02.004; Fraczek M., Kurpisz M. [The redox system in human semen and peroxidative damage of spermatozoa (In Polish)]. Postepy Hig Med Dosw (Online) 2005;59:523–34.; Plante M., De Lamirande E., Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994;62(2):387–93. DOI:10.1016/s0015-0282(16)56895-2; Henkel R.R. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl 2011;13(1):43–52. DOI:10.1038/aja.2010.76; Martins da Silva S.J. Male infertility and antioxidants: one small step for man, no giant leap for andrology? Reprod Biomed Online 2019;39(6):879–83. DOI:10.1016/j.rbmo.2019.08.008; Majzoub A., Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 2018;16(1):113–24. DOI:10.1016/j.aju.2017.11.013; Simon L., Zini A., Dyachenko A. et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. DOI:10.4103/1008-682X.182822; Henkel R., Morris A., Vogiatzi P. et al. Predictive value of seminal oxidation-reduction potential analysis for reproductive outcomes of ICSI. Reprod Biomed Online 2022;45(5):1007–20. DOI:10.1016/j.rbmo.2022.05.010; Hervás I., Pacheco A., Gil Julia M. et al. Sperm deoxyribonucleic acid fragmentation (by terminal deoxynucleotidyl transferase biotin dUTP nick end labeling assay) does not impair reproductive success measured as cumulative live birth rates per donor metaphase II oocyte used. Fertil Steril 2022;118(1):79–89. DOI:10.1016/j.fertnstert.2022.04.002; Наумов Н.П., Щеплев П.А., Полозов В.В. Роль антиоксидантов в профилактике мужского бесплодия. Андрология и генитальная хирургия 2019; 20(1):22–9. DOI:10.17650/2070-9781-2019-20-1-22-29; Корнеев И.А. Мужское бесплодие при оксидативном стрессе: пути решения проблемы. Урология 2022;1:102–8. DOI:10.18565/urology.2022.1.102-108; Yan L., Liu J., Wu S. et al. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymor-phism. J Assist Reprod Genet 2014;31(5):549–54. DOI:10.1007/s10815-014-0215-2; Macanovic B., Vucetic M., Jankovic A. et al. Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: a pilot study. Dis Markers 2015;2015:436236. DOI:10.1155/2015/436236; Gałecka E., Jacewicz R., Mrowicka M. et al. [Antioxidative enzymes – structure, properties, functions (In Polish)]. Pol Merkur Lekarski 2008;25(147):266–8.; Yeung C.H., Cooper T.G., De Geyter M. et al. Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in vitro fertilization. Mol Hum Reprod 1998;4(9):835–9. DOI:10.1093/molehr/4.9.835; Crisol L., Matorras R., Aspichueta F. et al. Glutathione peroxidase activity in seminal plasma and its relationship to classical sperm parameters and in vitro fertilization intracytoplasmic sperm injection outcome. Fertil Steril 2012;97(4):852–7. DOI:10.1016/j.fertnstert.2012.01.097; Гамидов С.И., Шатылко Т.В., Ли К.И., Гасанов Н.Г. Роль антиоксидантных молекул в терапии мужского бесплодия и подготовке мужчины к зачатию ребенка. Медицинский совет 2020;(3):122–9. DOI:10.21518/2079-701X2020-3-122-129; Walczak-Jedrzejowska R., Wolski J.К., Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertilityю. Cent European J Urol 2013;66(1):60–7. DOI:10.5173/ceju.2013.01.art19; Li X., Long X.Y., Xie Y.J. et al. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019;497:54–60. DOI:10.1016/j.cca.2019.07.013; Yang Y., Luo J., Yu D. et al. Vitamin A promotes Leydig cell differentiation via alcohol dehydrogenase 1. Front Endocrinol (Lausanne) 2018;9:644. DOI:10.3389/fendo.2018.00644.; Zhou Y., Zhang D., Hu D. et al Retinoic acid: a potential therapeutic agent for cryptorchidism infertility based on investigation of flutamide-induced cryptorchid rats in vivo and in vitro. Reprod Toxicol 2019;87:108–17. DOI:10.1016/j.reprotox.2019.05.063; Comhaire F. The role of food supplementation in the treatment of the infertile couple and for assisted reproduction. Andrologia 2010;42(5):331–40. DOI:10.1111/j.1439-0272.2009.01025.x; Colagar A.Н., Marzony E.T. Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr 2009;45(2):144–9. DOI:10.3164/jcbn.08-251; Song G.J., Norkus E.P., Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 2006;29(6):569–75. DOI:10.1111/j.1365-2605.2006.00700.x; Lanzafame F.M., La Vignera S., Vicari E., Calogero A.E. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 2009;19(5):638–59. DOI:10.1016/j.rbmo.2009.09.014; Hambidge K.M., Krebs N.F. Zinc deficiency: a special challenge. J Nutr 2007;137(4):1101–5. DOI:10.1093/jn/137.4.1101; Omu A.E., Al-Azemi M.K., Al-Maghrebi M. et al. Molecular basis for the effects of zinc deficiency on spermatogenesis: an experimental study in the Sprague-Dawley rat model. Indian J Urol 2015;31(1):57–64. DOI:10.4103/0970-1591.139570; Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev 2016;74(2):118–30. DOI:10.1093/nutrit/nuv059; Zhao J., Dong X., Hu X. et al. Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 2016;6:22386. DOI:10.1038/srep22386; Atig F., Raffa M., Ali H.B. et al. Altered antioxidant status and increased lipid per-oxidation in seminal plasma of tunisian infertile men. Int J Biol Sci 2012;8(1):139–49. DOI:10.7150/ijbs.8.139; Flohé L. Selenium in mammalian spermiogenesis. Biol Chem 2007;388(10):987–95. DOI:10.1515/BC.2007.112; Mossa M.M., Azzawi M.H., Dekhel H.H. et al. Effect of selenium in treatment of male infertility. Exp Tech Urol Nephrol 2018;1(5): ETUN.000521. DOI:10.31031/ETUN.2018.01.000521; Ma L. , Sun Y. Comparison of L-Carnitine vs. Coq10 and Vitamin E for idiopathic male infertility: a randomized controlled trial. Randomized Controlled Trial. Eur Rev Med Pharmacol Sci 2022;26(13):4698–704. DOI:10.26355/eurrev_202207_29194; Gvozdjáková A., Kucharská J., Dubravicky J. et al. Coenzyme Q10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis Markers 2015;2015:827941. DOI:10.1155/2015/827941; Safarinejad M.R. The effect of coenzyme Q10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia: an open-label prospective study. Int Urol Nephrol 2012;44(3):689–700. DOI:10.1007/s11255-011-0081-0; Nadjarzadeh A., Shidfar F., Amirjannati N. et al. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial. Andrologia 2014;46(2):177–83. DOI:10.1111/and.12062; Lafuente R., González-Comadrán M., Solà I. et al. Coenzyme Q10 and male infertility: a meta-analysis. J Assist Reprod Genet 2013;30(9):1147–56. DOI:10.1007/s10815-013-0047-5; Ciftci H., Verit A., Savas M. et al. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology 2009;74(1):73–6. DOI:10.1016/j.urology.2009.02.034; Lenzi A., Picardo M., Gandini L. et al. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum Reprod 1994;9(11):2044–50. DOI:10.1093/oxfordjournals.humrep.a138391; Schisterman E.F., Sjaarda L.A., Clemons T. et al. Effect of folic acid and Zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: a randomized clinical trial. JAMA 2020;323(1):35–48. DOI:10.1001/jama.2019.18714; Ozer Kaya S., Kandemir F.M., Gur S. et al. Evaluation of the role of L-arginine on spermatological parameters, seminal plasma nitric oxide levels and arginase enzyme activities in rams. Andrologia 2020;52(1):e13439. DOI:10.1111/and.13439; Comhaire F., Christophe A., Zalata A. et al. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2000;63(3):159–65. DOI:10.1054/plef.2000.0174; Martínez-Soto J.C., Domingo J.C., Cordobilla B. et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med 2016;62(6):387–95. DOI:10.1080/19396368.2016.1246623; Виноградов И.В., Живулько А.Р. Докозагексаеновая кислота в лечении мужского бесплодия, вызванного высоким уровнем фрагментации ДНК сперматозоидов. Андрология и генитальная хирургия 2020;21(4):89–97. DOI:10.17650/2070-9781-2020-21-4-89-97; Steiner A.Z., Hansen K.R., Barnhart K.T. et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil Steril 2020;113(3): 552–60.e3. DOI:10.1016/j.fertnstert.2019.11.008; Kuchakulla M., Ramasamy R. Re: The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Eur Urol 2021;79(1):159–60. DOI:10.1016/j.eururo.2020.08.008; Li K., Yang X., Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022;13:810242 DOI:10.3389/fendo.2022.810242; Гамидов С.И., Попова А.Ю., Гасанов Н.Г. и др. Оценка влияния комплекса «БЕСТФертил» на показатели спермограммы, оксидативного стресса и фрагментации ДНК сперматозоидов у мужчин с бесплодием. Андрология и генитальная хирургия 2019;20(1):91–8. DOI:10.17650/2070-9781-2019-20-1-91-98; Кореньков Д.Г., Павлов А.Л., Казимзаде Э.Д. Влияние препарата БЕСТФертил на репродуктивную функцию у мужчин с идиопатическим бесплодием. Андрология и генитальная хирургия 2018;19(4):54–9. DOI:10.17650/2070-9781-2018-19-4-54-59; Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019;3(3):CD007411. DOI:10.1002/14651858.CD007411.pub4; https://agx.abvpress.ru/jour/article/view/705
-
4Academic Journal
Authors: Gladyshev, Michail I., Morgun, Vasiliy N., Guseynova, Valeriya E., Sushchik, Nadezhda N., Гладышев, М. И., Моргун, В. Н., Гусейнова, В. Е., Сущик, Н. Н.
Subject Terms: least cisco, Arctic cisco, muksun, broad whitefish, eicosapentaenoic acid, docosahexaenoic acid, FA profiles, cold smoking, ряпушка, арктический омуль, муксун, чир, эйкозапентаеновая кислота, докозагексаеновая кислота, профили жирных кислот, холодное копчение
Relation: Журнал сибирского федерального университета. 2024 17(4). Journal of Siberian Federal University. Biology 2024 17(4); SJIXGQ
Availability: https://elib.sfu-kras.ru/handle/2311/154342
-
5Report
Authors: A A Makhova, Evgeniya V. Shikh
Source: Voprosy pitaniia. 88(2)
Subject Terms: 0301 basic medicine, Adult, Male, 2. Zero hunger, 0303 health sciences, Adolescent, докозагексаеновая кислота, Anti-Inflammatory Agents, eicosapentaenoicacid, Lipid Metabolism, эйкозапентаеновая кислота, полиненасыщенные жирные кислоты семейства ω-3, 3. Good health, ω-3long-chainpolyunsaturated fatty acids, 03 medical and health sciences, Cognition, Sex Factors, Pregnancy, Child, Preschool, Dietary Supplements, Fatty Acids, Omega-3, Humans, Female, Child, docosahexaenoicacid
-
6Academic Journal
Authors: S. G. Makarova, E. A. Vishneva, С. Г. Макарова, Е. А. Вишнёва
Source: Current Pediatrics; Том 14, № 1 (2015); 55-63 ; Вопросы современной педиатрии; Том 14, № 1 (2015); 55-63 ; 1682-5535 ; 1682-5527
Subject Terms: ω3 жирные кислоты, nervous system, docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, ω-3 fatty acids, нервная система, докозогексаеновая кислота, арахидоновая кислота, эйкозапентаеновая кислота
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/82/8; Second International Conference on Nutrition Rome, 19–21 November 2014 Conference Outcome Document: Rome Declaration on Nutrition ICN2 2014/2. http://www.fao.org/3/a-ml542e (available: 28.12.2014).; Shilina N.M., Kon' I.Ya. Sovremennye predstavleniya o fiziologicheskikh i metabolicheskikh funktsiyakh polinenasyshchennykh zhirnykh kislot [Modern Views on the Physiological and Metabolic Functions of Polyunsaturated Fatty Acids]. Voprosy detskoi dietologii = Problems of Pediatric Nutritiology. 2004; 2(6): 25–30.; Levachev M.M. Znachenie zhira v pitanii zdorovogo i bol'nogo cheloveka: Spravochnik po dietologii [Significance of Fat in the Diet of Healthy and Sick People: Guide to Dietology]. Edited by Tutel’yan V.A., Samsonov M.A. Мoscow, Meditsina. 2002. p. 25–32.; Simopoulos A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991; 54: 438–463.; Harris W.S., von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev. Med. 2004; 39: 212–220.; Hamilton J., Greiner R., Salem N., Jr., Kim H.-Y. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000; 35: 863–869.; Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper 91. FAO, Rome. 2010. 198 p.; Muskiet F.A.J. Frontiers in Neuroscience. Chapter 2. Pathophysiology and Evolutionary Aspects of Dietary Fats and Long-Chain Polyunsaturated Fatty Acids across the Life Cycle. Fat Detection: Taste, Texture, and Post Ingestive Effects. Boca Raton (FL): CRC Press. 2010. 214 p.; Tutel'yan V.A., Spirichev V.B., Shatnyuk L.N. Korrektsiya mikronutrientnogo defitsita — vazhneyshiy aspekt kontseptsii zdorovogo pitaniya naseleniya Rossii [Correction of Micronutrient Deficiency – Most Important Aspect for the Concept of Healthy Nutrition of the Russian Population]. Voprosy pitaniya = Problems of Nutrition. 1999; 1: 3–9.; Tutel'yan V.A., Spirichev V.B. Mikronutrienty v pitanii zdorovogo i bol'nogo cheloveka (spravochnoe rukovodstvo po vitaminam i mineral'nym veshchestvam) [Micronutrients in the Diet of Healthy and Sick People (Informative Guide to Vitamins and Minerals)]. Мoscow, 2002. 423 p.; Belyaev Ye.N., Chiburaev V.I., Ivanov A.A. Kharakteristika fakticheskogo pitaniya i zdorov'ya detey v regionakh Rossiyskoy Federatsii [Characteristics of Actual Nutrition and Health of Children in the Regions of the Russian Federation]. Voprosy pitaniya = Problems of Nutrition. 2000; 6: 3–7.; Pot G.K., Prynne C.J., Roberts C., Olson A., Nicholson S.K., Whitton C., Teucher B., Bates B., Henderson H., Pigott S., Swan G., Stephen A.M. National Diet and Nutrition Survey: fat and fatty acid intakes from the first year of the rolling programme and comparison with previous surveys. Brit. J Nutr. 2012; 107 (3): 405–415.; Garneau V., Rudkovska I., Paradis A.M., Godin G., Julien P., Pérusse L., Vohl M.C. Omega-3 fatty acids status in human subjects estimated using a food frequency questionnaire and plasma phospholipids levels. Nutr. J. 2012; 11: 46.; Min Y., Blois A., Geppert J., Khalil F., Ghebremeskel K., Holmsen H. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women. J. Hum. Nutr. Diet. 2013. DOI:10.1111/jhn.12105 [Epub ahead of print].; Bjerraggrd P., Mulvad G. The best of two worlds: how the Greenland Board of Nutrition has handled conflicting evidence about diet and health. Int. J. Circumpolar Health. 2012; 71: 18588.; Lattka E., Klopp N., Demmelmair H., Klingler M., Heinrich J, Koletzko B. Genetic variations in polyunsaturated fatty acid metabolism — implications for child health. Ann. Nutr. Metab. 2012, 60 (Suppl. 3): 8–13.; Innis S.M. Omega-3 fatty acid biochemistry: perspectives from human nutrition. Mil. Med. 2014; 179 (11; Suppl.): 82–87.; Schaeffer L., Gohlke H., Muller M., Hei M., Palmer L., Kompauer L., Demmelmair H., Illig T., Koletzko B., Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006; 15: 1745–1756.; Brookes K.J., Chen W., Xu X., Taylor E., Asherson P. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorders. Biol. Psychiatry. 2006; 60: 1053–1061.; Van de Rest O., van Hoolijdonk L.W., Doets E.E., Schiepers OJ, Eilander A, de Groot L.C. B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann. Nutr. Metab. 2012; 60 (4): 272–292.; Russel F.D, Burgin-Maunder C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs. 2012; 10 (11): 2535–2559.; Oh S.F., Vickery T. W., Serhan Ch.N. Chiral Lipidomics of E-Series Resolvins: Aspirin and the Biosynthesis of Novel Mediators. Biochem. Biophys. 2011; 1811 (11): 737–747.; Lehninger A. Osnovy biokhimii: v 3 t. [Principles of Biochemistry: in 3 v.] V. 1. Мoscow, Mir, 1985. p. 325–351.; Uauy R., Birch E., Birch D. Peirano P. Visual and brain function measurements in studies of n-3 fatty acid requirements of infant. J. Pediatr. 1992; 120: 168–180.; Salem N., Jr., Litman B., Kim H.-Y., Gawrisch K. Mechanisms of action of docosahexaenoic acid. Lipids. 2001; 36: 945–959.; Bourre J.-M., Dumont O. The administration of pig brain phospholipids versus soybean phospholipids in the diet during the period of brain development in the rat results in greater increments of brain docosahexaenoic acid. Neurosci. Lett. 2002; 335: 129–133.; Wurtman R.J., Cansev M., Sakamoto T. Ulus I.H. Use of phosphatide precursors to promote synaptogenesis. Ann. Rev. Nutr. 2009; 29: 59–87.; Farquharson J., Cockburn F., Patrick W.A. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992; 340: 810–813.; Wurtman R.J. A Nutrient Combination that Can Affect Synapse Formation. Nutrients. 2014; 6: 1701–1710.; Clandinin M.T., Chapell J.E., Van Aerde J.E.E. Requirements of newborn infants for long chain polyunsaturated fatty acids. Acta. Paediatr. Scand. 1989; 351: 63–71.; Makrides M., Neumann M.A., Byrad R. W. et al. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 1994; 60: 189–194.; Crawford M.A. Placental delivery of arachidonic and docosagexaenoic acids: implication for the lipid nutrition of preterm infants. Am. J. Clin. Nutr. 2000; 71 (1; Suppl.): 275–284.; Rump P., Merisink R.P., Kester A.D.M., Hornstra G. Essential fatty acids composition of plasma phospholipids and birth weight: a study in term neonates. Am. J. Clin. Nutr. 2001; 73: 797–806.; Moon R.J, Harvey N.C, Robinson S.M., Ntani G., Davies J.H., Inskip H.M., Godfrey K.M., Dennison E.M., Calder P.C., Cooper C.; SWS Study Group. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrin. Metab. 2013; 98 (1): 299–307.; Innis S.M. Essential fatty acids in growth and development. Prog. Lipid. Res. 1986; 30: 39–103.; Uauy R., Treen M., Hoffman D. Essential fatty acid metabolism and requirements during development. Semin. Рerinatol. 1989; 13: 118–130.; Lattka E., Koletzko B., Zellinger S. et al. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Brit. J. Nutr. 2013, 109 (7): 1196–1210.; Duttaroy A.K. Transport of fatty acids across the human placenta: a review. Prog. Lipid. Res. 2009; 48 (1): 52–61.; Asim K., Dutta-Roy. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin.Nutr. 2000; 71: 315–322.; Hibbeln J.R. Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J. Affect. Disord. 2002; 69 (1–3): 15–29.; Oken E., Kleinman K.P., Olsen S.F., Rich-Edwards J.W., Gillman M.W. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: results from a US pregnancy cohort. Am. J. Epidemiol. 2004; 160 (8): 774–783.; Woods J., Ward G., Salem N., Jr. Is docosahexaenoic acid necessary in infant formula? Evaluation of high linolenate diets in the neonatal rat. Pediatr. Res. 1996; 40 (5): 687–694.; Kon' I.Ya, Shilina N.M., Vol'fson S.B., Georgieva O.V. Ispol'zovanie polinenasyshchennykh zhirnykh kislot v pitanii zdorovykh detey [Use of Polyunsaturated Fatty Acids in the Diet of Healthy Children]. Lechashhij vrach - Practicing Doctor. 2006; 1. http://www.lvrach.ru/2006/01/4533314/ (accessed: Dec 28, 2014).; Minda H., Kovacs A., Funke S., Szasz M., Burus I., Molnar S., Marosvolgyi T., Decsi T. Changes of fatty acid composition of human milk during the first month of lactation: a day-to-day approach in the first week. Ann. Nutr. Metab. 2004; 48 (3): 202–209.; Malcolm C.A., McCulloch D.L., Montgomery C., Shepherd A., Weaver I.T. Maternal docosa-hexaenoic acid supplementation during pregnancy and visual evoked potential development in term infants: a double blind, prospective, randomised trial. Arch. Dis. Child. Fetal. Neonatal. Ed. 2003; 88: 383–390.; Helland I.B., Smith L., Saarem K., Saugstad O.D., Drevon C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics. 2003; l (II): 39–44.; Koletzko B., Lien E., Agostoni C., Bohles H., Campoy C., Cetin I., Decsi T., Dudenhausen J.W., Dupont C., Forsyth S. et al. The roles of pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. Perinat. Med. 2008; 36: 5–14.; Caspi A., Williams B., Kim-Cohen J., Craig I.W., Milne B.J., Poulton R., Schalkwyk L.C., Taylor A., Werts H., Moffitt T. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc. Natl. Acad. Sci. USA. 2007; 104: 18860–18865.; Morales E., Bustamante M., Gonzalez J.R., Guxens M., Torrent M., Mendez M., Garcia-Esteban R., Julvez J., Forns I., Vrijheid M., Molto-Puigmarti C., Lopez-Sabater C., Estivill X., Sunyer J. Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One. 2011; 6: l7I81.; Kovács A., Funke S., Marosvölgyi T., Burus I., Decsi T. Fatty acids in early human milk after preterm and full-term delivery. J. Pediatr. Gastroenterol. Nutr. 2005; 41 (4): 454–459.; Carnielli V.P., Wattimena D.J.L., Luijendijk I.H.T., Boerlage A., Degenhart H.J., Sauer P.J. The very low birth weight infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr. Res. 1996; 40: 169–174.; Makrides M., Neumann M.A., Simmer K., Pater J., Gibson R. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet. 1995; 345: 1463–1468.; Birch E.E., Hoffman D.R., Uauy R., Birch D.G., Prestidge C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 1998; 44: 201–209.; Birch E.E., Garfield S., Hoffman D.R., Uauy R., Birch D.G. A randomised controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Ved. Child. Neurol. 2000; 42: 174–181.; Hoffman D.R., Birch E.E., Birch D.G. Uauy R., Castañeda Y.S., Lapus M.G., Wheaton D.H. Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. J. Pediatr. Gastroenterol. Nutr. 2000; 31: 540–553.; Carlson S.E., Ford A.J., Werkman S.H., Peeples J.M., Koo W.W. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatr. Res. 1996; 39: 882–888.; Agostoni C., Trojan S., Bellu R., Riva E., Giovannini M. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: The role of long-chain polyunsaturated fatty acids. Pediatr. Res. 1995; 38: 262–266.; Willatts P., Forsyth J.S., Dimodugno M.K., Varma S., Colvin M. Effect of long-chain polyunsaturated fatty acids infant formula on problem solving at 10 months of age. Lancet. 1998; 352: 688–691.; EU Commission Directive 96/4/EC of February 1996 amending Directive 91/321/EEC on infant formulae and follow-on formulae. Brussels. 1996.; EU Commission Directive 2006/141/EC of December 2006 on infant formulae and follow-on formulae. 2006.; Koletzko B., Agostoni C., Carlson S., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., Willatts P. Long chain polyunsaturated fatty acid (LC-PUFA) and perinatal development. Acta Paediatr. 2001; 90 (4): 460–464.; Lapillone A., Gron-Wargo S., Gonzales C.H., Uauy R. Lipid needs of preterm infants: updated recommendations. J. Pediatr. 2013; 162 (3; Suppl.): 37–47.; Surzhik A.V. Effektivnost' vskarmlivaniya detey grudnogo vozrasta adaptirovannymi molochnymi smesyami, obogashchennymi dlinnotsepochechnymi polinenasyshchennymi zhirnymi kislotami. Avtoref. dis. … kand. med.nauk [Effectiveness of Infant Feeding with Adapted Milk Formula Enriched with Long-Chain Polyunsaturated Fatty Acids. Author's abstract]. Мoscow, 2004. 28 p.; Makarova S.G., Vishneva Ye.A. Dlinnotsepochechnye polinasyshchennye zhirnye kisloty klassov ω-3 i ω-6 kak essentsial'nyy nutrient v raznye periody detstva [Long-Chain Polyunsaturated Fatty Acids ω-3 and ω-6 as an Essential Nutrient in Different Periods of Childhood]. Pediatricheskaja farmakologija = Pediatric pharmacology. 2013; 10 (4): 80–88.; Dotterud C.K., Storro O., Simpson M.R., Johnsen R., Øien T. The impact of pre- and postnatal exposures on allergy related diseases in childhood: a controlled multicentre intervention study in primary health care. BMC Public Health. 2013; 13: 123. DOI:10.1186/1471-2458-13-123.; Sinn N., Milte C., Howe Peter R.C. Oiling the Brain: A Review of Randomized Controlled Trials of Omega-3 Fatty Acids in Psychopathology across the Lifespan. Nutrients. 2010; 2 (2): 128–170.; Burgess J.R., Stevens L.J., Zhang W., Peck L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 2000; 71: 327–330.; Chen J.-R., Hsu S.-F., Hsu C.-D., Hwang L.-H., Yang S.-C. Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J. Nutr. Biochem. 2004; 15: 467–472.; Stevens L.J., Zhang W., Peck L., Kuczek T., Grevstad N., Mahon A.K., Zentall S.S., Arnold L.E., Burgess J.R. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids. 2003; 38: 1007–1021.; Johnson M., Östlund S., Fransson G., Kadesjö B., Gillberg C. Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder. J. Atten. Disord. 2008; 12: 394–401.; Sinn N., Bryan J., Wilson C. Cognitive effects of polyunsaturated fatty acids in children with attention deficit hyperactivity disorder symptoms: A randomised controlled trial. Prostaglandins Leukot. Essent. Fatty Acids. 2008; 78: 311–326.; Kon' I.Ya., Shilina N.M., Korosteleva M.M., Budantseva S.V. Issledovanie vliyaniya ryb'yego zhira kak istochnika 3 polinenasyshchennykh zhirnykh kislot na kognitivnye funktsii shkol'nikov 5–6 let [Investigation of the Effect of Fish Oil as a Source of 3 Polyunsaturated Fatty Acids on Cognitive Functions of 5-6 Year Old School Children]. Pediatrija = Pediatrics. Consilium medicum. 2009;87(1):84–88.; Montgomery P., Burton J.R., Sewell R.P. et al. Low Blood Long Chain Omega-3 Fatty Acids in UK Children Are Associated with Poor Cognitive Performance and Behavior: A Cross-Sectional Analysis from the DOLAB Study. PloS One. 2013;8(6):66697. DOI:10.1371/journal.pone.0066697.; Richardson A.J., Puri B.K. A randomised double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2002;26:233–239.; Richardson A.J., Montgomery P. The Oxford-Durham study: a randomised, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005;115:1360–1366.; Sinn N., Bryan J. Effect of supplementation with polyunsaturated fatty acids and micronutrients on ADHD-related problems with attention and behavior. J. Dev. Behav. Pediatr. 2007;28:82–91.
-
7Academic Journal
Authors: Макарова, Светлана, Вишнёва, Е.
Subject Terms: ДЛИННОЦЕПОЧЕЧНЫЕ ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, НЕРВНАЯ СИСТЕМА, ДОКОЗАГЕКСАЕНОВАЯ КИСЛОТА, АРАХИДОНОВАЯ КИСЛОТА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ω3 ЖИРНЫЕ КИСЛОТЫ, ω-3 FATTY ACIDS
File Description: text/html
-
8Academic Journal
Authors: ШУКШИНА С.С., ШИРЯЕВА О.Ю.
Subject Terms: СЛЮНА., SALIVA., ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ЖИРНЫЕ КИСЛОТЫ
File Description: text/html
-
9Academic Journal
Authors: Петухова, Н., Щербакова, Д., Шараева, А., Зорин, В.
Subject Terms: АРАХИДОНОВАЯ КИСЛОТА, МИКРОБИОЛОГИЧЕСКИЙ СИНТЕЗ ЛИПИДОВ, ПИВНАЯ ДРОБИНА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, BREWER'S SPENT GRAIN
File Description: text/html
-
10Academic Journal
Subject Terms: ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ДОКОЗАГЕКСАЕНОВАЯ КИСЛОТА, СОСТАВ ПРЕПАРАТОВ ОМЕГА-3 ЖИРНЫХ КИСЛОТ
File Description: text/html
-
11Academic Journal
Authors: Петухова, Н., Калимуллина, Л., Сюндюкова, Ю., Зорин, В.
Subject Terms: ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, АРАХИДОНОВАЯ КИСЛОТА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, БИОТРАНСФОРМАЦИЯ
File Description: text/html
-
12Academic Journal
Source: Вопросы современной педиатрии.
Subject Terms: 0404 agricultural biotechnology, 04 agricultural and veterinary sciences, ДЛИННОЦЕПОЧЕЧНЫЕ ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, НЕРВНАЯ СИСТЕМА, ДОКОЗАГЕКСАЕНОВАЯ КИСЛОТА, АРАХИДОНОВАЯ КИСЛОТА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ω3 ЖИРНЫЕ КИСЛОТЫ, ω-3 FATTY ACIDS, 0405 other agricultural sciences, 3. Good health
File Description: text/html
-
13Academic Journal
Source: Современные проблемы науки и образования.
Subject Terms: СЛЮНА., SALIVA., ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ЖИРНЫЕ КИСЛОТЫ
File Description: text/html
-
14Academic Journal
Authors: Петухова, Н., Рахматуллина, Ю., Пантелеева, С., Зорин, В.
Subject Terms: ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, МORTIERELLA ALPINА
File Description: text/html
-
15Academic Journal
Source: Башкирский химический журнал.
Subject Terms: 01 natural sciences, АРАХИДОНОВАЯ КИСЛОТА, МИКРОБИОЛОГИЧЕСКИЙ СИНТЕЗ ЛИПИДОВ, ПИВНАЯ ДРОБИНА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, BREWER'S SPENT GRAIN, 0104 chemical sciences
File Description: text/html
-
16Academic Journal
Source: Тихоокеанский медицинский журнал.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ДОКОЗАГЕКСАЕНОВАЯ КИСЛОТА, СОСТАВ ПРЕПАРАТОВ ОМЕГА-3 ЖИРНЫХ КИСЛОТ, 3. Good health
File Description: text/html
-
17Academic Journal
Source: Башкирский химический журнал.
Subject Terms: ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, АРАХИДОНОВАЯ КИСЛОТА, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, БИОТРАНСФОРМАЦИЯ, 01 natural sciences, 0104 chemical sciences
File Description: text/html
-
18Academic Journal
Source: Башкирский химический журнал.
Subject Terms: ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, МORTIERELLA ALPINА, 01 natural sciences, 0104 chemical sciences
File Description: text/html
-
19Dissertation/ Thesis
Authors: Султонов, Шамши Абдувалиевич
Contributors: Кормилец, Олеся Николаевна, Институт фундаментальной биологии и биотехнологии, Кафедра водных и наземных экосистем
Subject Terms: ПНЖК, арахидоновая кислота, эйкозапентаеновая кислота, докозагексагеновая кислота, хариус байкальский, экспрессия генов, элонгазы, десатуразы, 34.33.33
Relation: Султонов, Шамши Абдувалиевич. Оценка синтеза физиологически ценных жирных кислот в нескольких тканях хариуса (род Thymallus) на основе биохимического и генетического анализа [Электронный ресурс] : магистерская диссертация : 06.04.01 / Ш. А. Султонов. — Красноярск : СФУ, 2023.
Availability: https://elib.sfu-kras.ru/handle/2311/151967
-
20Dissertation/ Thesis
Authors: Быкова, Татьяна Андреевна
Contributors: Трусова, Мария Юрьевна, Институт фундаментальной биологии и биотехнологии, Кафедра геномики и биоинформатики
Subject Terms: Ключевые слова, ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, ЭЙКОЗАПЕНТАЕНОВАЯ КИСЛОТА, ДОКОЗАГЕКСАЕНОВАЯ КИСЛОТА, ХАРИУС СИБИРСКИЙ, ЭКСПРЕССИЯ ГЕНОВ, ЭЛОНГАЗЫ, ДЕСАТУРАЗЫ, 34.23.59
Relation: Быкова, Татьяна Андреевна. Анализ экспрессии генов ферментов, ответственных за биосинтез длинноцепочечных полиненасыщенных жирных кислот в тканях хариуса сибирского (Thymallus arcticus) [Электронный ресурс] : магистерская диссертация : 06.04.01 / Т. А. Быкова. — Красноярск : СФУ, 2021.
Availability: https://elib.sfu-kras.ru/handle/2311/143963