-
1Academic Journal
-
2
-
3Academic Journal
Συγγραφείς: T. Postnikova N., O. Rybak O., A. Gubanov S., H. Zekollari, M. Huss, Т. Постникова Н., О. Рыбак О., А. Губанов C., X. Зеколлари, М. Хусс
Συνεισφορές: This work was supported by the Russian Science Foundation, grant 23-27-00050., Исследование выполнено при финансовой поддержке РНФ в рамках научного проекта 23-27-00050.
Πηγή: Ice and Snow; Том 64, № 3 (2024); 303-325 ; Лёд и Снег; Том 64, № 3 (2024); 303-325 ; 2412-3765 ; 2076-6734
Θεματικοί όροι: mountain glaciers, mathematical model, glacier modeling, numerical experiments, climate change, climate projections, CMIP6, Elbrus, proglacial lakes, горные ледники, математическая модель, гляциологическое моделирование, численные эксперименты, изменение климата, климатические проекции, Эльбрус, прогляциальные озёра
Περιγραφή αρχείου: application/pdf
Relation: https://ice-snow.igras.ru/jour/article/view/1431/728; Докукин М.Д., Хаткутов А.В. Озёра у ледника Малый Азау на Эльбрусе: динамика и прорывы // Лёд и Снег. 2016. Т. 56. № 4. С. 472–479. https://doi.org/10.15356/2076-6734-2016-4-472-479; Золотарёв Е.А. Эволюция оледенения Эльбруса. Картографо-аэрокосмические технологии гляциологического мониторинга. М.: Научный мир, 2009. 240 с.; Золотарёв Е.А. Теоретические основы картографо-аэрокосмических технологий дистанционного мониторинга опасных гляциальных процессов высокогорных геосистем. Дис. на соиск. уч. степ. д-ра геогр. наук. М.: МГУ им. М.В. Ломоносова, 2013. 207 с.; Золотарёв Е.А., Харьковец Е.Г. Эволюция оледенения Эльбруса после малого ледникового периода // Лёд и Cнег. 2012. Т. 52. № 2. С. 15–22.; Корнева И.А., Рыбак О.О., Сатылканов Р.А. Климатические проекции для Центрального и Внутреннего Тянь-Шаня на основе данных CORDEX // Фундаментальная и прикладная климатология. 2023. Т. 9. № 2. С. 133–164. https://doi.org/10.21513/2410-8758-2023-2-133-164; Котляков В.М., Хромова Т.Е., Носенко Г.А., Муравьёв А.Я., Никитин С.А. Ледники в горах России (Кавказ, Алтай, Камчатка) в первой четверти XXI века // Лёд и Снег. 2023. Т. 63. № 2. С. 157–173. https://doi.org/10.31857/S2076673423020114; Лаврентьев И.И., Петраков Д.А., Кутузов С.С., Коваленко Н.В., Смирнов А.М. Оценка потенциала развития ледниковых озёр на Центральном Кавказе // Лёд и Снег. 2020. Т. 60. № 3. С. 343–360. https://doi.org/10.31857/S2076673420030044; Ледники и климат Эльбруса (Отв. ред. В.Н. Михаленко). М., СПб.: Нестор-История, 2020. 372 с.; Лурье П.М., Панов В.Д. Влияние изменения климата на современное оледенение и сток рек северного склона Большого Кавказа // Устойчивое развитие горных территорий. 2013. № 2. С. 70–77.; Лурье П.М., Панов В.Д. Изменение современного оледенения северного склона Большого Кавказа в ХХ в. и прогноз его деградации в XXI в. // Метеорология и гидрология. 2014. № 4. С. 68–76.; Оледенение Эльбруса (Под ред. Г.К. Тушинского). Изд-во Московского университета, 1968. 346 с. Поповнин В.В., Резепкин А.А., Тиелидзе Л.Г. Разрастание поверхностной морены на языке ледника Джанкуат за период прямого гляциологического мониторинга // Криосфера Земли. 2015. Т. 19. № 1. С. 89–98.; Постникова Т.Н., Рыбак О.О. Глобальные гляциологические модели: новый этап в развитии методов прогнозирования эволюции ледников. Часть 1. Общий подход и архитектура моделей // Лёд и Снег. 2021. Т. 61. № 4. С. 620–636. https://doi.org/10.31857/S2076673421040111; Постникова Т.Н., Рыбак О.О. Глобальные гляциологические модели: новый этап в развитии методов прогнозирования эволюции ледников. Часть 2. Постановка экспериментов и практические приложения // Лёд и Снег. 2022. Т. 62. № 2. С. 287–304. https://doi.org/10.31857/S2076673422020133; Рыбак О.О., Рыбак Е.А., Корнева И.А. Ожидаемое изменение поверхностного баланса массы ледникового комплекса Эльбруса в условиях глобального потепления // Международный научно-исследовательский журнал. 2019. №. 12 (90). С. 135–141. https://doi.org/10.23670/IRJ.2019.90.12.027; Торопов П.А., Михаленко В.Н., Кутузов С.С., Морозова П.А., Шестакова А.А. Температурный и радиационный режим ледников на склонах Эльбруса в период абляции за последние 65 лет. // Лёд и Снег. 2016. Т. 56. № 1. С. 5–19. https://doi.org/10.15356/2076-6734-2016-1-5-19; Хромова Т.Е., Носенко Г.А., Глазовский А.Ф., Муравьев А.Я., Никитин С.А., Лаврентьев И.И. Новый Каталог ледников России по спутниковым данным (2016–2019 гг.) // Лёд и Снег. 2021. Т. 61. № 3. С. 341–358. https://doi.org/10.31857/S2076673421030093; Черноморец С.С. Селевые очаги до и после катастроф. М.: Научный мир, 2005. 180 с.; Anderson L.S., Anderson R.S. Modeling debris-covered glaciers: response to steady debris deposition // The Cryosphere. 2016. V. 10. No. 3. P. 1105–1124. https://doi.org/10.5194/tc-10-1105-2016; Bozhinskiy A.N., Krass M.S., Popovnin V.V. Role of debris cover in the thermal physics of glaciers // Journal of Glaciology. 1986. V. 32. № 111. P. 255–266.; Compagno L., Huss M., Miles E.S., McCarthy M.J., Zekol lari H., Dehecq A., Pellicciotti F., Farinotti D. Model ling supraglacial debris-cover evolution from the sin gle-glacier to the regional scale: an application to High Mountain Asia // The Cryosphere. 2022. V. 16. No. 5. P. 1697–1718.; Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer B., Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // GeoscientificModel Development. 2016. V. 9. No. 5. P. 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016; Hersbach H., Bell B., Berrisford P., Hora´nyi A., Sa bater J.M., Nicolas J. Global reanalysis: goodbye ERA-Interim, hello ERA5 // ECMWF newsletter. 2019. Т. 159. С. 17–24.; Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth Ch., Girod L., Farinotti D., Huss M., Dussail lant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century // Nature. 2021. V. 592. P. 726–731. https://doi.org/10.1038/s41586-021-03436-z; Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe // Journ. of Geophysical Research: Earth Surface. 2012. V. 117. P. F4. https://doi.org/10.1029/2012JF002523; Huss M., Hock R. A new model for global glacier change and sea-level rise // Frontiers in Earth Science. 2015. V. 3. P. 54. https://doi.org/10.3389/feart.2015.00054; IPCC, 2021: In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. (Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B.E. Zhou): Cambridge Universi ty Press, Cambridge, UK and New York, NY, USA, 2021. P. 31.; Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petra kov D. Volume changes of Elbrus glaciers from 1997 to 2017 // Frontiers in Earth Science. 2019. V. 7. № 153. https://doi.org/10.3389/feart.2019.00153; Mattson L.E., Gardner J.S., Young G.J. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya // Snow and glacier hydrology. 1993.; Østrem G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges // Geografiska Annaler. 1959. V. 41. № 4. P. 228–230. https://doi.org/10.1080/20014422.1959.11907953; Petrakov D.A., Krylenko I.V., Chernomorets S.S., Krylenko I.N., Tutubalina O.V., Shakhmina M.S. Debris flow hazard of glacial lakes in the Central Caucasus. In 4th International Conference on Debris-Flow Hazards Mitigation. Chengdu: Millpress, Rotterdam, 2007. P. 703–714.; Postnikova T., Rybak O., Gubanov A., Zekollari H., Huss M., Shahgedanova M. Debris cover effect on the evolution of Northern Caucasus glaciation in the 21 st century // Frontiers in Earth Science. 2023. V. 11. 22 p. https://doi.org/10.3389/feart.2023.1256696; RGI Consortium. Randolph Glacier Inventory (RGI) – A dataset of global glacier outlines: Version 6.0. Technical Report. Global Land Ice Measurements from Space, Boulder, Colorado, USA. 2017. https://doi.org/10.7265/N5-RGI-60; Rounce D.R., Hock R., McNabb R.W., Millan R., Sommer C., Braun M.H. Distributed global debris thick ness estimates reveal debris significantly impacts gla cier mass balance // Geophysical Research Letters. 2021. V. 48. No. 8. e2020GL091311. https://doi.org/10.1029/2020GL091311; Tielidze L.G., Bolch T., Wheate R.D., Kutuzov S.S., Lavren tiev I.I., Zemp M. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014 // The Cryosphere. 2020. V. 14. P. 585–598. https://doi.org/10.5194/tc-14-585-2020, 2020; Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan) // The Cryosphere. 2018. V. 12. P. 81–94. https://doi.org/10.5194/tc-12-81-2018; Shahgedanova M., Nosenko G., Kutuzov S., Rototaeva O., Khromova T. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with AS TER satellite imagery and aerial photography // The Cryosphere. 2014. V. 8. P. 2367–2379. https://doi.org/10.5194/tc-8-2367-2014; Verhaegen Y., Huybrechts P., Rybak O., Popovnin V.V. Mod elling the evolution of Djankuat Glacier, North Cau casus, from 1752 until 2100 AD // The Cryosphere. 2020. V. 14. № 11. P. 4039–4061. https://doi.org/10.5194/tc-2019-312; Verhaegen Y., Rybak O., Popovnin V.V., Huybrechts P. Quantifying supraglacial debris‐related melt‐altering effects on the Djankuat Glacier, Caucasus, Russian Federation // Journ. of Geophysical Research: Earth Surface. 2024. 129(4), e2023JF007542. https://doi.org/10.1029/2023JF007542; WGMS. Fluctuations of Glaciers Database. 2022 // World Glacier Monitoring Service, Zurich, Switzerland. https://dx.doi.org 10.5904/wgms-fog-2022-09. On-line access: https://dx.doi.org/10.5904/wgms-fog-2022-09. (Last access: 14 January 2024).; Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble // The Cryosphere. 2019. V. 13. P. 1125–1146. https://doi.org/10.5194/tc-13-1125-2019
-
4Academic Journal
Συγγραφείς: Vitaly Alexandrovich Shapovalov
Πηγή: Наука. Инновации. Технологии, Vol 0, Iss 3, Pp 227-239 (2022)
Θεματικοί όροι: трехмерная модель, конвективное облако, численные эксперименты, рост градин, кристаллизующий реагент, радиолокационная отражаемость, three-dimensional model, convective cloud, numerical experiments, growth of hailstones, crystallizing reagent, radar reflectivity, Geography (General), G1-922
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/a16c8f4614184bc4adcb907c1b05b6ce
-
5Academic Journal
-
6Academic Journal
Συγγραφείς: Цыденов, Баир Олегович, Деги, Дмитрий Владимирович, Барт, Андрей Андреевич, Трунов, Никита Сергеевич, Чуруксаева, Владислава Васильевна
Πηγή: Вестник Томского государственного университета. Математика и механика. 2025. № 93. С. 41-57
Θεματικοί όροι: термобар, растворенный кислород, биогеохимические циклы, математические модели, численные эксперименты, экосистема водоема, Байкал, озеро
Περιγραφή αρχείου: application/pdf
Relation: koha:001153047; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001153047
-
7Academic Journal
Συγγραφείς: I.A. Lekh, P.A. Taranenko, V.P. Beskachko
Πηγή: Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics". 11:47-55
Θεματικοί όροι: 0209 industrial biotechnology, gas-liquid flow, УДК 534.12, УДК 534.13, газожидкостный поток, 02 engineering and technology, УДК 534.14, численные эксперименты, 01 natural sciences, 6. Clean water, кориолисов массовый расходомер, метод конечных элементов, Coriolis mass flowmeter, 0103 physical sciences, numerical experiments, finite-element methods
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://vestnik.susu.ru/mmph/article/view/8802
https://cyberleninka.ru/article/n/vliyanie-puzyrkov-gaza-na-vibratsionnye-parametry-izmeritelnyh-trubok-koriolisovogo-rashodomera
https://vestnik.susu.ru/mmph/article/download/8802/7114
https://cyberleninka.ru/article/n/vliyanie-puzyrkov-gaza-na-vibratsionnye-parametry-izmeritelnyh-trubok-koriolisovogo-rashodomera/pdf
http://dspace.susu.ru/xmlui/handle/0001.74/40304 -
8Conference
Θεματικοί όροι: топливные ячейки, реакторные установки, ториевое топливо, гибридные установки, численные эксперименты, 7. Clean energy, термоядерные нейтроны, тепловыделение
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/64689
-
9Academic Journal
Συγγραφείς: T. Postnikova N., O. Rybak O., Т. Постникова Н., О. Рыбак О.
Συνεισφορές: This work was supported by the Russian Foundation for Basic Research, RFBR grant № 20-35-90042. O. O. Rybak was supported by the.Governmental Order to Water Problems Institute of RAS, subject № FMWZ-2022-0001., Работа поддержана РФФИ, грант № 20-35-90042. О. О. Рыбак получил поддержку в рамках темы № FMWZ-2022-0001 Государственного задания ИП РАН.
Πηγή: Ice and Snow; Том 62, № 2 (2022); 287-304 ; Лёд и Снег; Том 62, № 2 (2022); 287-304 ; 2412-3765 ; 2076-6734
Θεματικοί όροι: mountain glaciers, glacier modeling, numerical experiments, methods of prediction, climate change, горные ледники, гляциологическое моделирование, численные эксперименты, методы прогнозирования, изменения климата
Περιγραφή αρχείου: application/pdf
Relation: https://ice-snow.igras.ru/jour/article/view/987/617; Farinotti D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus estimate for the ice thickness distribution of all glaciers on Earth Nature Geoscience 2019, 12 (3): 168–173 https://doi.org/10.1038/s41561-019-0300-3; Cogley J.G. Area of the ocean Marine Geodesy 2012, 35: 379–388 doi: 10.688.1080/01490419.2012.709476; Marzeion B., Hock R., Anderson B., Bliss A., Champollion N., Fujita K., Huss M., Immerzeel W.W., Kraaijenbrink P., Malles J.H., Maussion F, Radić V., Rounce D.R., Sakai A., Shannon S., van de Wal R., Zekollari H. Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change Earth's Future 2020, 8 (7): e2019EF001470 https://doi.org/10.1029/2019EF001470; Marzeion B., Kaser G., Maussion F., Champollion N. Limited influence of climate change mitigation on short-term glacier mass loss Nature Climate Change 2018, 8: 305–308 doi:10.1038/s41558-018-0093-1; Zekollari H., Huss M., Farinotti D. On the imbalance and response time of glaciers in the European Alps Geophys Research Letter 2020, 47 (2): e2019GL085578 https://doi.org/10.1029/2019GL085578; Huss M., Hock R. Global-scale hydrological response to future glacier mass loss Nature Climate Change 2018, 8: 135–140 https://doi.org/10.1038/s41558-017-0049-x; Rounce D.R., Hock R., Shean D. Glacier mass change in high mountain Asia through 2100 using the opensource Python Glacier Evolution Model (PyGEM) Frontiers in Earth Science 2020, 7: 331 https://doi.org/10.3389/feart.2019.00331; Maussion F., Butenko A., Champollion N., Dusch M., Eis J., Fourteau K., Gregor P., Jarosch A.H., Landmann J., Oesterle F., Recinos B., Rothenpieler T., Vlug A., Wild C.T., Marzeion B. The Open Global Glacier Model (OGGM) v11 Geoscientific Model Development 2019, 12: 909– 931 https://doi.org/10.5194/gmd-12-909-2019; Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble The Cryosphere 2019, 13: 1125–1146 https://doi.org/10.5194/tc-13-1125-2019; Huss M., Hock R. A new model for global glacier change and sea-level rise Frontiers in Earth Science 2015, 3: 54 https://doi.org/10.3389/feart.2015.00054; Rounce D.R., Khurana T., Short M.B., Hock R., Shean D.E., Brinkerhoff D.J. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia Journ of Glaciology 2020, 66 (256):175–187; Shannon S., Smith R., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios The Cryosphere 2019, 13: 325–350 https://doi.org/10.5194/tc-2019-35; Hirabayashi Y., Zang Y., Watanabe S., Koirala S., Kanae S. Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2 Hydrol Research Letter 2013, 7 (1): 6–11 https://doi.org/10.3178/hrl.7.6; Marzeion B., Jarosch A., Hofer M. Past and future sealevel change from the surface mass balance of glaciers The Cryosphere 2012, 6 (6): 1295–1322 https://doi.org/10.5194/tc-6-1295-2012; Bahr D.B., Meier M.F., Peckham S.D. The physical basis of glacier volume-area scaling Journ of Geophys Reseasrch 1997, 102 (B9): 20355– 20362 https://doi.org/10.1029/97JB01696; Van de Wal R.S.W., Wild M Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GSM Climate Dynamics 2001, 18 (3–4): 359–366 doi:10.1007/s003820100184; Huss M., Jouvet G., Farinotti D., Bauder A. Future highmountain hydrology: a new parameterization of glacier retreat // Hydrology and Earth System Sciences 2010, 14: 815–829 https://doi.org/10.5194/hess-14-815-2010; Hofer M., Marzeion B., Mölg T. A statistical downscaling method for daily air temperature in data sparse, glaciated mountain environments Geosci Model Dev 2015, 8: 579–593 https://doi.org/10.5194/gmd-8-5792015; Morozova P.A., Rybak O.O. Regionalization of global climate modeling data for calculating the mass balance of mountain glaciers Led i Sneg. Ice and Snow 2017, 57 (4): 437–452 https://doi.org/10.15356/2076-67342017-4-437-452 [In Russian]; Murphy J An Evaluation of Statistical and Dynamical Techniques for Downscaling Local Climate Journ of Climate 1999, 12 (8): 2256–2284; Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design Bull Amer Meteor Soc 2012, 93: 485–498 https://doi.org/10.1175/ BAMS-D-11-00094 1; Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer B., Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization Geoscientific Model Development 2016, 9 (5): 1937–1958 doi:10.5194/gmd-9-1937-2016.; Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., MongeSanz B.M., Morcrette J.J., Park B.K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system Quarterly Journ of the Royal Meteorological Society 2011, 137 (656): 553–597 https://doi.org/10.1002/qj.828; Gutowski Jr.W.J., Giorgi F., Timbal B., Frigon A., Jacob D., Kang H.S. Raghavan K., Lee B., Lennard Ch., Nikulin G., O’Rourke E., Rixen M., Solman S., Stephenson T., Tangang F. WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6 Geoscientific Model Development 2016, 9 (11): 4087–4095 https://doi.org/10.5194/gmd-9-4087-2016; Jacob D., Petersen J., Eggert B., Alias A., Bøssing O., Bouwer L.M., Braun A., Colette A., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Kriegsmann A., Martin E., van Meijgaard E., Moseley C., Pfeifer S., Preuschmann S., Radermacher C., Radtke K., Rechid D., Roundsevell M., Samuelsson P., Somot S., Soussana J.F., Teichmann C., Valentini R., Vautard R., Weber B., Yiou P. EUROCORDEX: new high-resolution climate change projections for European impact research Reg Environ Change 2014, 14: 563–578 https://doi.org/10.1007/s10113-013-0499-2; Van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K. The representative concentration pathways: an overview Climatic Change 2011, 109: 5–31 doi:10.1007/s10584-011-0148-z; O’Neill B.C., Kriegler E., Riahi K., Ebi K.L., Hallegatte S., Carter T.R., Mathur R., Detlef P., van Vuuren D.P. A new scenario framework for climate change research: the concept of shared socioeconomic pathways Climatic Сhange 2014, 122 (3): 387–400 https://doi.org/10.1007/s10584-013-0905-2; Edwards T. Quantifying uncertainties in the land ice contribution to sea level from ISMIP6 and GlacierMIP EGU General Assembly Conference Abstracts 2020: 11241; https://www.climate-cryosphere.org/mips/glaciermip/activities-experiments; Rybak O.O., Rybak E.A., Kutuzov S.S., Lavrentyev I.I., Morozova P.A. Calibration of the mathematical model of the dynamics of the Marukh glacier, Western Caucasus Led i Sneg. Ice and Snow 2015, 55 (2): 9–20 https://doi.org/10.15356/2076-6734-2015-2-9-20 [In Russian]; Radić V., Hock R. Regionally differentiated contribution of mountain glaciers and ice caps to future sealevel rise Nature Geoscience 2011, 4 (2): 91–94 https://doi.org/10.1038/ngeo1052; Jennings K.S., Winchell T.S., Livneh B., Molotch N.P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere Nat Commun 2018, 9: 1148 https://doi.org/10.1038/s41467-018-03629-7; Pattyn F. The paradigm shift in Antarctic ice sheet modelling Nat Commun 2018, 9: 2728 https://doi.org/10.1038/s41467-018-05003-z; RGI Consortium Randolph Glacier Inventory (RGI) – A dataset of global glacier outlines: Version 6 0 Technical Report Global Land Ice Measurements from Space, Boulder, Colorado, USA, 2017 https://doi.org/10.7265/N5-RGI-60; Eis J., Maussion F., Marzeion B. Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach The Cryosphere 2019, 13: 3317–3335 doi:10.5194/tc-13-3317-2019; Shahgedanova M., Afzal M., Hagg W., Kapitsa V., Kasatkin N., Mayr E., Rybak O., Saidaliyeva Z., Severskiy I., Usmanova Z., Wade A., Yaitskaya N., Zhumabayev D. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia Water 2020, 12: 627 https://doi.org/10.3390/w12030627; WGMS: Fluctuations of Glaciers Database World Glacier Monitoring Service, Zürich, Switzerland 2017 https://doi.org/10.5904/wgmsfog-2017-10; Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis Annals of Glaciology 2009, 50 (50): 96–100 doi:10.3189/172756409787769744; Scherler D., Bookhagen B., Strecker M.R. Spatially variable response of himalayan glaciers to climate change affected by debris cover Nature Geoscience 2011, 4 (3): 156–159 doi:10.1038/ngeo1068; Gardelle J., Berthier E., Arnaud Y., Kääb A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 The Cryosphere 2013, 7 (4): 1263–1286 https://doi.org/10.5194/tc-7-1263-2013; Gardner A.S., Moholdt G., Cogley J.G., Wouters B., Arendt A.A., Wahr J., Berthier E., Hock R., Pfeffer W.T., Kaser G., Ligtenberg S.R.M., Bolch T., Sharp M.J., Hagen J.O., van den Broeke M.R., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 Science 2013, 340: 852–857 doi:10.1126/science.1234532; Zemp M., Huss M., Thilbert E., Eckert N., McNabb R., Huber J., Barandun M., Machguth H., Nussbaumer S.U., GärtnerRoer I., Thomson L., Paul F., Maussion F., Kutuzov S., Cogley J.G. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016 Nature 2019, 568 (7752): 382–386 https://doi.org/10.1038/s41586-019-1071-0; Shean D.E., Bhushan S., Montesano P., Rounce D.R., Arendt A., Osmanoglu B. A systematic, regional assessment of High Mountain Asia glacier mass balance Frontiers in Earth Science 2020, 7: 363 https://doi.org/10.3389/feart.2019.00363; Zemp M, Frey H., GärtnerRoer I., Nussbaumer S., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Delgado Granados H., Demuth M.N., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Ove Hagen J., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurđsson O., Soruco A., Usubaliev R., Vincent C. Historically unprecedented global glacier decline in the early 21st century Journ of Glaciology 2015, 61 (228): 745–762 doi:10.3189/2015JoG15J017; Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models Climate Dynamics 2014, 42 (1–2): 37–58 https://doi.org/10.1007/s00382-013-1719-7; Berg B.A. Introduction to Markov chain Monte Carlo simulations and their statistical analysis Markov Chain Monte Carlo Lect Notes Ser Inst Math Sci Natl Univ Singap 2005, 7: 1–52.; Renard B., Kavetski D., Kuczera G., Thyer M., Franks S.W. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors Water Resources Research 2010, 46 (5): 1–22 doi:10.1029/2009WR008328; Stone E.J., Lunt D.J., Rutt I.C., Hanna E. Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change The Cryosphere 2010, 4: 397–417 https://doi.org/10.5194/tc-4-397-2010; McKay M.D., Beckman R.J., Conover W.J. Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code Technometrics 1979, 21: 239–245; https://oggm.org/2021/02/18/oggm-v140/; Brun F., Berthier E., Wagnon P., Kääb A., Treichler D. A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016 Nat Geosci 2017, 10 (9): 668–673 https://doi.org/10.1038/ngeo2999; Braun M.H., Malz P., Sommer C., FaríasBarahona D., Sauter T., Casassa G., Soruco A., Skvarca P., Seehaus T.C. Constraining glacier elevation and mass changes in South America Nat Clim Change 2019, 9: 130–136 https://doi.org/10.1038/s41558-018-0375-7; Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth Ch., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century Nature 2021, 592: 726– 731 https://doi.org/10.1038/s41586-021-03436-z; Giesen R.H., Oerlemans J. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise Climate Dynamics 2013, 41 (11–12): 3283–3300 https://doi.org/10.1007/s00382-013-1743-7; Slangen A.B.A., Katsman C.A., van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios Climate Dynamics 2012, 38 (5–6): 1191–1209 https://doi.org/10.1007/s00382-011-1057-6; Kraaijenbrink P.D.A., Bierkens M.F.P., Lutz A.F., Immerzeel W.W. Impact of a global temperature rise of 1 5 degrees celsius on Asia’s Glaciers Nature 2017, 549: 257–260 doi:10.1038/nature23878; Anderson B., MacKintosh A. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover // Journ of Geophys Research: Earth Surface 2012, 117 (1): 1–15 https://doi.org/10.1029/2011JF002064; Sakai A., Fujita K. Contrasting glacier responses to recent climate change in High-Mountain Asia Scientific Reports 2017, 7: 13717 doi:10.1038/s41598-017-14256-5; Hock R., Bliss A., Marzeion B., Giesen R.H., Hirabayashi Y., Huss M., Radić V., Slangen A.B. GlacierMIP–A model intercomparison of global-scale glacier mass-balance models and projections Journ of Glaciology 2019, 65 (251): 453–467 https://doi.org/10.1017/jog.2019.22; Barnett T.P., Adam J.C., Lettenmaier D.P. Potential impacts of a warming climate on water availability in snow-dominated regions Nature 2005, 438 (7066): 303–309 https://doi.org/10.1038/nature04141; Jansson P., Hock R., Schneider T. The concept of glacier storage A review Journ of Hydrology 2003, 282: 116– 129 https://doi.org/10.1016/S0022-1694(03)00258-0; Rets E.P., Durmanov I.N., Kireeva M.B., Smirnov A.M., Popovnin V.V. Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges Climatic Change 2020, 163: 2135–2151 https://doi.org/10.1007/s10584-020-02931-y; Brunner M.I., Farinotti D., Zekollari H., Huss M., Zappa M. Future shifts in extreme flow regimes in Alpine regions Hydrology and Earth System Sciences 2019, 23 (11): 4471–4489 https://doi.org/10.5194/hess-23-4471-2019; Parkes D., Goosse H. Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model The Cryosphere 2020, 14: 3135–3153 https://doi.org/10.5194/tc-14-3135-2020; Leclercq P.W., Oerlemans J., Basagic H.J., Bushueva I., Cook A.J., Le Bris R. A data set of worldwide glacier length fluctuations The Cryosphere 2014, 8 (2): 659– 672 https://doi.org/10.5194/tc-8-659-2014; Raper S.C.B., Braithwaite R.J. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry The Cryosphere 2009, 3: 183–194 https://doi.org/10.5194/tc-3-183-2009; Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan) The Cryosphere 2018, 12: 81–94 https://doi.org/10.5194/tc-12-81-2018; https://sites.google.com/view/glaciersrussia/ледниковые-районы/кавказ; https://oggm.org/framework_talk/#/3/4; Anderson L.S., Anderson R.S. Modeling debris-covered glaciers: response to steady debris deposition The Cryosphere 2016, 10 (3): 1105 https://doi.org/10.5194/tc-10-1105-2016; Verhaegen Y., Huybrechts P., Rybak O., Popovnin V.V. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 AD The Cryosphere Discuss 2020, 14 (11): 4039–4061 https://doi.org/10.5194/tc-2019-312; Zekollari H., Goelzer H., Pattyn F., Wouters B., Lhermitte S. Towards a 3-D model for large-scale glacier simulations EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10947 https://doi.org/10.5194/egusphere-egu2020-10947; https://www.nat.fau.eu/2020/09/07/erc-startinggrant-for-glacier-research/; Kislov A.V., Glazovsky A.F. Simulation of the dynamics of the Hans tidal glacier (Svalbard) based on a stochastic model Led i Sneg. Ice and Snow 2019, 59 (4): 452–459 https://doi.org/10.15356/2076-6734-2019-4-441 [In Russian]; Kislov A.V., Morozova P.A. The Grosser Aletschgletscher dynamics: from a «Minimal model» to a stochastic equation Geography Environment Sustainability 2016, 9 (1): 21–27 https://doi.10.15356/2071-9388_01v09_2016_02; Dehecq A., Gourmelen N., Gardner A.S., Brun F., Goldberg D., Nienow P.W., Berthier E., Vincent Ch.,Wagnon P.,Trouvé E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia Nat Geosci 2019, 12: 22–27 doi:10.1038/s41561-018-0271-9; Brun F., Wagnon P., Berthier E., Shea J.M., Immerzeel W.W., Kraaijenbrink P.D.A., Vincent Ch., Reverchon C., Shrestha D., Arnaud Y. Ice cliff contribution to the tongue-wide ablation of Changri Nup glacier, Nepal, central Himalaya Cryosphere 2018, 12: 3439– 3457 doi:10.5194/tc-12-3439-2018; Rounce D.R., King O., McCarthy M., Shean D.E., Salerno F. Quantifying debris thickness of debris-covered glaciers in the Everest region of Nepal through invesion of a subdebris melt model Journ of Geophys Research Letters 2018, 123: 1094–1115 doi:10.1029/2017JF004395
-
10
-
11Academic Journal
Πηγή: Известия высших учебных заведений. Физика. 2022. Т. 65, № 12. С. 71-79
Θεματικοί όροι: аэрозольное рассеяние, зондирование атмосферы, лидары, численные эксперименты
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000927505
-
12
-
13Academic Journal
-
14Conference
Θεματικοί όροι: численные эксперименты, гибридные установки, термоядерные нейтроны, топливные ячейки, ториевое топливо, тепловыделение, реакторные установки
Περιγραφή αρχείου: application/pdf
Relation: Современные технологии, экономика и образование : сборник материалов II Всероссийской научно-методической конференции, г. Томск, 2-4 сентября 2020 г.; http://earchive.tpu.ru/handle/11683/64689
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/64689
-
15Academic Journal
Συγγραφείς: T. Postnikova N., O. Rybak O., Т. Постникова Н., О. Рыбак О.
Πηγή: Ice and Snow; Том 62, № 2 (2022); 620-636 ; Лёд и Снег; Том 62, № 2 (2022); 620-636 ; 2412-3765 ; 2076-6734
Θεματικοί όροι: mountain glaciers, glacier modeling, numerical experiments, methods of prediction, climate change, горные ледники, гляциологическое моделирование, численные эксперименты, методы прогнозирования, изменения климата
Περιγραφή αρχείου: application/pdf
Relation: https://ice-snow.igras.ru/jour/article/view/939/594; undefined
Διαθεσιμότητα: https://ice-snow.igras.ru/jour/article/view/939
-
16Academic Journal
Θεματικοί όροι: авторегрессионная модель, fishery reporting, autoregressive model, фильтр Калмана, 14. Life underwater, Kalman filter, информационная рыбопромысловая система, information fishing system, численные эксперименты, numerical experiments, промысловая отчетность, 12. Responsible consumption
Σύνδεσμος πρόσβασης: https://cyberleninka.ru/article/n/otsenka-kachestva-promyslovoy-otchetnosti-na-osnove-matematicheskoy-modeli
https://research-journal.org/wp-content/uploads/2021/04/4-106-1.pdf#page=78
https://research-journal.org/technical/ocenka-kachestva-promyslovoj-otchetnosti-na-osnove-matematicheskoj-modeli/ -
17Academic Journal
Συγγραφείς: Nağıyev, N.T., Səfərov, S.H.
Θεματικοί όροι: математическая модель, прогнозирование, large reservoirs, крупные водохранилища, forecasting, extreme situations, чрезвычайные ситуации, riyazi model, численные эксперименты, iri su anbarları, proqnozlaşdırma, fövqəladə hallar, numerical experiments, hesablama eksperimentləri, mathematical model
-
18Academic Journal
Συγγραφείς: I G Protsenko
Θεματικοί όροι: добыча и обработка рыбы, 9. Industry and infrastructure, simulation model, рыболовные участки, fishing areas, 14. Life underwater, численные эксперименты, numerical experiments, fish production and processing, 12. Responsible consumption, имитационная модель
Σύνδεσμος πρόσβασης: https://research-journal.org/wp-content/uploads/2021/05/5-107-1.pdf#page=87
https://research-journal.org/technical/imitacionnaya-model-optimizacii-obrabotki-ulova-na-rybopromyshlennom-predpriyatii/ -
19Academic Journal
Συγγραφείς: V P Parkhomenko
Θεματικοί όροι: 13. Climate action, 4. Education, global climate model, глобальная климатическая модель, 14. Life underwater, 15. Life on land, численные эксперименты, numerical experiments, 7. Clean energy
Σύνδεσμος πρόσβασης: https://research-journal.org/wp-content/uploads/2021/08/8-110-1.pdf#page=208
https://research-journal.org/earth/procedura-vychisleniya-skorosti-vetra-v-sovmestnoj-globalnoj-modeli-klimata/ -
20