-
1Academic Journal
-
2Academic Journal
-
3
-
4
-
5
-
6
-
7Academic Journal
Authors: Елена Александровна Киселева, Варвара Ивановна Минина, Игорь Анатольевич Тё, Наталья Олеговна Гурьянова, Ксения Сергеевна Киселева, Динар Минзагитович Гарафутдинов, Сергей Владимирович Черненко, Елена Александровна Тё, Вадим Гельевич Мозес, Елена Владимировна Рудаева, Светлана Ивановна Елгина, Кира Борисовна Мозес, Яэль Центер
Source: Медицина в Кузбассе, Vol 22, Iss 4, Pp 87-92 (2023)
Subject Terms: хроническое воспаление, неоплазия, рак, слизистая оболочка, иммунитет, Medicine
File Description: electronic resource
-
8Dissertation/ Thesis
Authors: Strizhakova, V. A.
Contributors: Дорогина, О. И., Dorogina, O. I., УрФУ. Уральский гуманитарный институт, Кафедра клинической психологии и психофизиологии
Subject Terms: МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, DENTAL CARIES, КОГНИТИВНЫЕ НАРУШЕНИЯ, ХРОНИЧЕСКОЕ ВОСПАЛЕНИЕ, ПОЖИЛЫЕ ЛЮДИ, ПАРОДОНТИТ, ЖЕВАТЕЛЬНАЯ ФУНКЦИЯ, БОЛЕЗНЬ АЛЬЦГЕЙМЕРА, OLDER ADULTS, TOOTH LOSS, ORAL HEALTH, НЕЙРОДЕГЕНЕРАТИВНЫЕ ЗАБОЛЕВАНИЯ, ORAL MICROBIOME, CHRONIC INFLAMMATION, КАРИЕС, DEMENTIA, ДЕМЕНЦИЯ, MASTICATORY FUNCTION, COGNITIVE IMPAIRMENT, DEPRESSION, МИКРОБИОМ ПОЛОСТИ РТА, ALZHEIMER'S DISEASE, ЗДОРОВЬЕ ПОЛОСТИ РТА, ДЕПРЕССИЯ, ПОТЕРЯ ЗУБОВ, PERIODONTITIS, NEURODEGENERATIVE DISEASES
File Description: application/pdf
Access URL: https://elar.urfu.ru/handle/10995/145411
-
9Academic Journal
Authors: A. A. Khryanin, E. V. Pushkarev, V. K. Bocharova, А. А. Хрянин, Е. В. Пушкарёв, В. К. Бочарова
Source: HIV Infection and Immunosuppressive Disorders; Том 15, № 4 (2023); 25-35 ; ВИЧ-инфекция и иммуносупрессии; Том 15, № 4 (2023); 25-35 ; 2077-9828 ; 10.22328/2077-9828-2023-15-4
Subject Terms: антиретровирусная терапия, HIV infection, gut microbiome, chronic systemic inflammation, persistence, antiretroviral therapy, ВИЧ-инфекция, микробиом кишечника, системное хроническое воспаление, персистенция
File Description: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/849/565; Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies // Lancet. 2008. Jul 26. Vol. 372, No. 9635. Р. 293–299. doi:10.1016/S0140-6736(08)61113-7.; Deeks S.G., Lewin S.R., Ross A.L. et al. International AIDS Society global scientific strategy: towards an HIV cure 2016 // Nat. Med. 2016. Aug. Vol. 22, No. 8. Р. 839–850. doi:10.1038/nm.4108.; Massanella M., Fromentin R., Chomont N. Residual inflammation and viral reservoirs: alliance against an HIV cure // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 234–241. doi:10.1097/COH.0000000000000230.; Zilberman-Schapira G., Zmora N., Itav S. et al. The gut microbiome in human immunodeficiency virus infection // BMC Med. 2016. Jun 3. Vol. 14, No. 1. Р. 83. doi:10.1186/s12916-016-0625-3.; Zevin A.S., McKinnon L., Burgener A., Klatt N.R. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 182–190. doi:10.1097/COH.0000000000000234.; Uprety P., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study (PHACS). Human Immunodeficiency Virus Type 1 DNA Decay Dynamics With Early, Long-term Virologic Control of Perinatal Infection // Clin. Infect Dis. 2017. Jun 1. Vol. 64, No. 11. Р. 1471–1478. doi:10.1093/cid/cix192.; Persaud D., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents // JAMA Pediatr. 2014. Dec. Vol. 168, No. 12. Р. 1138–1146. doi:10.1001/jamapediatrics.2014.1560.; Chun T.W., Nickle D.C., Justement J.S. et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy // J. Infect. Dis. 2008. Mar 1. Vol. 197, No. 5. Р. 714–720. doi:10.1086/527324.; Chomont N., El-Far M., Ancuta P. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation // Nat. Med. 2009. Aug. Vol. 15, No. 8. Р. 893–900. doi:10.1038/nm.1972.; Brenchley J.M., Schacker T.W., Ruff L.E. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract // J. Exp. Med. 2004. Sep 20. Vol. 200, No. 6. Р. 749–759. doi:10.1084/jem.20040874.; Mudd J.C., Brenchley J.M. Gut Mucosal Barrier Dysfunction, Microbial Dysbiosis, and Their Role in HIV-1 Disease Progression // J. Infect. Dis. 2016. Oct 1. Vol. 214, Suppl. 2. Р. S58–66. doi:10.1093/infdis/jiw258.; Dillon S.M., Lee E.J., Kotter C.V. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia // Mucosal Immunol. 2014. Vol. 7. Р. 983–994. doi:10.1038/mi.2013.116.; Lozupone C.A., Campbell T.B., Flores S.C. et al. Alterations in the gut microbiota associated with HIV-1 infection // Cell Host Microbe. 2013. Vol. 14. Р. 329–339. doi:10.1016/j.chom.2013.08.006.; Mutlu E.A., Keshavarzian A., Losurdo J. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects // PLoS Pathog. 2014. Vol. 10. Р. e1003829. doi:10.1371/journal.ppat.1003829.; Vazquez-Castellanos J.F., Serrano-Villar S., Latorre A. et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals // Mucosal Immunol. 2015. Vol. 8. Р. 760–772. doi:10.1038/mi.2014.107.; Zhang Y., Xie Z., Zhou J. et al. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection // Front Immunol. 2023. Jan 4. Р. 13. Р. 1020822. doi:10.3389/fimmu.2022.1020822.; Yukl S.A., Shergill A.K., Ho T. et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence // J. Infect Dis. 2013 Oct 15. Vol. 208, No. 8. Р. 1212–1220. doi:10.1093/infdis/jit308.; Ananworanich J., Chomont N., Eller L.A. et al. RV217 and RV254/SEARCH010 study groups. HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART // EBioMedicine. 2016. Sep. Vol. 11. Р. 68–72. doi:10.1016/j.ebiom.2016.07.024.; Ananworanich J., Sacdalan C.P., Pinyakorn S. et al. Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection // J. Virus Erad. 2016. Vol. 2, No. 1. Р. 43–48. PMID: 26889497. PMCID: PMC4754199.; Rothenberger M.K., Keele B.F., Wietgrefe S.W. et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption // Proc. Natl. Acad. Sci USA. 2015. Mar 10. Vol. 112, No. 10. Р. E1126–34. doi:10.1073/pnas.1414926112.; Yukl S.A., Boritz E., Busch M. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient // PLoS Pathog. 2013. Vol. 9, No. 5. Р. e1003347. doi:10.1371/journal.ppat.1003347.; Gantner P., Assoumou L., Leruez-Ville M. et al. EVARIST ANRS EP 49 Study Group. HIV-1-RNA in seminal plasma correlates with detection of HIV-1-DNA in semen cells, but not with CMV shedding, among MSM on successful antiretroviral regimens // J. Antimicrob. Chemother. 2016. Nov. Vol. 71, No. 11. Р. 3202–3205. doi:10.1093/jac/dkw271.; Mujugira A., Celum C., Coombs R.W. et al. HIV Transmission Risk Persists During the First 6 Months of Antiretroviral Therapy // J. Acquir. Immune Defic Syndr. 2016. Aug 15. Vol. 72, No. 5. Р. 579–584. doi:10.1097/QAI.0000000000001019.; Klatt N.R., Cheu R., Birse K. et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women // Science. 2017 Jun 2. Vol. 356, No. 6341. Р. 938–945. doi:10.1126/science.aai9383.; Хрянин А.А., Кнорринг Г.Ю., Бочарова В.К. Нарушение вагинального микробиома и риск заражения ВИЧ-инфекцией у женщин // ВИЧ-инфекция и иммуносупрессии. 2023. Vol. 15, No. 1. Р. 23–31. (In Russ.). doi:10.22328/2077-9828-2023-15-1-23-31.; Wong J.K., Yukl S.A. Tissue reservoirs of HIV // Curr Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 362–370. doi:10.1097/COH.0000000000000293.; Dillon S.M., Lee E.J., Donovan A.M. et al. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection // Retrovirology. 2016. Jan 14. Vol. 13. Р. 5. doi:10.1186/s12977-016-0237-1.; Dubourg G., Lagier J.C., Hüe S. et al. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen // BMJ Open Gastroenterol. 2016. Jul 28. Vol. 3, No. 1. Р. e000080. doi:10.1136/bmjgast-2016-000080.; Gootenberg D.B., Paer J.M., Luevano J.M., Kwon D.S. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation // Curr. Opin Infect. Dis. 2017. Feb. Vol. 30, No. 1. Р. 31–43. doi:10.1097/QCO.0000000000000341.; Villanueva-Millán M.J., Pérez-Matute P., Recio-Fernández E. et al. Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIV-infected patients // J. Int. AIDS Soc. 2017. Mar 9. Vol. 20, No. 1. Р. 21526. doi:10.7448/IAS.20.1.21526.; Хрянин А.А., Осипенко М.Ф., Немчанинова О.Б. и др. Стратегии восстановления слизистого барьера кишечника // Экспериментальная и клиническая гастроэнтерология. 2021. Т. 1, № 6. С. 88–95. doi:10.31146/1682-8658-ecg-190-6-88-95.; Garrett W.S., Gallini C.A., Yatsunenko T. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis // Cell Host Microbe. 2010. Sep 16. Vol. 8, No. 3. Р. 292–300. doi:10.1016/j.chom.2010.08.004.; Armstrong A.J.S., Shaffer M., Nusbacher N.M. et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men // Microbiome. 2018. Nov 5. Vol. 6, No. 1. Р. 198. doi:10.1186/s40168-018-0580-7.; Lu W., Feng Y., Jing F. et al. Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients // Front Microbiol. 2018. Jul 2. Vol. 9. Р. 1451. doi:10.3389/fmicb.2018.01451.; Lee S.C., Chua L.L., Yap S.H. et al. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals // Sci Rep. 2018. Sep 24. Vol. 8, No. 1. Р. 14277. doi:10.1038/s41598-018-32585-x.; Ling Z., Jin C., Xie T. et al. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population // Sci Rep. 2016. Vol. 6. Р. 30673. doi:10.1111/jcmm.13508.; Larsen J.M. The immune response to Prevotella bacteria in chronic inflammatory disease // Immunology. 2017. Aug. Vol. 151, No. 4. Р. 363–374. doi:10.1111/imm.12760. Epub 2017 Jun 20.; Jiang F., Meng D., Weng M. et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1 -induced inflammation in human fetal enterocytes via toll receptors 2 and 4 // PLoS One. 2017. Mar 9. Vol. 12, No. 3. Р. e0172738. doi:10.1371/journal.pone.0172738.; Noguera-Julian M., Rocafort M., Guillén Y. et al. Gut Microbiota Linked to Sexual Preference and HIV Infection // EBioMedicine. 2016. Jan 28. Vol. 5. Р. 135–146. doi:10.1016/j.ebiom.2016.01.032.; Pinto-Cardoso S., Lozupone C., Briceño O. et al. Fecal Bacterial Communities in treated HIV infected individuals on two antiretroviral regimens // Sci. Rep. 2017. Mar 6. Vol. 7. Р. 43741. doi:10.1038/srep43741.; Nowak R.G., Bentzen S.M., Ravel J. et al. TRUSTRV368 Study Group. Rectal microbiota among HIV-uninfected, untreated HIV, and treated HIV-infected in Nigeria // AIDS. 2017. Mar 27. Vol. 31, No. 6. Р. 857–862. doi:10.1097/QAD.0000000000001409.; Winter S.E., Winter M.G., Xavier M.N. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut // Science. 2013. Feb 8. Vol. 339, No. 6120. Р. 708–711. doi:10.1126/science.1232467.; Winter S.E., Thiennimitr P., Winter M.G. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella // Nature. 2010. Sep 23. Vol. 467, No. 7314. Р. 426–429. doi:10.1038/nature09415.; Deleage C., Schuetz A., Alvord W.G. et al. Impact of early cART in the gut during acute HIV infection // JCI Insight. 2016. Jul 7. Vol. 1, No. 10. Р. e87065. doi:10.1172/jci.insight.87065.; Mahjoub-Messai F., Bidet P., Caro V. et al. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes // J. Infect Dis. 2011. Jun 15. Vol. 203, No. 12. Р. 1844–1849. doi:10.1093/infdis/jir189.; Li S.X., Armstrong A., Neff C.P. et al. Complexities of Gut Microbiome Dysbiosis in the Context of HIV Infection and Antiretroviral Therapy // Clin. Pharmacol. Ther. 2016. Jun. Vol. 99, No. 6. Р. 600–611. doi:10.1002/cpt.363.; Nowak P., Troseid M., Avershina E. et al. Gut microbiota diversity predicts immune status in HIV-1 infection // AIDS. 2015. Vol. 29. Р. 2409–2418. doi:10.1097/QAD.0000000000000869.; Yang L., Poles M.A., Fisch G.S. et al. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria // AIDS. 2016. Vol. 30. Р. 19–29. doi:10.1097/QAD.0000000000000935.; Yu G., Fadrosh D., Ma B., Ravel J., Goedert J.J. Anal microbiota profiles in HIV-positive and HIV-negative MSM // AIDS. 2014. Vol. 28. Р. 753–760. doi:10.1097/QAD.0000000000000154.; Vujkovic-Cvijin I., Dunham R.M., Iwai S. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism // Sci. Transl. Med. 2013. Vol. 5. Р. 193ra91. doi:10.1126/scitranslmed.aar3209.; Bender J.M., Li F., Martelly S. et al. Maternal HIV infection influences the microbiome of HIV-uninfected infants // Sci Transl Med. 2016. Jul 27. Vol. 8, No. 349. Р. 349ra100. doi:10.1126/scitranslmed.aaf5103.; Vesterbacka J., Rivera J., Noyan K. et al. Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers // Sci Rep. 2017. Jul 24. Vol. 7, No. 1. Р. 6269. doi:10.1038/s41598-017-06675-1.; Hoenigl M., Pérez-Santiago J., Nakazawa M. et al. (1➝3)-β-d-Glucan: A Biomarker for Microbial Translocation in Individuals with Acute or Early HIV Infection? // Front Immunol. 2016. Oct 3. Vol. 7. Р. 404. doi:10.3389/fimmu.2016.00404.; Serrano-Villar S., Rojo D., Martínez-Martínez M. et al. Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected Individuals // EBioMedicine. 2016. Jun. Vol. 8. Р. 203–216. doi:10.1016/j.ebiom.2016.04.033.; Rivière A., Selak M., Lantin D. et al. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut // Front Microbiol. 2016. Jun 28. Vol. 7. Р. 979. doi:10.3389/fmicb.2016.00979.; Imai K., Yamada K., Tamura M. et al. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria // Cell Mol. Life Sci. 2012. Aug. Vol. 69, No. 15. Р. 2583–2592. doi:10.1007/s00018-012-0936-2.; Bolduc J.F., Hany L., Barat C. et al. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T-Cells // J. Virol. 2017. Jul 27. Vol. 91, No. 16. Р. e01943–16. doi:10.1128/JVI.01943-16.; Rasmussen T.A., Lewin S.R. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? // Curr. Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 394–401. doi:10.1097/COH.0000000000000279.; Nix L.M., Tien P.C. Metabolic syndrome, diabetes, and cardiovascular risk in HIV // Curr. HIV/AIDS Rep. 2014. Vol. 11. Р. 271–278. doi:10.1007/s11904-014-0219-7.; Aron-Wisnewsky J., Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders // Nat. Rev. Nephrol. 2016. Vol. 12, No. 3. Р. 169–181. doi:10.1038/nrneph.2015.191; Srinivasa S., Fitch K.V., Lo J. et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine // AIDS. 2015. Vol. 29. Р. 443–452. doi:10.1097/QAD.0000000000000565.; Haissman J.M., Knudsen A., Hoel H. et al. Microbiota-Dependent Marker TMAO Is Elevated in Silent Ischemia but Is Not Associated With FirstTime Myocardial Infarction in HIV Infection // J. Acquir Immune Defic Syndr. 2016. Vol. 71, No. 2. Р. 130–136. doi:10.1097/QAI.0000000000000843.; Dieffenbach C.W., Fauci A.S. Thirty years of HIV and AIDS: future challenges and opportunities // Ann. Intern. Med. 2011. Vol. 154. Р. 766–771. doi:10.7326/0003-4819-154-11-201106070-00345.; Kartalija M., Sande M.A. Diarrhea and AIDS in the era of highly active antiretroviral therapy // Clin. Infect Dis. 1999. Vol. 28. Р. 701–705. quiz 6–7. doi:10.1086/515191.; Montessori V., Press N., Harris M., Akagi L., Montaner J.S. Adverse effects of antiretroviral therapy for HIV infection // CMAJ. 2004. Vol. 170. Р. 229–238.; Lozupone C.A., Rhodes M.E., Neff C.P. et al. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy // Gut Microbes. 2014. Vol. 5. Р. 562–570.; Weingarden A., Gonzalez A., Vazquez-Baeza Y. et al. Dynamic changes in shortand long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection // Microbiome. 2015. Vol. 3. Р. 10. doi:10.1186/s40168-015-0070-0.; Iida N., Dzutsev A., Stewart C.A. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment // Science. 2013. Vol. 342. Р. 967–970. doi:10.1126/science.1240527.; Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism // Proc. Natl. Acad. Sci USA. 2009. Vol. 106. Р. 14728–14733. doi:10.1073/pnas.0904489106.; Haiser H.J., Gootenberg D.B., Chatman K. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta // Science. 2013. Vol. 341. Р, 295–298. doi:10.1126/science.1235872.; Caceres C.F., O’Reilly K.R., Mayer K.H., Baggaley R. PrEP implementation: moving from trials to policy and practice // J. Int. AIDS Soc. 2015. Vol. 18. Р. 20222. doi:10.7448/IAS.18.4.20222.; Lee C.H., Steiner T., Petrof E.O. et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium diffi Infection: A Randomized Clinical Trial // JAMA. 2016. Jan 12. Vol. 315, No. 2. Р. 142–149. doi:10.1001/jama.2015.18098.; Vujkovic-Cvijin I., Rutishauser R.L., Pao M. et al. Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals // Gut Microbes. 2017. Sep 3. Vol. 8, No. 5. Р. 440–450. doi:10.1080/19490976.2017.1334034.; Hensley-McBain T., Zevin A.S., Manuzak J. et al. Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques // J. Virol. 2016. Apr 29. Vol. 90, No. 10. Р. 4981–4989. doi:10.1128/JVI.00099-16.; D’Ettorre G., Ceccarelli G., Giustini N. et al. Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the «Probio-HIV» Clinical Trial // PLoS One. 2015. Vol. 10, No. 9. Р. e0137200. doi:10.1371/journal.pone.0137200.; Falasca K., Vecchiet J., Ucciferri C. et al. Effect of Probiotic Supplement on Cytokine Levels in HIV-Infected Individuals: A Preliminary Study // Nutrients. 2015. Vol. 7. Р. 8335–8347. doi:10.3390/nu7105396.; Villar-Garcia J., Hernandez J.J., Guerri-Fernandez R. et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial // J. Acquir Immune Defic Syndr. 2015. Vol. 68. Р. 256–263. doi:10.1097/QAI.0000000000000468.
-
10Academic Journal
Authors: K. D. Ievleva, I. N. Danusevich, A. V. Atalyan, I. Yu. Egorova, N. I. Babaeva, M. A. Rashidova, M. R. Akhmedzyanova, L. F. Sholokhov, I. G. Nadeliaeva, L. M. Lazareva, L. V. Suturina, К. Д. Иевлева, И. Н. Данусевич, А. В. Аталян, И. Ю. Егорова, Н. И. Бабаева, М. А. Рашидова, М. Р. Ахмедзянова, Л. Ф. Шолохов, Я. Г. Наделяева, Л. М. Лазарева, Л. В. Сутурина
Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 38-48 ; 2587-9596 ; 2541-9420
Subject Terms: избыточная масса тела, interleukin 1, tumor necrosis factor α, cytokines, chronic inflammation, overweight, интерлейкин 1, фактор некроза опухоли α, цитокины, хроническое воспаление
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4814/2786; Данусевич И.Н. Частота встречаемости хронического эндометрита у женщин с различными вариантами репродуктивных нарушений. Acta biomedica scientifica. 2013; 4(92): 14-16.; Wang WJ, Zhang H, Chen ZQ, Zhang W, Liu XM, Fang JY, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019; 17(1): 1-9. doi:10.1186/ s12958-018-0444-9; Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017; 15(1): 1-10. doi:10.1186/s12958-017-0233-x; Kitaya K, Yasuo T. Immunohistochemistrical and clinicopathological characterization of chronic endometritis. Am J Reprod Immunol. 2011; 66(5): 410-415. doi:10.1111/j.1600-0897.2011.01051.x; Асатурова А.В., Бадлаева А.С., Трегубова А.В., Табеева Г.И. Воспроизводимость диагностики хронического эндометрита до и после применения иммуногистохимического исследования плазматических клеток в эндометрии. Новости клинической цитологии России. 2023; 27(1): 5-10.; Yasuo T, Kitaya K. Challenges in clinical diagnosis and management of chronic endometritis. Diagnostics (Basel). 2022; 12(11): 2711. doi:10.3390/diagnostics12112711; Воспалительные болезни женских тазовых органов. Клинические рекомендации. М.; 2021.; Шарифулин Э.М., Игумнов И.А., Круско О.В., Аталян А.В., Сутурина Л.В., Особенности хронического эндометрита у женщин репродуктивного возраста с синдромом поликистозных яичников. Acta biomedica scientifica. 2020; 5(6): 27-36.; Иевлева К.Д., Данусевич И.Н., Аталян А.В., Шарифулин Э.М., Лазарева Л.М., Наделяева Я.Г., и др. Уровень адипокинов и их ассоциация с хроническим эндометритом у женщин репродуктивного возраста. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(5): 60-68.; Ткаченко Л.В., Свиридова Н.И., Жаркин Н.А., Бурова Н.А., Белан Э.Б. Оценка цитокинового статуса у пациенток с хроническим эндометритом в сочетании с гиперпластическими процессами эндометрия в репродуктивном периоде. Инфекция и иммунитет. 2020; 10(4): 762-768.; Мотовилова Т.М., Качалина Т.С., Гречканев Г.О., Боровкова Л.В., Зиновьев А.Н., Николаева О.А., и др. Определение биомаркеров в менструальной крови как возможность неинвазивной диагностики воспалительного процесса в полости матки. Медицинский альманах. 2016; 45(5): 88-91.; Bays HE, Bindlish S, Clayton TL. Obesity, diabetes mellitus, and cardiometabolic risk: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS). Obesity Pillars. 2023; 2023: 100056. doi:10.1016/j.obpill.2023.100056; Daan NMP, Koster MPH, de Wilde MA, Dalmeijer GW, Evelein AMV, Fauser BCJM, et al. Biomarker profiles in women with PCOS and PCOS offspring; a pilot study. PLoS One. 2016; 11(11): e0165033. doi:10.1371/journal. pone.0165033; Шарифулин Э.М., Лазарева Л.М., Каня О.В., Стефаненкова А.А., Белых Д.В., Сутурина Л.В. Состояние эндометрия при синдроме поликистозных яичников в репродуктивном возрасте. Acta biomedica scientifica. 2018; 3(3): 136-142.; Calabro P, Chang DW, Willerson JT, Yeh ETH. Release of Creactive protein in response to inflammatory cytokines by human adipocytes: Linking obesity to vascular inflammation. J Am Coll Cardiol. 2005; 46(6): 1112-1113. doi:10.1016/j.jacc.2005.06.017; Yeaman GR, Collins JE, Currie JK, Guyre PM, Wira CR, Fanger MW. IFN gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J Immunol. 1998; 160: 5145-5153.; Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MA. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014; 58: 247-259. doi:10.1387/ijdb.140083ms; Pioli PA, Weaver LK, Schaefer TM, Wright JA, Wira CR, Guyre PM. Lipopolysaccharide-induced IL-1 beta production by human uterine macrophages up-regulates uterine epithelial cell expression of human beta-defensin 2. J Immunol. 2006; 176: 6647-6655. doi:10.4049/jimmunol.176.11.6647; D’Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbesand microbiome: Recent insights on the inflammatory and immune “players” of the human endometrium. Am J Reprod Immunol. 2018; 80: e13065. doi:10.1111/aji.13065; Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, et al. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol. 2022; 13: 928475. doi:10.3389/fimmu.2022.928475; Danusevich IN, Sharifulin EM, Nemchenko UM, Kolesnikova LI. Features of the immune system functioning with persistence of infectious agents in women with chronic endometrial inflammation and reproductive disorders. Int J Biomed. 2020; 10(4): 362-368. doi:10.21103/Article10(4)_OA6; Danusevich IN, Lazareva LM, Nemchenko UM, Kolesnikova LI. Endometrial cytokines in women with reproductive disorders. Int J Biomed. 2021. 11(4): 526-531. doi:10.21103/Article11(4)_OA20; Tortorella C, Piazzolla G, Matteo M, Pinto V, Tinelli R, Sabbà C, et al. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil Steril. 2014; 101(1): 242-247. doi:10.1016/j.fertnstert. 2013.09.041; Кольцов И.П., Храмова И.А. Взаимосвязь секреторно-синтетических процессов в моноцитах/макрофагах с уровнем секреции интерлейкина-8 моноцитами крови при эндометрите. Тихоокеанский медицинский журнал. 2011; (3): 58-60.; Сорокин Ю.А., Гизингер О.А., Радзинский В.Е. Клинико-иммунологическое обоснование ультразвуковой кавитации в комплексном лечении бесплодия при хроническом эндометрите. Гинекология. 2022; 24(5): 355-361.; https://www.actabiomedica.ru/jour/article/view/4814
-
11Academic Journal
Authors: Zhigula Z.M., Zhilina A.A., Lareva N.V.
Contributors: 1
Source: Almanac of Clinical Medicine; Vol 52, No 8 (2024); 405-416 ; Альманах клинической медицины; Vol 52, No 8 (2024); 405-416 ; 2587-9294 ; 2072-0505
Subject Terms: inflammatory bowel diseases, ulcerative colitis, Crohn's disease, atherosclerosis, chronic inflammation, pro-inflammatory cytokines, gene polymorphism, воспалительные заболевания кишечника, язвенный колит, болезнь Крона, атеросклероз, хроническое воспаление, провоспалительные цитокины, полиморфизм генов
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17271/1709; https://almclinmed.ru/jour/article/view/17271/1720; https://almclinmed.ru/jour/article/downloadSuppFile/17271/159950; https://almclinmed.ru/jour/article/downloadSuppFile/17271/160332; https://almclinmed.ru/jour/article/downloadSuppFile/17271/160333; https://almclinmed.ru/jour/article/view/17271
-
12Academic Journal
Authors: E. P. Kazantseva, A. M. Frolov, M. A. Frolov, E. A. Novikova, K. S. Mugulov, K. S. Kozlova, K. I. Volchanskiy, S. A. Maximova, M. O. Pilipenko, Э. П. Казанцева, А. М. Фролов, М. А. Фролов, Е. А. Новикова, К. Ш. Мугулов, К. С. Козлова, К. И. Волчанский, С. А. Максимова, М. О. Пилипенко
Source: Acta Biomedica Scientifica; Том 9, № 4 (2024); 108-116 ; 2587-9596 ; 2541-9420
Subject Terms: блефариты, chronic inflammation, inflammation, endothelial dysfunction, impression cytology, blepharitis, хроническое воспаление, воспаление, дисфункция эндотелия, оттискная цитология
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4952/2863; Baim AD, Movahedan A, Farooq AV, Skondra D. The microbiome and ophthalmic disease. Exp Biol Med (Maywood). 2019; 244(6): 419-429. doi:10.1177/1535370218813616; Izzotti A, Saccà SC, Bagnis A, Recupero SM. Glaucoma and Helicobacter pylori infection: Correlations and controversies. Br J Ophthalmol. 2009; 93(11): 1420-1427. doi:10.1136/bjo.2008.150409; Saccà SC, Pascotto A, Venturino GM, Prigione G, Mastromarino A, Baldi F, et al. Prevalence and treatment of Helicobacter pylori in patients with blepharitis. Invest Ophthalmol Vis Sci. 2006; 47(2): 501-508. doi:10.1167/iovs.05-0323; Gasbarrini A, Serricchio M, Tondi P, Gasbarrini G, Pola P. Association of Helicobacter pylori infection with primary Raynaud phenomenon. Lancet. 1996; 348(9032): 966-967. doi:10.1016/S0140-6736(05)65386-X; Amedei A, Bergman MP, Appelmelk BJ, Azzurri A, Benagiano M, Tamburini C, et al. Molecular mimicry between Helicobacter pylori antigens and H+, K+-adenosine triphosphatase in human gastric autoimmunity. J Exp Med. 2003; 198(8): 1147-1156. doi:10.1084/jem.20030530; Gravina AG, Zagari RM, De Musis C, Romano L, Loguercio C, Romano M. Helicobacter pylori and extragastric diseases: A review. World J Gastroenterol. 2018; 24(29): 3204-3221. doi:10.3748/wjg.v24.i29.3204; Gürer MA, Erel A, Erbaş D, Cağlar K, Atahan C. The seroprevalence of Helicobacter pylori and nitric oxide in acne rosacea. Int J Dermatol. 2002; 41(11): 768-770. doi:10.1046/j.13654362.2002.01452.x; Graham DY. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World JGastroenterol. 2014; 20(18): 5191-5204. doi:10.3748/wjg.v20.i18.5191; Tirado-Hurtado I, Carlos C, Lancho L, Alfaro A, Ponce R, Schwarz LJ, et al. Helicobacter pylori: History and facts in Peru. Crit Rev OncolHematol. 2019; 134: 22-30. doi:10.1016/j.critrevonc.2018.12.005; Costa L, Corre S, Michel V, Le Luel K, Fernandes J, Ziveri J, et al. USF1 defect drives p53 degradation during Helicobacter pylori infection and accelerates gastric carcinogenesis. Gut. 2020; 69(9): 1582-1591. doi:10.1136/gutjnl-2019-318640; Sjomina O, Pavlova J, Niv Y, Leja M. Epidemiology of Helicobacter pylori infection. Helicobacter. 2018; 23(Suppl 1): e12514. doi:10.1111/hel.12514; Sgambato D, Visciola G, Ferrante E, Miranda A, Romano L, Tuccillo C, et al. Prevalence of Helicobacter pylori infection in sexual partners of H. pylori-infected subjects: Role of gastroesophageal reflux. United European Gastroenterol J. 2018; 6(10): 1470-1476. doi:10.1177/2050640618800628; Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014; 19(Suppl 1): 1-5. doi:10.1111/hel.12165; Leja M, Grinberga-Derica I, Bilgilier C, Steininger C. Review: Epidemiology of Helicobacter pylori infection. Helicobacter. 2019; 24(Suppl 1): e12635. doi:10.1111/hel.12635; Santos MLC, de Brito BB, da Silva FAF, Sampaio MM, Marques HS, Oliveira E, et al. Helicobacter pylori infection: Beyond gastric manifestations. World J Gastroenterol. 2020; 26(28): 40764093. doi:10.3748/wjg.v26.i28.4076; Sharndama HC, Mba IE. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 2022; 53(1): 33-50. doi:10.1007/s42770-021-00675-0; Crowe SE. Helicobacter pylori infection. N Engl J Med. 2019; 380(12): 1158-1165. doi:10.1056/NEJMcp1710945; Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, et al. Helicobacter pylori infection: Current status and future prospects on diagnostic, therapeutic and control challenges. Antibiotics (Basel). 2023; 12(2): 191. doi:10.3390/antibiotics12020191; Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol. 2021; 27(7): 545-560. doi:10.3748/wjg.v27.i7.545; Salvatori S, Marafini I, Laudisi F, Monteleone G, Stolfi C. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms. Int J Mol Sci. 2023; 24(3): 2895. doi:10.3390/ijms24032895; Mobley HL, Garner RM, Bauerfeind P. Helicobacter pylori nickel-transport gene nixA: Synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol. 1995; 16(1): 97-109. doi:10.1111/j.1365-2958.1995.tb02395.x; Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter. 2022; 27(3): e12891. doi:10.1111/hel.12891; de Brito BB, da Silva FAF, Soares AS, Pereira VA, Santos MLC, Sampaio MM, et al. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World JGastroenterol. 2019; 25(37): 5578-5589. doi:10.3748/wjg.v25.i37.5578; Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front Cell Infect Microbiol. 2016; 6: 159. doi:10.3389/fcimb.2016.00159; Hathroubi S, Hu S, Ottemann KM. Genetic requirements and transcriptomics of Helicobacter pylori biofilm formation on abiotic and biotic surfaces. NPJ Biofilms Microbiomes. 2020; 6(1): 56. doi:10.1038/s41522-020-00167-3; Ansari S, Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins (Basel). 2019; 11(11): 677. doi:10.3390/toxins11110677; Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, et al. Helicobacter pylori virulence factors – Mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 2020; 10(1): 27. doi:10.3390/cells10010027; Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2017; 22(Suppl 1). doi:10.1111/hel.12405; Niu Q, Zhu J, Yu X, Feng T, Ji H, Li Y, et al. Immune response in H. pylori-associated gastritis and gastric cancer. Gastroenterol Res Pract. 2020; 2020: 9342563. doi:10.1155/2020/9342563; Hamzah DN, Aljanaby AAJ. Immune response in patients infected with Helicobacter pylori in Al-Najaf City, Iraq. Int J Pharmaceut Res. 2020; 12(3): 901-911. doi:10.31838/ijpr/2020.12.03.139; Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol. 2014; 20(19): 5583-5593. doi:10.3748/wjg.v20.i19.5583; Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins (Basel). 2017; 9(3): 101. doi:10.3390/toxins9030101; Eberhardt M, Rammohan G. Blepharitis. Treasure Island (FL): StatPearls Publishing; 2023.; Daković Z, Vesić S, Vuković J, Milenković S, JankovićTerzić K, Dukić S, et al. Ocular rosacea and treatment of symptomatic Helicobacter pylori infection: A case series. Acta Dermatovenerol Alp Pannonica Adriat. 2007; 16(2): 83-86.; van Zuuren EJ, Arents BWM, van der Linden MMD, Vermeulen S, Fedorowicz Z, Tan J. Rosacea: New concepts in classification and treatment. Am J Clin Dermatol. 2021; 22(4): 457-465. doi:10.1007/s40257-021-00595-7; Bernardes TF, Bonfioli AA. Blepharitis. Semin Ophthalmol. 2010; 25(3): 79-83. doi:10.3109/08820538.2010.488562; Zhu W, Hamblin MR, Wen X. Role of the skin microbiota and intestinal microbiome in rosacea. Front Microbiol. 2023; 14: 1108661. doi:10.3389/fmicb.2023.1108661; Farshchian M, Daveluy S. Rosacea. Treasure Island (FL): StatPearls Publishing; 2023.; Batioglu-Karaaltin A, Saatci O, Akpinar M, Celik MO, Develioglu O, et al. Helicobacter pylori in lacrimal secretions. Ear Nose Throat J. 2016; 95(3): E8-E11. doi:10.1177/014556131609500303; https://www.actabiomedica.ru/jour/article/view/4952
-
13Academic Journal
Source: Медицина в Кузбассе, Vol 22, Iss 4, Pp 87-92 (2023)
Subject Terms: неоплазия, иммунитет, рак, Medicine, хроническое воспаление, слизистая оболочка
-
14Academic Journal
-
15
-
16Academic Journal
Authors: Киселева, Елена Александровна, Минина, Варвара Ивановна, Тё, Игорь Анатольевич, Гурьянова, Наталья Олеговна, Киселева, Ксения Сергеевна, Гарафутдинов, Динар Минзагитович, Черненко, Сергей Владимирович, Тё, Елена Александровна, Мозес, Вадим Гельевич, Рудаева, Елена Владимировна, Елгина, Светлана Ивановна, Мозес, Кира Борисовна, Центер, Яэль
Source: Medicine in Kuzbass; Том 22, № 4 (2023): декабрь; 87-92 ; Медицина в Кузбассе; Том 22, № 4 (2023): декабрь; 87-92 ; 2588-0411 ; 1819-0901
Subject Terms: chronic inflammation, neoplasia, cancer, mucous membrane, immunity, хроническое воспаление, неоплазия, рак, слизистая оболочка, иммунитет
File Description: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MK/article/view/1001/1742; http://mednauki.ru/index.php/MK/article/view/1001/1763; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1001/1474; http://mednauki.ru/index.php/MK/article/view/1001
Availability: http://mednauki.ru/index.php/MK/article/view/1001
-
17Academic Journal
Authors: O. V. Voronkova, Yu. G. Birulina, T. V. Saprina, I. E. Esimova, I. A. Osikhov, О. В. Воронкова, Ю. Г. Бирулина, Т. В. Саприна, И. Е. Есимова, И. А. Осихов
Contributors: The study was supported by the Council for Grants of the President of the Russian Federation (MK-3302.2022.1.4)., Исследование выполнено при финансовой поддержке Совета по грантам Президента Российской Федерации (МК-3302.2022.1.4).
Source: PULMONOLOGIYA; Том 33, № 4 (2023); 552-558 ; Пульмонология; Том 33, № 4 (2023); 552-558 ; 2541-9617 ; 0869-0189
Subject Terms: патогенез, lung function, obesity, chronic inflammation, pathogenesis, функция легких, ожирение, хроническое воспаление
File Description: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2419/3549; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1059; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1060; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1061; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1062; Jussi K. Kuopio Ischemic Heart Disease Risk Factor Study. In: Gell-man M., Turner J., eds. Encyclopedia of behavioral medicine. N.Y.: Springer; 2016. DOI:10.1007/978-1-4614-6439-6_328-2.; Laakso M., Kuusisto J., Stancakova A. et al. The metabolic syndrome in men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid. Res. 2017; 58 (3): 481-493. DOI:10.1194/jr.O072629.; Richardson T.G., Sanderson E., Palmer T.M. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020; 17 (3): e1003062. DOI:10.1371/journal.pmed.1003062.; Holmes M.V., Asselbergs F.W., Palmer T.M. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015; 36 (9): 539-550. DOI:10.1093/eurheartj/eht571.; Virtanen H.E.K., Koskinen T.T., Voutilainen S. et al. Intake of different dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor Study. Br. J. Nutr. 2017; 117 (6): 882-893. DOI:10.1017/S0007114517000745.; Yeh H.C., Punjabi N.M., Wang N.Y. et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the Atherosclerosis Risk In Communities (ARIC) study. Diabetes Care. 2008; 31 (4): 741-746. DOI:10.2337/dc07-1464.; Koton S., Sang Y., Schneider A.L.C. et al. Trends in stroke incidence rates in older US adults: an update from the Atherosclerosis Risk In Communities (ARIC) cohort study. JAMA Neurol. 2020; 77 (1): 109-113. DOI:10.1001/jamaneurol.2019.3258.; Mansour O., Golden S.H., Yeh H.C. Disparities in mortality among adults with and without diabetes by sex and race. J. Diabetes Complications. 2020; 34 (3): 107496. DOI:10.1016/j.jdiacomp.2019.107496.; Boriek A.M., Lopez M.A., Velasco C. et al. Obesity modulates diaphragm curvature in subjects with and without COPD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 313 (5): R620-629. DOI:10.1152/ajpregu.00173.2017.; Dixon A.E., Peters U. The effect of obesity on lung function. Expert. Rev. Respir. Med. 2018; 12 (9): 755-767. DOI:10.1080/17476348.2018.1506331.; Будневский А.В., Малыш Е.Ю., Овсянников Е.С., Дробышева Е.С. Бронхиальная астма и метаболический синдром: клинико-патогенетические взаимосвязи. Терапевтический архив. 2015; 87 (10): 110-114. DOI:10.17116/terarkh20158710110-114.; Будневский А.В., Овсянников Е.С., Лабжания Н.Б. Сочетание хронической обструктивной болезни легких и метаболического синдрома: патофизиологические и клинические особенности. Терапевтический архив. 2017; 89 (1): 123-127. DOI:10.17116/terarkh2017891123-127.; Choi H.S., Rhee C.K., Park Y.B. et al. Metabolic syndrome in early chronic obstructive pulmonary disease: gender differences and impact on exacerbation and medical costs. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 2873-2883. DOI:10.2147/COPD.S228497.; Kolahian S., Leiss V., Nurnberg B. Diabetic lung disease: fact or fiction? Rev. Endocr. Metab. Disord. 2019; 20 (3): 303-319. DOI:10.1007/s11154-019-09516-w.; Baffi C.W., Wood L., Winnica D. et al. Metabolic syndrome and the lung. Chest. 2016; 149 (6): 1525-1534. DOI:10.1016/j.chest.2015.12.034.; Kuziemski K., Specjalski K., Jassem E. Diabetic pulmonary microangiopathy - fact or fiction? Endokrynol. Pol. 2011; 62 (2): 171-176.; Yang J., Xue Q., Miao L., Cai L. Pulmonary fibrosis: a possible diabetic complication. Diabetes Metab. Res. Rev. 2011; 27 (4): 311-317. DOI:10.1002/dmrr.1175.; Burgstaller G., Oehrle B., Gerckens M. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 2017; 50 (1): 1601805. DOI:10.1183/13993003.01805-2016.; Hu Y., Ma Z., Guo Z. et al. Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis. Cell. Biochem. Biophys. 2014; 70 (2): 1385-1391. DOI:10.1007/s12013-014-0068-4.; Nie Z., Jacoby D.B., Fryer A.D. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am. J. Respir. Cell. Mol. Biol. 2014; 51 (2): 251-261. DOI:10.1165/rcmb.2013-0452OC.; Singh S., Bodas M., Bhatraju N.K. et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 310 (9): L837-845. DOI:10.1152/ajplung.00091.2015.; Wang Z., Li W., Guo Q. et al. Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed. Res. Int. 2018; 6057589. DOI:10.1155/2018/6057589.; Berair R., Saunders R., Brightling C.E. Origins of increased airway smooth muscle mass in asthma. BMC Med. 2013; 11: 145. DOI:10.1186/1741-7015-11-145.; Pain M., Bermudez O., Lacoste P. et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 2014; 23 (131): 118-130. DOI:10.1183/09059180.00004413.; Zheng H., Wu J., Jin Z., Yan L.J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017; 8 (1): 7-16. DOI:10.14336/AD.2016.0627.; Zheng H., Wu J., Jin Z., Yan L.J. Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochem. Insights. 2016; 9: 1-9. DOI:10.4137/BCI.S36141.; Green C.E. Lung function and endothelial dysfunction: is there a relationship without the presence of lung disease? Respirology. 2020; 25 (1): 49-50. DOI:10.1111/resp.13573.; Hancox R.J., Thomas L., Williams M.J.A., Sears M.R. Associations between lung and endothelial function in early middle age. Respirol-ogy. 2020; 25 (1): 89-96. DOI:10.1111/resp.13556.; Wheatley C.M., Baldi J.C., Cassuto N.A. et al. Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes: alveolar-capillary membrane conductance in type 1 diabetes. Eur. J. Appl. Physiol. 2011; 111 (3): 567-578. DOI:10.1007/s00421-010-1663-8.; Wasserman D.H., Wang T.J., Brown N.J. The vasculature in prediabetes. Circ. Res. 2018; 122 (8): 1135-1150. DOI:10.1161/CIRCRE-SAHA.118.311912.; Wu X., Lu W., He M. et al. Structural and functional definition of the pulmonary vein system in a chronic hypoxia-induced pulmonary hypertension rat model. Am. J. Physiol. Cell. Physiol. 2020; 318 (3): C555-569. DOI:10.1152/ajpcell.00289.2019.; Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018; 40 (2): 215-224. DOI:10.1007/s00281-017-0666-5.; Santilli F., Vazzana N., Liani R. et al. Platelet activation in obesity and metabolic syndrome. Obes. Rev. 2012; 13 (1): 27-42. DOI:10.1111/j.1467-789X.2011.00930.x.; Lei H., Li H., Tian L. et al. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug. Des. Devel. Ther. 2018; 12: 1743-1751. DOI:10.2147/DDDT.S166734.; Peters U., Suratt B.T., Bates J.H.T. et al. Obesity and lung disease. Chest. 2018; 153 (3): 702-709. DOI:10.1016/j.chest.2017.07.010.; Melo L.C., Silva M.A., Calles A.C. Obesity and lung function: a systematic review. Einstein (Sao Paulo). 2014; 12 (1):120-125. DOI:10.1590/s1679-45082014rw2691.; Huang L., Ye Z., Lu J. et al. Effects of fat distribution on lung function in young adults. J. Physiol. Anthropol. 2019; 38 (1): 7. DOI:10.1186/s40101-019-0198-x.; He S., Yang J., Li X. et al. Visceral adiposity index is associated with lung function impairment: a population-based study. Respir. Res. 2021; 22 (1): 2. DOI:10.1186/s12931-020-01599-3.; Agrawal M., Kern P.A., Nikolajczyk B.S. The immune system in obesity: developing paradigms amidst inconvenient truths. Curr. Diab. Rep. 2017; 17 (10): 87. DOI:10.1007/s11892-017-0917-9.; McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018; 36 (1): 14-20. DOI:10.1016/j.clindermatol.2017.09.004.; Крюков Н.Н., Гинзбург М.М., Киселева Е.В. Современный взгляд на роль асептического воспаления жировой ткани в генезе ожирения и метаболического синдрома. Артериальная гипертензия. 2013; 19 (4): 305-310.; Suzukawa M., Koketsu R., Baba S. et al. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L801-811. DOI:10.1152/ajplung.00365.2014.; Hao W., Wang J., Zhang Y. et al. Leptin positively regulates MUC5AC production and secretion induced by interleukin-13 in human bronchial epithelial cells. Biochem. Biophys. Res. Commun. 2017; 493: 979-984. DOI:10.1016/j.bbrc.2017.09.106.; La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017; 98: 51-58. DOI:10.1016/j.cyto.2016.10.011.; Hsu P.S., Lin C.M., Chang J.F. et al. Participation of NADPH oxidase-related reactive oxygen species in leptin-promoted pulmonary inflammation: regulation of cPLA2a and COX-2 expression. Int. J. Mol. Sci. 2019; 20 (5): 1078. DOI:10.3390/ijms20051078.; https://journal.pulmonology.ru/pulm/article/view/2419
-
18Academic Journal
Authors: Варвара Ивановна Минина, Игорь Анатольевич Тё, Ксения Сергеевна Киселева, Елена Александровна Тё, Вадим Гельевич Мозес, Светлана Ивановна Елгина, Кира Борисовна Мозес, Яэль Центер
Source: Medicina v Kuzbasse, Vol 22, Iss 4, Pp 87-92 (2023)
Subject Terms: хроническое воспаление, неоплазия, рак, слизистая оболочка, иммунитет, Medicine
-
19Academic Journal
Authors: Афонина, И. А., Шкодкина, С. А.
Subject Terms: медицина, внутренние болезни, астма, хроническое воспаление дыхательных путей, фенотипы астмы, эндотипы астмы, тезепелумаб, тимический стромальный лимфопоэтин
Availability: http://dspace.bsu.edu.ru/handle/123456789/62747
-
20Academic Journal
Source: Хірургія дитячого віку, Iss 2(63), Pp 92-96 (2019)
PAEDIATRIC SURGERY. UKRAINE; № 2(63) (2019): Paediatric surgery. Ukraine; 92-96
ХИРУРГИЯ ДЕТСКОГО ВОЗРАСТА; № 2(63) (2019): Хирургия детского возраста; 92-96
Хірургія дитячого віку; № 2(63) (2019): Хірургія дитячого віку; 92-96Subject Terms: 0301 basic medicine, 0303 health sciences, chronic kidney inflammation, RD1-811, дети, хроническое воспаление почек, ксантогранулематозный пиелонефрит, Pediatrics, RJ1-570, 3. Good health, 03 medical and health sciences, children, Pyelonephritis xantogranulomatosa, pyelonephritis xantogranulomatosa, Surgery, діти, хронічне запалення нирок, ксантогранулематозний пієлонефрит
File Description: application/pdf
Access URL: https://med-expert.com.ua/journals/wp-content/uploads/2019/08/18.pdf
https://doaj.org/article/030ee7a9d18547f696bb6684c4346bba
http://psu.med-expert.com.ua/article/view/PS.2019.63.92/182041
http://psu.med-expert.com.ua/article/view/PS.2019.63.92
http://psu.med-expert.com.ua/article/view/PS.2019.63.92