Εμφανίζονται 1 - 20 Αποτελέσματα από 130 για την αναζήτηση '"ЦЕРЕБРОСПИНАЛЬНАЯ ЖИДКОСТЬ"', χρόνος αναζήτησης: 0,82δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 17, No 2 (2025); 49-54 ; Неврология, нейропсихиатрия, психосоматика; Vol 17, No 2 (2025); 49-54 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2025-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2482/1791; Beer S, Khan F, Kesselring J. Rehabilitation interventions in multiple sclerosis: an overview. J Neurol. 2012 Sep;259(9):1994-2008. doi:10.1007/s00415-012-6577-4. Epub 2012 Jul 8.; GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Mar;18(3):269-85. doi:10.1016/S1474-4422(18)30443-5. Epub 2019 Jan 21.; Cree BAC, Arnold DL, Chataway J, et al. Secondary Progressive Multiple Sclerosis: New Insights. Neurology. 2021 Aug 24;97(8):378-88. doi:10.1212/WNL.0000000000012323. Epub 2021 Jun 4.; Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary progressive multiple sclerosis. Neurology. 2009 Dec 8;73(23):1996-2002. doi:10.1212/WNL.0b013e3181c5b47f; Koch M, Kingwell E, Rieckmann P, Tremlett H; UBC MS Clinic Neurologists. The natural history of secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010 Sep;81(9):1039-43. doi:10.1136/jnnp.2010.208173. Epub 2010 Jul 16.; Huynh JL, Casaccia P. Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol. 2013 Feb;12(2):195-206. doi:10.1016/S1474-4422(12)70309-5; Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014 Jul;51(4):759-74. doi:10.1177/0300985813502820. Epub 2013 Sep 17.; Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol. 2020 Jun 3;8:409. doi:10.3389/fcell.2020.00409; Zhang L, Ding H, Zhang Y, et al. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol. 2020 Sep 3;11:1088. doi:10.3389/fphys.2020.01088; Marabita F, de Candia P, Torri A, et al. Normalization of circulating microRNA expression data obtained by quantitative realtime RT-PCR. Brief Bioinform. 2016 Mar;17(2):204-12. doi:10.1093/bib/bbv056. Epub 2015 Aug 3.; Jagot F, Davoust N. Is It worth Considering Circulating microRNAs in Multiple Sclerosis? Front Immunol. 2016 Apr 5;7:129. doi:10.3389/fimmu.2016.00129; Омарова МА, Козин МС, Бойко АН. Свободная циркулирующая микроРНК как потенциальный диагностический маркер при рассеянном склерозе. Неврология, нейропсихиатрия, психосоматика. 2022;14(1S):29-33. doi:10.14412/2074-2711-2022-1S-29-33; Zheleznyakova GY, Piket E, Needhamsen M, et al. Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17):e2011574118. doi:10.1073/pnas.2011574118; Freedman MS, Thompson EJ, Deisenhammer F, et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol. 2005 Jun;62(6):865-70. doi:10.1001/archneur.62.6.865; Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. doi:10.1093/nar/gky1141; Chang L, Xia J. MicroRNA Regulatory Network Analysis Using miRNet 2.0. Methods Mol Biol. 2023;2594:185-204. doi:10.1007/978-1-0716-2815-7_14; Munoz-San Martin M, Gomez I, Quiroga-Varela A, et al. miRNA Signature in CSF From Patients With Primary Progressive Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022 Dec 9;10(1):e200069. doi:10.1212/NXI.0000000000200069; Ahlbrecht J, Martino F, Pul R, et al. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. Mult Scler. 2016 Aug;22(9):1202-14. doi:10.1177/1352458515613641. Epub 2015 Oct 22.; Munoz-San Martin M, Torras S, Robles-Cedeno R, et al. Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics. 2020 Dec;12(23):2065-76. doi:10.2217/epi-2020-0172. Epub 2020 Dec 8.; Munoz-San Martin M, Reverter G, Robles-Cedeno R, et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J Neuroinflammation. 2019 Nov 14;16(1):220. doi:10.1186/s12974-019-1590-5; Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology. 2012 Nov 27;79(22):2166-70. doi:10.1212/WNL.0b013e3182759621. Epub 2012 Oct 17.; Quintana E, Ortega FJ, Robles-Cedeno R, et al. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler. 2017 Nov;23(13):1716-26. doi:10.1177/1352458516684213. Epub 2017 Jan 9.; Kramer S, Haghikia A, Bang C, et al. Elevated levels of miR-181c and miR-633 in the CSF of patients with MS: A validation study. Neurol Neuroimmunol Neuroinflamm. 2019 Oct 1;6(6):e623. doi:10.1212/NXI.0000000000000623; Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023 Jan;21(1):51-64. doi:10.1038/s41579-022-00770-5. Epub 2022 Aug 5.

  3. 3
    Academic Journal

    Συνεισφορές: The study was carried out with financial support from the Russian Science Foundation, grant No. 22-15-00284, Исследование выполнено при финансовой поддержке РНФ, грант № 22-15-00284

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 6 (2024); 79-82 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 6 (2024); 79-82 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2421/1757; GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1211-59. doi:10.1016/S0140-6736(17)32154-2. Erratum in: Lancet. 2017 Oct 28;390(10106):e38. doi:10.1016/S0140-6736(17)32647-8; Grytten N, Torkildsen O, Myhr KM. Time trends in the incidence and prevalence of multiple sclerosis in Norway during eight decades. Acta Neurol Scand. 2015;132(199):29- 36. doi:10.1111/ane.12428; Belbasis L, Bellou V, Evangelou E, et al. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015 Mar;14(3):263-73. doi:10.1016/S1474-4422(14)70267-4. Epub 2015 Feb 4.; Zheng C, He L, Liu L, et al. The efficacy of vitamin D in multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2018 Jul;23:56-61. doi:10.1016/j.msard.2018.05.008. Epub 2018 May 12.; Camara-Lemarroy CR, Metz LM, Yong VW. Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome. World J Gastroenterol. 2018 Oct 7;24(37):4217-23. doi:10.3748/wjg.v24.i37.4217; Pröbstel AK, Baranzini SE. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the “MS Microbiome”. Neurotherapeutics. 2018 Jan;15(1):126-34. doi:10.1007/s13311-017-0587-y; Zhou X, Baumann R, Gao X, et al; iMSMS Consortium. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022 Sep 15;185(19):3467- 86.e16. doi:10.1016/j.cell.2022.08.021; Thirion F, Sellebjerg F, Fan Y, et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023 Jan 5;15(1):1. doi:10.1186/s13073-022-01148-1; Boziki MK, Kesidou E, Theotokis P, et al. Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci. 2020 Apr 14;10(4):234. doi:10.3390/brainsci10040234; Castillo-Alvarez F, Marzo-Sola ME. Role of the gut microbiota in the development of various neurological diseases. Neurologia (Engl Ed). 2022 Jul-Aug;37(6):492-8. doi:10.1016/j.nrl.2019.03.017. Epub 2019 Jul 21.; Castillo-Alvarez F, Perez-Matute P, Oteo JA, Marzo-Sola ME. The influence of interferon β- 1b on gut microbiota composition in patients with multiple sclerosis. Neurologia (Engl Ed). 2021 Sep;36(7):495-503. doi:10.1016/j.nrleng.2020.05.006. Epub 2020 May 31.; Ntranos A, Park HJ, Wentling M, et al. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain. 2022 Apr 18;145(2):569-83. doi:10.1093/brain/awab320; Бойко АН, Мельников МВ, Бойко ОВ и др. Исследование содержания маркеров микробиоты в цереброспинальной жидкости пациентов с рассеянным склерозом и радиологически изолированным синдромом. Неврология, нейропсихиатрия, психосоматика. 2021;13(1S):27-30. doi:10.14412/2074-2711-2021-1S-27-30; Osipov GA, Verkhovtseva NV. Study of human microecology by mass spectrometry of microbial markers. Benef Microbes. 2011 Mar;2(1):63-78. doi:10.3920/BM2010.0017; Осипов ГА. Хромато-масс-спектрометрический анализ микроорганизмов и сообществ в клинических пробах при инфекциях и дисбиозах. Химический анализ в медицинской диагностике. Москва: Наука; 2010.; Osipov GA, Boiko NB, Fedosova NF, et al. Comparative gas chromatography mass-spectrometry study of the composition of microbial chemical markers infeces. Microb Ecol Health Dis. 2009;21(3-4):159-71. doi:10.3109/08910600903462657; Омарова МА, Роговский ВС, Садеков ТШ и др. Исследование содержания маркеров микробиоты в цельной крови и цереброспинальной жидкости пациентов с различными типами течения рассеянного склероза и лиц с радиологически изолированным синдромом. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023;123(7- 2):96-102. doi:10.17116/jnevro202312307296; Hughes LE, Smith PA, Bonell S, et al. Cross-reactivity between related sequences found in Acinetobacter sp., Pseudomonas aeruginosa, myelin basic protein and myelin oligodendrocyte glycoprotein in multiple sclerosis. J Neuroimmunol. 2003 Nov;144(1-2):105- 15. doi:10.1016/s0165-5728(03)00274-1; Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science. 2022 Jan 21;375(6578):296- 301. doi:10.1126/science.abj8222. Epub 2022 Jan 13.

  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The work received budget financing within Russian Science Foundation state task № 22-15-00284., Работа выполнена за счет средств бюджетного финансирования на выполнение государственного задания по теме Российского научного фонда № 22-15-00284.

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 1S (2022): Спецвыпуск: рассеянный склероз; 29-33 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 1S (2022): Спецвыпуск: рассеянный склероз; 29-33 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-1S

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1850/1427; Beer S, Khan F, Kesselring J. Rehabilitation in multiple sclerosis: an overview. J Neurol. 2012 Sep;259(9):1994-2008. doi:10.1007/s00415-012-6577-4. Epub 2012 Jul 8.; GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Mar;18(3):269-85. doi:10.1016/S1474-4422(18)30443-5; Cree BAC, Arnold DL, Chataway J, et al. Secondary Progressive Multiple Sclerosis: New Insights. Neurology. 2021 Aug 24;97(8):378-88. doi:10.1212/WNL.0000000000012323. Epub 2021 Jun 4.; Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary progressive multiple sclerosis. Neurology. 2009 Dec 8;73(23):1996-2002. doi:10.1212/WNL.0b013e3181c5b47f; Koch M, Kingwell E, Rieckmann P, Tremlett H; UBC MS Clinic Neurologists. The natural history of secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010 Sep;81(9):1039-43. doi:10.1136/jnnp.2010.208173. Epub 2010 Jul 16.; Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology. 2012 Nov 27;79(22):2166-70. doi:10.1212/WNL.0b013e3182759621. Epub 2012 Oct 17.; Bergman P, Piket E, Khademi M, et al. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016 Apr 20;3(3):e219. doi:10.1212/NXI.0000000000000219. eCollection 2016 Jun.; Quintana E, Ortega FJ, Robles-Cedeno R, et al. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler. 2017 Nov;23(13): 1716-26. doi:10.1177/1352458516684213. Epub 2017 Jan 9.; Kramer S, Haghikia A, Bang C, et al. Elevated levels of miR-181c and miR-633 in the CSF of patients with MS: A validation study. Neurol Neuroimmunol Neuroinflamm. 2019 Oct 1;6(6): e623. doi:10.1212/NXI.0000000000000623. Print 2019 Nov.; Bruinsma IB, van Dijk M, Bridel C, et al. Regulator of oligodendrocyte maturation, miR- 219, a potential biomarker for MS. J Neuroinflammation. 2017 Dec 4;14(1):235. doi:10.1186/s12974-017-1006-3; Ahlbrecht J, Martino F, Pul R, et al. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. Mult Scler. 2016 Aug;22(9): 1202-14. doi:10.1177/1352458515613641. Epub 2015 Oct 22.; Munoz-San Martin M, Torras S, Robles-Cedeno R, et al. Epigenomics. Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics. 2020 Dec;12(23):2065-76. doi:10.2217/epi-2020-0172. Epub 2020 Dec 8.; De Vito F, Musella A, Fresegna D, et al. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis. Neuropathol Appl Neurobiol. 2022 Feb;48(2):e12765. doi:10.1111/nan.12765. Epub 2021 Oct 6.; Munoz-San Martin M, Reverter G, RoblesCedeno R, et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J Neuroinflammation. 2019 Nov 14; 16(1):220. doi:10.1186/s12974-019-1590-5; Mandolesi G, Rizzo FR, Balletta S, et al. The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells. 2021 Feb 5;10(2):330. doi:10.3390/cells10020330

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 12, No 6 (2020); 104-109 ; Неврология, нейропсихиатрия, психосоматика; Vol 12, No 6 (2020); 104-109 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2020-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1478/1155; Hakim S, Adams R. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal uid pressure. Observations on cerebrospinal uid hydrodynamics. J Neurol Sci. 1965;2:307-27. doi:10.1016/0022-510X(65)90016-X; Jaraj D, Rabiei K, Marlow T, et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82(16):1449- 54. doi:10.1212/WNL.0000000000000342; Giliberto C, Mostile G, Lo Fermo S, et al. Vascular parkinsonism or idiopathic NPH? New insights from CSF pressure analysis. Neurol Sci. 2017 Dec;38(12):2209-12. doi:10.1007/s10072-017-3093-4. Epub 2017 Aug 22.; Pomeraniec I, Bond A, Lopes M, et al. Concurrent Alzheimer's pathology in patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes. J Neurosurg. 2016 Feb;124(2):382-8. doi:10.3171/2015.2.JNS142318. Epub 2015 Sep 4.; Bech-Azeddine R, Hоgh P, Juhler M, et al. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy ndings and outcome of cerebrospinal uid shunting. J Neurol Neurosurg Psychiatry. 2007;78:157-61. doi:10.1136/jnnp.2006.095117; Golomb J, Wisoff J, Miller D, et al. Alzheimer's disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry. 2000 Jun;68(6):778-81. doi:10.1136/jnnp.68.6.778; Williams M, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum (Minneap Minn). 2016;22(2 Dementia):579-99. doi:10.1212/CON.0000000000000305; Pomeraniec I, Taylor D, Bond A, et al. Concurrent Alzheimer's pathology in patients with clinical normal pressure hydrocephalus. J Neurosurg Sci. 2020 Apr;64(2):130-2. doi:10.23736/S0390-5616.18.04350-3. Epub 2018 Feb 13.; Cabral D, Beach T, Vedders L, et al. Frequency of Alzheimer's Disease Pathology at Autopsy in Patients with Clinical Normal Pressure Hydrocephalus. Alzheimers Dement. 2011 Sep;7(5):509-13. doi:10.1016/j.jalz.2010.12.008. Epub 2011 Jul 1.; Shenkin H, Greenberg J, Grossman C. Ventricular size after shunting for idiopathic normal pressure hydrocephalus. J Neurosurg Psychiatry. 1975;38:833-7. doi:10.1136/jnnp.38.9.833; Liew B, Takagi K, Kato Y, et al. Current Updates on Idiopathic Normal Pressure Hydrocephalus. Asian J Neurosurg. Jul–Sep 2019;14(3):648-56. doi:10.4103/ajns.AJNS_14_19; Kuriyama N, Miyajima M, Nakajima M, et al. Nationwide hospital-based survey of idiopathic normal pressure hydrocephalus in Japan: Epidemiological and clinical characteristics. Brain Behav. 2017 Jan 27;7(3):e00635. doi:10.1002/brb3.635. eCollection 2017 Mar.; Nikaido Y, Kajimoto Y, Tucker A, et al. Intermittent gait disturbance in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2018 Feb;137(2):238-44. doi:10.1111/ane.12853. Epub 2017 Oct 11.; Marmarou A, Young H, Aygok G, et al. Diagnosis and Management of Idiopathic Normal-Pressure Hydrocephalus: A Prospective Study in 151 Patients. Neurosurgery. 2005;57(3):17-28.; Marmarou A, Bergsneider M, Klinge P, et al. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus: INPH Guidelines, part III. Neurosurgery. 2005 Sep;57(3 Suppl):S17-28; discussion ii-v. doi:10.1227/01.neu.0000168184.01002.60; Damasceno B. Neuroimaging in normal pressure hydrocephalus. Dement Neuropsychol. Oct-Dec 2015;9(4):350-5. doi:10.1590/1980-57642015DN94000350; Klinge P. Updates in diagnostic evaluation and management of Normal pressure hydrocephalus.2014. Available from: https://pdfs.semanticscholar.org/1453/3280a71ca80d9751d6331f502b49d942adbc.pdf?_ga=2.191425967.404403397.1596269292-697726879.1536592650; Morel E, Armand S, Assal F, et al. Show footnotes. Is frontal gait a myth in normal pressure hydrocephalus? J Neurol Sci. 2019 Jul 15;402:175-9. doi:10.1016/j.jns.2019.05.029. Epub 2019 May 27.; Williams M, Relkin N. Diagnosis and management of idiopathic normal-pressure hydrocephalus. Neurol Clin Pract. 2013 Oct;3(5):375- 85. doi:10.1212/CPJ.0b013e3182a78f6b; Roman G. Frequent falls in the elderly: Think NPH! Texas Neurological Society Broca's Area. 2016. P. 8-10.; Ishikawa M, Hashimoto M, Kuwana N, et al. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo). 2008;48 Suppl:S1-23. doi:10.2176/nmc.48.s1; Greenberg S, Charidimou A. Diagnosis of Cerebral Amyloid Angiopathy: Evolution of the Boston Criteria. Stroke. 2018 Feb;49(2):491-497. doi:10.1161/STROKEAHA.117.016990. Epub 2018 Jan 15.; Lee J, Lee S, Kim S, et al. A Case of Cerebral Amyloid Angiopathy Presented with Cognitive Decline and Hoarding Behavior. Psychiatry Investig. 2020 Apr;17(4):382-4. doi:10.30773/pi.2019.0328. Epub 2020 Apr 15.; Akers C, Acosta L, Considine C. Atypical Clinical Manifestations of Cerebral Amyloid Angiopathy. Curr Neurol Neurosci Rep. 2019 Jul 27;19(9):64. doi:10.1007/s11910-019-0981-4; McDade E, Boot B, Riverol M, et al. Cerebral bleed after shunt for normal pressure hydrocephalus with cerebral amyloid angiopathy Coincidence or consequence? Neurol Clin Pract. 2015 Jun;5(3):263-6. doi:10.1212/CPJ.0000000000000127; El Sankari S, Gondry-Jouet C, Fichten A, et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer's disease: A differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011;8(1):1-12. doi:10.1186/2045-8118-8-12; Aso T, Sugihara G, Murai T, et al. A venous mechanism of ventriculomegaly shared between traumatic brain injury and normal ageing. Brain. 2020 Jun 1;143(6):1843-56. doi:10.1093/brain/awaa125; BrКutigam K, Vakis A, Tsitsipanis C. Pathogenesis of Idiopathic Normal Pressure Hydrocephalus: A Review of Knowledge. J Clin Neurosci. 2019 Mar;61:10-13. doi:10.1016/j.jocn.2018.10.147. Epub 2018 Nov 6.; Kida S. Progress in Diagnosis of and Therapy for Idiopathic Normal-Pressure hydrocephalus – Lymphatic Drainage of CSF and ISF from the Brain: Recent Concept and Hypothesis. J Rinsho Shinkeigaku. 2014;54(12):1187-9. doi.org/10.5692/clinicalneurol.54.1187; Kudo T, Mima T, Hashimoto R, et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci. 2000 Apr;54(2):199-202. doi:10.1046/j.1440-1819.2000.00658.x; Kondziella D, Sonnewald U, Tullberg M, et al. Brain metabolism in adult chronic hydrocephalus. J Neurochem. 2008 Aug;106(4):1515-24. doi:10.1111/j.1471-4159.2008.05422.x. Epub 2008 Apr 14.; Bradley W. Normal pressure hydrocephalus and deep white matter ischemia: which is the chicken, and which is the egg? AJNR Am J Neuroradiol. 2001 Oct;22(9):1638-40.; Chakravarty A. Unifying concept for Alzheimer's disease, vascular dementia and normal pressure hydrocephalus – a hypothesis. Med Hypotheses. 2004;63(5):827-33. doi:10.1016/j.mehy.2004.03.029; Gavrilov G, Gaydar B, Svistov D. Idiopahic Normal Pressure Hydrocephalus (Hakim-Adams Syndrome): Clinical symptoms, diagnosis and treatment. Med Acad Mostariensia. 2019;7(1-2):15-22.; Luciano MG, Skarupa DJ, Booth AM, et al. Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metab. 2001 Mar;21(3):285-94. doi:10.1097/00004647-200103000-00012; Takizawa K, Matsumae M, Hayashi N, et al. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images. Fluids Barriers CNS. 2017;14:1-29. doi:10.1186/s12987-017-0077-y; Woodford H. Normal pressure hydrocephalus: treatment seeks disease. Newslet Brit Geriatr Soc. 2018;65:9-13.; Espay A, Da Prat G, Dwivedi A, et al. Deconstructing normal pressure hydrocephalus: Ventriculomegaly as early sign of neurodegeneration. Ann Neurol. 2017 Oct;82(4):503-13. doi:10.1002/ana.25046. Epub 2017 Oct 4.; Roman G, Verma A, Zhang Y, et al. Idiopathic normal-pressure hydrocephalus and obstructive sleep apnea are frequently associated: A prospective cohort study. J Neurol Sci. 2018 Dec 15;395:164-8. doi:10.1016/j.jns.2018.10.005. Epub 2018 Oct 3.

  10. 10
    Academic Journal

    Συνεισφορές: Работа выполнена при частичной поддержке гранта Комитета по науке и высшей школе правительства Санкт-Петербурга в 2017 году

    Πηγή: Medical Immunology (Russia); Том 21, № 6 (2019); 1033-1042 ; Медицинская иммунология; Том 21, № 6 (2019); 1033-1042 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1753/1218; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4847; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4848; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4849; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4850; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4851; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4852; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4853; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4854; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4855; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1753/4856; Алексеева Л.А., Железникова Г.Ф., Жирков А.А., Скрипченко Н.В., Вильниц А.А., Монахова Н.Е., Бессонова Т.В. Субпопуляции лимфоцитов и цитокины в крови и цереброспинальной жидкости при вирусных и бактериальных менингитах у детей // Инфекция и иммунитет, 2016. Т. 6, № 1. С. 33-44. doi:10.15789/2220-7619-2016-1-33-44.; Балмасова И.П., Венгеров Ю.Я., Раздобарина С.Е, Нагибина М.В. Иммунопатогенетические особенности бактериальных гнойных менингитов // Эпидемиология и инфекционные болезни, 2014. Т. 19, № 5. С. 17-22.; Скрипченко Н.В., Алексеева Л.А., Железникова Г.Ф. Ликвор и его клиническое значение при инфекционных заболеваниях нервной системы // Педиатр, 2011. Т. 2, № 3. С. 21-31.; Хайдуков С.В., Байдун Л.В. Современные подходы к оценке клеточной составляющей иммунного статуса // Медицинский алфавит, 2015. Т. 2, № 8. С. 44-51.; Alvermann S., Hennig C., Olaf S., Heinz W., Stangel M. Immunophenotyping of cerebrospinal fluid cells in multiple sclerosis in search of biomarkers. JAMA Neurology, 2014, Vol. 71, no. 7, pp. 905-912.; Campbell J.P., Guy K., Cosgrove C., Florida-James G.D., Simpson R.J. Total lymphocyte CD8 expression is not a reliable marker of cytotoxic T-cell populations in human peripheral blood following an acute bout of high-intensity exercise. Brain. Behav. Immun., 2008, Vol. 22, no. 3, pp. 375-380.; d’Acquisto F., Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem. Pharmacol., 2011, Vol. 82, no. 4, pp. 333-340.; Das G., Augustine M. M., Das J., Bottomly K., Ray P., Ray A. An important regulatory role for CD4+CD8aa T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. PNAS, 2003, Vol. 100, no. 9, pp. 5324-5329.; de Graaf M.T., Smitt P.A., Luitwieler R.L., van Velzen C., van den Broek P.D., Kraan J., Gratama J.W. Central memory CD4+T cells dominate the normal cerebrospinal fluid. Cytometry Part B (Clinical Cytometry), 2011, Vol. 80, no. 1, pp. 43-50.; Eller M.A., Goonetilleke N., Tassaneetrithep B., Eller L.A., Costanzo C., Johnson S., Betts M.R., Krebs S.J., Slike B.M., Nitayaphan S., Rono K., Tovanabutra S., Maganga L., Kibuuka H., Jagodzinski L., Peel S., Rolland M., Marovich M.A., Kim J.H., Michael N.L., Robb M.L., Streeck H. Expansion of inefficient HIV-specific CD8+ T cells during acute infection. J. Virol., 2016, Vol. 90, no. 8, pp. 4005-4016.; Ichiyama T., Kajimoto M., Matsushige T., Shiraishi M., Suzuki Y., Furukawa S. Mononuclear cell subpopulations in CSF and blood of children with bacterial meningitis. J. Infect., 2009, Vol. 58, no. 1, pp. 28-31.; Kitchen S.G., Jones N.R., LaForge S., Whitmire J.K., Vu B.A., Galic Z., Brooks D.G., Brown S.J., Kitchen C.M., Zack J.A. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. PNAS, 2004, Vol. 101, no. 23, pp. 8727-8732.; Subira D., Castanon S., Aceituno E., Hernandez J., Jimenez-garofano C., Jimenez A., Jimenez A.M., Roman A., Orfao A. Flow cytometric analysis of cerebrospinal fluid samples and its usefulness in routine clinical practice. Am. J. Clin. Pathol., 2002, Vol. 117, no. 6, pp. 952-958.; Svenningsson A., Andersen O., Edsbagge M., Stemme S. Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J. Neuroimmunol., 1995, Vol. 63, no 1, pp. 39-46.; https://www.mimmun.ru/mimmun/article/view/1753

  11. 11
    Academic Journal

    Συνεισφορές: Работа выполнена при частичной поддержке гранта Комитета по науке и высшей школе правительства Санкт-Петербурга в 2017 году

    Πηγή: Russian Journal of Infection and Immunity; Vol 11, No 1 (2021); 111-122 ; Инфекция и иммунитет; Vol 11, No 1 (2021); 111-122 ; 2313-7398 ; 2220-7619

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 9, № 3 (2020); 81-89 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 9, № 3 (2020); 81-89 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/760/518; Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991-999. doi:10.1084/jem.20142290; Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., Harris T.H., Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi:10.1038/nature14432; Iliff J.J., Wang M., Liao Y., Plogg B., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., Nagelhus E.A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111- 147ra111. doi:10.1126/scitranslmed.3003748; Jessen N.A., Munk A.S.F., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583-2599. doi:10.1007/s11064-015-1581-6; Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M., Contarino C., OnengutGumuscu S., Farber E., Raper D., Viar K.E., Powell R.D., Baker W., Dabhi N., Bai R., Cao R., Hu S., Rich S.S., Munson J.M., Lopes M.B., Overall C.C., Acton S.T., Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185-191. doi: /10.1038/ s41586-018-0368-8; Kress B.T., Iliff J.J., Xia M., Wang M, Wei H.S., Zeppenfeld D., Xie L., Kang H., Xu Q., Liew J.A., Plog B.A., Ding F., Deane R., Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845-861. doi:10.1002/ana.24271; Xie L., Kang H., Xu Q., Chen M.J., Liao Y., Thiyagarajan M., O’Donnell J., Christensen D.J., Nicholson C., Iliff J.J., Takano T., Deane R., Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373- 377. doi:10.1126/science.1241224; Fultz N.E., Bonmassar G., Setsompop K., Stickgold R.A., Rosen B.R., Polimeni J.R., Lewis L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631. doi:10.1126/science.aax5440; Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., Logan J., Nedergaard M., Benveniste H. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034- 11044. doi:10.1523/JNEUROSCI.1625-15.2015; Davson H., Segal M.B. Physiology of the CSF and blood-brain barriers.: CRC press.; 1996.; Ma Q., Ineichen B.V., Detmar M., Proulx S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1- 13. doi:10.1038/s41467-017-01484-6; Jackson R.T., Tigges J., Arnold W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol. 1979;105(4):180-184. doi:10.1001/archotol.1979.00790160014003; Gomez D.G., Manzo R.P., Fenstermacher J.D., Potts D.G. Cerebrospinal fluid absorption in the rabbit. Graefes Arch Clin Exp Ophthalmol. 1988;226(1):1-7. doi:10.1007/BF02172707; Orešković D., Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Brain Res Rev. 2010;64(2):241- 262. doi:10.1016/j.brainresrev.2010.04.006; Hannocks M.J., Pizzo M.E., Huppert J., Deshpande T., Abbott N.J., Thorne R.G., Sorokin L. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab. 2018;38(4):669-686. doi:10.1177/0271678X17749689; Rennels M.L., Gregory T.F., Blaumanis O.R., Fujimoto K., Grady P.A. Evidence for a ‘paravascular’fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47-63. doi:10.1016/0006-8993(85)91383-6; Rennels M.L., Blaumanis O.R., Grady P.A. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990;52:431-439.; Brightman M.W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965;117(2):193-219.; Brightman M.W., Reese T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648-677.; Ichimura T., Fraser P.A., Cserr H.F. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991;545((1-2)):103-113. doi:10.1016/0006-8993(91)91275-6; Carare R.O., Bernardes-Silva M., Newman T.A., Page A.M., Nicoll J.A.R., Perry V.H., Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131-144. doi:10.1111/j.1365-2990.2007.00926.x; Morris A.W., Sharp M.M., Albargothy N.J., Fernandes R., Hawkes C.A., Verma A., Weller R.O., Carare R.O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131(5):725-736. doi:10.1007/s00401-016-1555-z; Abbott N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437-449. doi:10.1007/s10545-013-9608-0; Bakker E.N., Bacskai B.J., Arbel-Ornath M., Aldea R., Bedussi B., Morris A.W.J., Weller R.O., Carare R.O. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181-194. doi:10.1007/s10571-015-0273-8; Hladky S.B., Barrand M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):1-32. doi:10.1186/2045-8118-11-26; Sharp M.K., Diem A.K., Weller R.O., Carare R.O. Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann Biomed Eng. 2016;44(5):1553-1565. doi:10.1007/s10439-015-1457-6; Coloma M., Schaffer J.D., Carare R.O., Chiarot P.R., Huang P. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J Math Biol. 2016;73(2):469-490. doi:10.1007/s00285-015-0960-6; Iliff J.J., Chen M.J., Plog B.A., Zeppenfeld D.M., Soltero M., Yang L., Singh I., Deane R., Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-16193. doi:10.1523/JNEUROSCI.3020-14.2014; Mathiisen T.M., Lehre K.P., Danbolt N.C., Ottersen O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094-1103. doi:10.1002/glia.20990; Korogod N., Petersen C.C., Knott G.W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife. 2015;4:e05793. doi:10.7554/eLife.05793; Jin B.J., Smith A.J., Verkman A.S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol. 2016;148(6):489-501. doi:10.1085/jgp.201611684; Iliff J.J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299- 1309. doi:10.1172/JCI67677.; Taoka T., Jost G., Frenzel T., Naganawa S., Pietsch H. Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations. Invest Radiol. 2018;53(9):529-534. doi:10.1097/RLI.0000000000000473; Akbar J.J., Luetmer P.H., Schwartz K.M., Hunt C.H., Diehn F.E., Eckel L.J. The role of MR myelography with intrathecal gadolinium in localization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33(3):535-540. doi:10.3174/ajnr.A2815; Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691-2705. doi:10.1093/brain/awx191; Ringstad G., Valnes L.M., Dale A.M., Pripp A.H., Vatnehol S.A.S., Emblem K.E., Mardal K.A., Eide P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI insight. 2018;3(13): e121537. doi:10.1172/jci.insight.121537; Van De Haar H.J., Burgmans S., Jansen J.F., Van Osch M.J.P., Van Buchem M.A., Muller M., Hofman P.A.M., Verhey F.R.J., Backes W.H. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527-535. doi:10.1148/radiol.2016152244; Jiang Q., Zhang L., Ding G., Davoodi-Bojd E., Li Q., Li L., Sadry N., Nedergaard M., Chopp M., Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2017;37(4):1326-1337. doi:10.1177/0271678X16654702; Mascagni P. Vasorum lymphaticorum corporis humani historia et ichnographia. Siena: Ex typographia Pazzini Carli; 1787. Available at: https://anatomia.library.utoronto.ca/islandora/object/anatomia%3ARBAI052 (accessed 09.07.2020); Lüdemann W., von Rautenfeld D.B., Samii M., Brinker T. Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005;21(2):96-103. doi:10.1007/s00381-004-1040-1; Furukawa M., Shimoda H., Kajiwara T., Kato S., Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res. 2008;29(6):289-296. doi:10.2220/biomedres.29.289; Cserr H.F., Harling‐Berg C.J., Knopf P.M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992;2(4):269- 276. doi:10.1111/j.1750-3639.1992.tb00703.x; Abbott N.J., Pizzo M.E., Preston J.E., Janigro D., Thorne R.G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’system? Acta Neuropathol. 2018;135(3):387-407. DOI:10.1007/s00401-018-1812-4; Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology. 1948;29(1):58-69; Murphy J.B., Sturm E. Conditions determining the transplantability of tissues in the brain. The Journal of experimental medicine. 1923;38(2).; Galea I., Bechmann I., Perry V.H. What is immune privilege (not)? Trends Immunol. 2007;28(1):12-18. doi:10.1016/j.it.2006.11.004; Louveau A., Harris T.H., Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569-577. doi:10.1016/j.it.2015.08.006; Louveau A., Plog B.A., Antila S., Alitalo K., Nedergaard M., Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210-3219. doi:10.1172/JCI90603.; Antila S., Karaman S., Nurmi H., Airavaara M., Voutilainen M.H., Mathivet T., Chilov D., Li Z., Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A,Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214(12):3645-3667. doi:10.1084/jem.20170391; Maloveska M., Danko J., Petrovova E., Kresakova L., Vdoviakova K., Michalicova A., Kovac A., Cubinkova V., Cizkova D. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes. Neurol Res. 2018;40(5):372-380. doi:10.1080/01616412.2018.1446282; Louveau A., Herz J., Alme M.N., Salvador A.F., Dong M.Q., Viar K.E., Herod S.G., Knopp J., Setliff J.C., Lupi A.L., Da Mesquita S., Frost E.L., Gaultier A., Harris T.H., Cao R., Hu S., Lukens J.R., Smirnov I., Overall K.C., Oliver G., Kipnis J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018;21(10):1380-1391. doi:10.1038/s41593-018-0227-9; Absinta M., Ha S.K., Nair G., Sati P., Luciano N.J., Palisoc M., Louveau A., Zaghloul K.A., Pittaluga S., Kipnis J., Reich D.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:e29738. doi:10.7554/eLife.29738; Kuo P.H., Stuehm C., Squire S., Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4(3):99-103. doi:10.18383/j.tom.2018.00013; Goodman J.R., Adham Z.O., Woltjer R.L., Lund A.W., Iliff J.J. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects. Brain Behav Immun. 2018;73:34-40. doi:10.1016/j.bbi.2018.07.020; Raper D., Louveau A., Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581-586. doi:10.1016/j.tins.2016.07.001

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Creative surgery and oncology; Том 9, № 1 (2019); 80-86 ; Креативная хирургия и онкология; Том 9, № 1 (2019); 80-86 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2019-9-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/367/335; Baudhuin L.M. Quality guidelines for next-generation sequencing. Clin Chem 2013;59:858–9. DOI:10.1373/clinchem.2013.203091; Castel S.E., Martienssen R.A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature. 2013;14:100–12. DOI:10.1038/nrg3355; Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;(391):806–11. DOI:10.1038/35888; O`Brien J., Hayder H., Zayed Y., Chun Peng. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. DOI:10.3389/fendo.2018.00402; Wang H., Zhong J., Chai Z., Zhu J., Xin J. Comparative expression profile of microRNAs and piRNAs in three ruminant species testes using next-generation sequencing. Reprod Domest Anim. 2018;53(4):963– 70. DOI:10.1111/rda.13195; Schee K., Lorenz S., Worren M.M., Günther C.C., Holden M., Hovig E. et al. Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One. 2013;8:e66165. DOI:10.1371/journal.pone.0066165; Chana G., Bousman C.A., Money T.T., Gibbons A., Gillett P., Dean B. et al. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci. 2013;7:95. DOI:10.3389/fncel.2013.00095; Liu L., Wang J., Khanabdali R., Kalionis B., Tai X., Xia S. Circular RNAs: Isolation, characterization and their potential role in diseases. RNA Biol. 2017;14(12):1715–21. DOI:10.1080/15476286.2017.1367886; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S., Bryzgunova O.E., Vlassov V.V., Laktionov P.P. Protocol for miRNA isolation from biofluids. Anal Biochem. 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Burgos K.L., Javaherian A., Bomprezzi R., Ghaffari L., Rhodes S., Courtright A. et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA. 2013;5:712–22. DOI:10.1261/rna.036863.112; Sun Z., Shi K., Yang S., Liu J., Zhou Q., Wang G. et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147. DOI:10.1186/s12943-018-0897-7; Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs — an update. Nat Rev Clin Oncol. 2018;15(9):541–63. DOI:10.1038/s41571-018-0035-x; Amini P., Ettlin J., Opitz L., lementi E., Malbon A., Markkanen E. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. Mol Biol. 2017;18(1):22. DOI:10.1186/s12867-017-0099-7; Majem B., Li F., Sun J., Wong D.T. RNA sequencing analysis of salivary extracellular RNA. Methods Mol Biol. 2017;1537:17–36. DOI:10.1007/978-1-4939-6685-1_2; Gautam A., Kumar R., Dimitrov G., Hoke A., Hammamieh R., Jett M. Identifi ation of extracellular miRNA in archived serum samples by nextgeneration sequencing from RNA extracted using multiple methods. Mol Biol Rep. 2016;43(10):1165–78. DOI:10.1007/s11033-016-4043-6; Acosta A.M., Al Rasheed M.R.H., Pins M.R., Borgen K.R., Panchal D., Rogozinska M. et al. The role of next-generation sequencing in the differential diagnosis of composite neoplasms. Hum Pathol. 2018;81:7888. DOI:10.1016/j.humpath.2018.06.022; https://www.surgonco.ru/jour/article/view/367

  18. 18
  19. 19
  20. 20