Showing 1 - 20 results of 215 for search '"ХРОНИЧЕСКОЕ ВОСПАЛЕНИЕ"', query time: 0.62s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 15, № 4 (2023); 25-35 ; ВИЧ-инфекция и иммуносупрессии; Том 15, № 4 (2023); 25-35 ; 2077-9828 ; 10.22328/2077-9828-2023-15-4

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/849/565; Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies // Lancet. 2008. Jul 26. Vol. 372, No. 9635. Р. 293–299. doi:10.1016/S0140-6736(08)61113-7.; Deeks S.G., Lewin S.R., Ross A.L. et al. International AIDS Society global scientific strategy: towards an HIV cure 2016 // Nat. Med. 2016. Aug. Vol. 22, No. 8. Р. 839–850. doi:10.1038/nm.4108.; Massanella M., Fromentin R., Chomont N. Residual inflammation and viral reservoirs: alliance against an HIV cure // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 234–241. doi:10.1097/COH.0000000000000230.; Zilberman-Schapira G., Zmora N., Itav S. et al. The gut microbiome in human immunodeficiency virus infection // BMC Med. 2016. Jun 3. Vol. 14, No. 1. Р. 83. doi:10.1186/s12916-016-0625-3.; Zevin A.S., McKinnon L., Burgener A., Klatt N.R. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation // Curr. Opin HIV AIDS. 2016. Mar. Vol. 11, No. 2. Р. 182–190. doi:10.1097/COH.0000000000000234.; Uprety P., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study (PHACS). Human Immunodeficiency Virus Type 1 DNA Decay Dynamics With Early, Long-term Virologic Control of Perinatal Infection // Clin. Infect Dis. 2017. Jun 1. Vol. 64, No. 11. Р. 1471–1478. doi:10.1093/cid/cix192.; Persaud D., Patel K., Karalius B. et al. Pediatric HIV/AIDS Cohort Study. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents // JAMA Pediatr. 2014. Dec. Vol. 168, No. 12. Р. 1138–1146. doi:10.1001/jamapediatrics.2014.1560.; Chun T.W., Nickle D.C., Justement J.S. et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy // J. Infect. Dis. 2008. Mar 1. Vol. 197, No. 5. Р. 714–720. doi:10.1086/527324.; Chomont N., El-Far M., Ancuta P. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation // Nat. Med. 2009. Aug. Vol. 15, No. 8. Р. 893–900. doi:10.1038/nm.1972.; Brenchley J.M., Schacker T.W., Ruff L.E. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract // J. Exp. Med. 2004. Sep 20. Vol. 200, No. 6. Р. 749–759. doi:10.1084/jem.20040874.; Mudd J.C., Brenchley J.M. Gut Mucosal Barrier Dysfunction, Microbial Dysbiosis, and Their Role in HIV-1 Disease Progression // J. Infect. Dis. 2016. Oct 1. Vol. 214, Suppl. 2. Р. S58–66. doi:10.1093/infdis/jiw258.; Dillon S.M., Lee E.J., Kotter C.V. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia // Mucosal Immunol. 2014. Vol. 7. Р. 983–994. doi:10.1038/mi.2013.116.; Lozupone C.A., Campbell T.B., Flores S.C. et al. Alterations in the gut microbiota associated with HIV-1 infection // Cell Host Microbe. 2013. Vol. 14. Р. 329–339. doi:10.1016/j.chom.2013.08.006.; Mutlu E.A., Keshavarzian A., Losurdo J. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects // PLoS Pathog. 2014. Vol. 10. Р. e1003829. doi:10.1371/journal.ppat.1003829.; Vazquez-Castellanos J.F., Serrano-Villar S., Latorre A. et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals // Mucosal Immunol. 2015. Vol. 8. Р. 760–772. doi:10.1038/mi.2014.107.; Zhang Y., Xie Z., Zhou J. et al. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection // Front Immunol. 2023. Jan 4. Р. 13. Р. 1020822. doi:10.3389/fimmu.2022.1020822.; Yukl S.A., Shergill A.K., Ho T. et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence // J. Infect Dis. 2013 Oct 15. Vol. 208, No. 8. Р. 1212–1220. doi:10.1093/infdis/jit308.; Ananworanich J., Chomont N., Eller L.A. et al. RV217 and RV254/SEARCH010 study groups. HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART // EBioMedicine. 2016. Sep. Vol. 11. Р. 68–72. doi:10.1016/j.ebiom.2016.07.024.; Ananworanich J., Sacdalan C.P., Pinyakorn S. et al. Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection // J. Virus Erad. 2016. Vol. 2, No. 1. Р. 43–48. PMID: 26889497. PMCID: PMC4754199.; Rothenberger M.K., Keele B.F., Wietgrefe S.W. et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption // Proc. Natl. Acad. Sci USA. 2015. Mar 10. Vol. 112, No. 10. Р. E1126–34. doi:10.1073/pnas.1414926112.; Yukl S.A., Boritz E., Busch M. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient // PLoS Pathog. 2013. Vol. 9, No. 5. Р. e1003347. doi:10.1371/journal.ppat.1003347.; Gantner P., Assoumou L., Leruez-Ville M. et al. EVARIST ANRS EP 49 Study Group. HIV-1-RNA in seminal plasma correlates with detection of HIV-1-DNA in semen cells, but not with CMV shedding, among MSM on successful antiretroviral regimens // J. Antimicrob. Chemother. 2016. Nov. Vol. 71, No. 11. Р. 3202–3205. doi:10.1093/jac/dkw271.; Mujugira A., Celum C., Coombs R.W. et al. HIV Transmission Risk Persists During the First 6 Months of Antiretroviral Therapy // J. Acquir. Immune Defic Syndr. 2016. Aug 15. Vol. 72, No. 5. Р. 579–584. doi:10.1097/QAI.0000000000001019.; Klatt N.R., Cheu R., Birse K. et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women // Science. 2017 Jun 2. Vol. 356, No. 6341. Р. 938–945. doi:10.1126/science.aai9383.; Хрянин А.А., Кнорринг Г.Ю., Бочарова В.К. Нарушение вагинального микробиома и риск заражения ВИЧ-инфекцией у женщин // ВИЧ-инфекция и иммуносупрессии. 2023. Vol. 15, No. 1. Р. 23–31. (In Russ.). doi:10.22328/2077-9828-2023-15-1-23-31.; Wong J.K., Yukl S.A. Tissue reservoirs of HIV // Curr Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 362–370. doi:10.1097/COH.0000000000000293.; Dillon S.M., Lee E.J., Donovan A.M. et al. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection // Retrovirology. 2016. Jan 14. Vol. 13. Р. 5. doi:10.1186/s12977-016-0237-1.; Dubourg G., Lagier J.C., Hüe S. et al. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen // BMJ Open Gastroenterol. 2016. Jul 28. Vol. 3, No. 1. Р. e000080. doi:10.1136/bmjgast-2016-000080.; Gootenberg D.B., Paer J.M., Luevano J.M., Kwon D.S. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation // Curr. Opin Infect. Dis. 2017. Feb. Vol. 30, No. 1. Р. 31–43. doi:10.1097/QCO.0000000000000341.; Villanueva-Millán M.J., Pérez-Matute P., Recio-Fernández E. et al. Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIV-infected patients // J. Int. AIDS Soc. 2017. Mar 9. Vol. 20, No. 1. Р. 21526. doi:10.7448/IAS.20.1.21526.; Хрянин А.А., Осипенко М.Ф., Немчанинова О.Б. и др. Стратегии восстановления слизистого барьера кишечника // Экспериментальная и клиническая гастроэнтерология. 2021. Т. 1, № 6. С. 88–95. doi:10.31146/1682-8658-ecg-190-6-88-95.; Garrett W.S., Gallini C.A., Yatsunenko T. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis // Cell Host Microbe. 2010. Sep 16. Vol. 8, No. 3. Р. 292–300. doi:10.1016/j.chom.2010.08.004.; Armstrong A.J.S., Shaffer M., Nusbacher N.M. et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men // Microbiome. 2018. Nov 5. Vol. 6, No. 1. Р. 198. doi:10.1186/s40168-018-0580-7.; Lu W., Feng Y., Jing F. et al. Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients // Front Microbiol. 2018. Jul 2. Vol. 9. Р. 1451. doi:10.3389/fmicb.2018.01451.; Lee S.C., Chua L.L., Yap S.H. et al. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals // Sci Rep. 2018. Sep 24. Vol. 8, No. 1. Р. 14277. doi:10.1038/s41598-018-32585-x.; Ling Z., Jin C., Xie T. et al. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population // Sci Rep. 2016. Vol. 6. Р. 30673. doi:10.1111/jcmm.13508.; Larsen J.M. The immune response to Prevotella bacteria in chronic inflammatory disease // Immunology. 2017. Aug. Vol. 151, No. 4. Р. 363–374. doi:10.1111/imm.12760. Epub 2017 Jun 20.; Jiang F., Meng D., Weng M. et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1 -induced inflammation in human fetal enterocytes via toll receptors 2 and 4 // PLoS One. 2017. Mar 9. Vol. 12, No. 3. Р. e0172738. doi:10.1371/journal.pone.0172738.; Noguera-Julian M., Rocafort M., Guillén Y. et al. Gut Microbiota Linked to Sexual Preference and HIV Infection // EBioMedicine. 2016. Jan 28. Vol. 5. Р. 135–146. doi:10.1016/j.ebiom.2016.01.032.; Pinto-Cardoso S., Lozupone C., Briceño O. et al. Fecal Bacterial Communities in treated HIV infected individuals on two antiretroviral regimens // Sci. Rep. 2017. Mar 6. Vol. 7. Р. 43741. doi:10.1038/srep43741.; Nowak R.G., Bentzen S.M., Ravel J. et al. TRUSTRV368 Study Group. Rectal microbiota among HIV-uninfected, untreated HIV, and treated HIV-infected in Nigeria // AIDS. 2017. Mar 27. Vol. 31, No. 6. Р. 857–862. doi:10.1097/QAD.0000000000001409.; Winter S.E., Winter M.G., Xavier M.N. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut // Science. 2013. Feb 8. Vol. 339, No. 6120. Р. 708–711. doi:10.1126/science.1232467.; Winter S.E., Thiennimitr P., Winter M.G. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella // Nature. 2010. Sep 23. Vol. 467, No. 7314. Р. 426–429. doi:10.1038/nature09415.; Deleage C., Schuetz A., Alvord W.G. et al. Impact of early cART in the gut during acute HIV infection // JCI Insight. 2016. Jul 7. Vol. 1, No. 10. Р. e87065. doi:10.1172/jci.insight.87065.; Mahjoub-Messai F., Bidet P., Caro V. et al. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes // J. Infect Dis. 2011. Jun 15. Vol. 203, No. 12. Р. 1844–1849. doi:10.1093/infdis/jir189.; Li S.X., Armstrong A., Neff C.P. et al. Complexities of Gut Microbiome Dysbiosis in the Context of HIV Infection and Antiretroviral Therapy // Clin. Pharmacol. Ther. 2016. Jun. Vol. 99, No. 6. Р. 600–611. doi:10.1002/cpt.363.; Nowak P., Troseid M., Avershina E. et al. Gut microbiota diversity predicts immune status in HIV-1 infection // AIDS. 2015. Vol. 29. Р. 2409–2418. doi:10.1097/QAD.0000000000000869.; Yang L., Poles M.A., Fisch G.S. et al. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria // AIDS. 2016. Vol. 30. Р. 19–29. doi:10.1097/QAD.0000000000000935.; Yu G., Fadrosh D., Ma B., Ravel J., Goedert J.J. Anal microbiota profiles in HIV-positive and HIV-negative MSM // AIDS. 2014. Vol. 28. Р. 753–760. doi:10.1097/QAD.0000000000000154.; Vujkovic-Cvijin I., Dunham R.M., Iwai S. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism // Sci. Transl. Med. 2013. Vol. 5. Р. 193ra91. doi:10.1126/scitranslmed.aar3209.; Bender J.M., Li F., Martelly S. et al. Maternal HIV infection influences the microbiome of HIV-uninfected infants // Sci Transl Med. 2016. Jul 27. Vol. 8, No. 349. Р. 349ra100. doi:10.1126/scitranslmed.aaf5103.; Vesterbacka J., Rivera J., Noyan K. et al. Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers // Sci Rep. 2017. Jul 24. Vol. 7, No. 1. Р. 6269. doi:10.1038/s41598-017-06675-1.; Hoenigl M., Pérez-Santiago J., Nakazawa M. et al. (1➝3)-β-d-Glucan: A Biomarker for Microbial Translocation in Individuals with Acute or Early HIV Infection? // Front Immunol. 2016. Oct 3. Vol. 7. Р. 404. doi:10.3389/fimmu.2016.00404.; Serrano-Villar S., Rojo D., Martínez-Martínez M. et al. Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected Individuals // EBioMedicine. 2016. Jun. Vol. 8. Р. 203–216. doi:10.1016/j.ebiom.2016.04.033.; Rivière A., Selak M., Lantin D. et al. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut // Front Microbiol. 2016. Jun 28. Vol. 7. Р. 979. doi:10.3389/fmicb.2016.00979.; Imai K., Yamada K., Tamura M. et al. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria // Cell Mol. Life Sci. 2012. Aug. Vol. 69, No. 15. Р. 2583–2592. doi:10.1007/s00018-012-0936-2.; Bolduc J.F., Hany L., Barat C. et al. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T-Cells // J. Virol. 2017. Jul 27. Vol. 91, No. 16. Р. e01943–16. doi:10.1128/JVI.01943-16.; Rasmussen T.A., Lewin S.R. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? // Curr. Opin HIV AIDS. 2016. Jul. Vol. 11, No. 4. Р. 394–401. doi:10.1097/COH.0000000000000279.; Nix L.M., Tien P.C. Metabolic syndrome, diabetes, and cardiovascular risk in HIV // Curr. HIV/AIDS Rep. 2014. Vol. 11. Р. 271–278. doi:10.1007/s11904-014-0219-7.; Aron-Wisnewsky J., Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders // Nat. Rev. Nephrol. 2016. Vol. 12, No. 3. Р. 169–181. doi:10.1038/nrneph.2015.191; Srinivasa S., Fitch K.V., Lo J. et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine // AIDS. 2015. Vol. 29. Р. 443–452. doi:10.1097/QAD.0000000000000565.; Haissman J.M., Knudsen A., Hoel H. et al. Microbiota-Dependent Marker TMAO Is Elevated in Silent Ischemia but Is Not Associated With FirstTime Myocardial Infarction in HIV Infection // J. Acquir Immune Defic Syndr. 2016. Vol. 71, No. 2. Р. 130–136. doi:10.1097/QAI.0000000000000843.; Dieffenbach C.W., Fauci A.S. Thirty years of HIV and AIDS: future challenges and opportunities // Ann. Intern. Med. 2011. Vol. 154. Р. 766–771. doi:10.7326/0003-4819-154-11-201106070-00345.; Kartalija M., Sande M.A. Diarrhea and AIDS in the era of highly active antiretroviral therapy // Clin. Infect Dis. 1999. Vol. 28. Р. 701–705. quiz 6–7. doi:10.1086/515191.; Montessori V., Press N., Harris M., Akagi L., Montaner J.S. Adverse effects of antiretroviral therapy for HIV infection // CMAJ. 2004. Vol. 170. Р. 229–238.; Lozupone C.A., Rhodes M.E., Neff C.P. et al. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy // Gut Microbes. 2014. Vol. 5. Р. 562–570.; Weingarden A., Gonzalez A., Vazquez-Baeza Y. et al. Dynamic changes in shortand long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection // Microbiome. 2015. Vol. 3. Р. 10. doi:10.1186/s40168-015-0070-0.; Iida N., Dzutsev A., Stewart C.A. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment // Science. 2013. Vol. 342. Р. 967–970. doi:10.1126/science.1240527.; Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism // Proc. Natl. Acad. Sci USA. 2009. Vol. 106. Р. 14728–14733. doi:10.1073/pnas.0904489106.; Haiser H.J., Gootenberg D.B., Chatman K. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta // Science. 2013. Vol. 341. Р, 295–298. doi:10.1126/science.1235872.; Caceres C.F., O’Reilly K.R., Mayer K.H., Baggaley R. PrEP implementation: moving from trials to policy and practice // J. Int. AIDS Soc. 2015. Vol. 18. Р. 20222. doi:10.7448/IAS.18.4.20222.; Lee C.H., Steiner T., Petrof E.O. et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium diffi Infection: A Randomized Clinical Trial // JAMA. 2016. Jan 12. Vol. 315, No. 2. Р. 142–149. doi:10.1001/jama.2015.18098.; Vujkovic-Cvijin I., Rutishauser R.L., Pao M. et al. Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals // Gut Microbes. 2017. Sep 3. Vol. 8, No. 5. Р. 440–450. doi:10.1080/19490976.2017.1334034.; Hensley-McBain T., Zevin A.S., Manuzak J. et al. Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques // J. Virol. 2016. Apr 29. Vol. 90, No. 10. Р. 4981–4989. doi:10.1128/JVI.00099-16.; D’Ettorre G., Ceccarelli G., Giustini N. et al. Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the «Probio-HIV» Clinical Trial // PLoS One. 2015. Vol. 10, No. 9. Р. e0137200. doi:10.1371/journal.pone.0137200.; Falasca K., Vecchiet J., Ucciferri C. et al. Effect of Probiotic Supplement on Cytokine Levels in HIV-Infected Individuals: A Preliminary Study // Nutrients. 2015. Vol. 7. Р. 8335–8347. doi:10.3390/nu7105396.; Villar-Garcia J., Hernandez J.J., Guerri-Fernandez R. et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial // J. Acquir Immune Defic Syndr. 2015. Vol. 68. Р. 256–263. doi:10.1097/QAI.0000000000000468.

  10. 10
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 38-48 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4814/2786; Данусевич И.Н. Частота встречаемости хронического эндометрита у женщин с различными вариантами репродуктивных нарушений. Acta biomedica scientifica. 2013; 4(92): 14-16.; Wang WJ, Zhang H, Chen ZQ, Zhang W, Liu XM, Fang JY, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019; 17(1): 1-9. doi:10.1186/ s12958-018-0444-9; Wu D, Kimura F, Zheng L, Ishida M, Niwa Y, Hirata K, et al. Chronic endometritis modifies decidualization in human endometrial stromal cells. Reprod Biol Endocrinol. 2017; 15(1): 1-10. doi:10.1186/s12958-017-0233-x; Kitaya K, Yasuo T. Immunohistochemistrical and clinicopathological characterization of chronic endometritis. Am J Reprod Immunol. 2011; 66(5): 410-415. doi:10.1111/j.1600-0897.2011.01051.x; Асатурова А.В., Бадлаева А.С., Трегубова А.В., Табеева Г.И. Воспроизводимость диагностики хронического эндометрита до и после применения иммуногистохимического исследования плазматических клеток в эндометрии. Новости клинической цитологии России. 2023; 27(1): 5-10.; Yasuo T, Kitaya K. Challenges in clinical diagnosis and management of chronic endometritis. Diagnostics (Basel). 2022; 12(11): 2711. doi:10.3390/diagnostics12112711; Воспалительные болезни женских тазовых органов. Клинические рекомендации. М.; 2021.; Шарифулин Э.М., Игумнов И.А., Круско О.В., Аталян А.В., Сутурина Л.В., Особенности хронического эндометрита у женщин репродуктивного возраста с синдромом поликистозных яичников. Acta biomedica scientifica. 2020; 5(6): 27-36.; Иевлева К.Д., Данусевич И.Н., Аталян А.В., Шарифулин Э.М., Лазарева Л.М., Наделяева Я.Г., и др. Уровень адипокинов и их ассоциация с хроническим эндометритом у женщин репродуктивного возраста. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(5): 60-68.; Ткаченко Л.В., Свиридова Н.И., Жаркин Н.А., Бурова Н.А., Белан Э.Б. Оценка цитокинового статуса у пациенток с хроническим эндометритом в сочетании с гиперпластическими процессами эндометрия в репродуктивном периоде. Инфекция и иммунитет. 2020; 10(4): 762-768.; Мотовилова Т.М., Качалина Т.С., Гречканев Г.О., Боровкова Л.В., Зиновьев А.Н., Николаева О.А., и др. Определение биомаркеров в менструальной крови как возможность неинвазивной диагностики воспалительного процесса в полости матки. Медицинский альманах. 2016; 45(5): 88-91.; Bays HE, Bindlish S, Clayton TL. Obesity, diabetes mellitus, and cardiometabolic risk: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS). Obesity Pillars. 2023; 2023: 100056. doi:10.1016/j.obpill.2023.100056; Daan NMP, Koster MPH, de Wilde MA, Dalmeijer GW, Evelein AMV, Fauser BCJM, et al. Biomarker profiles in women with PCOS and PCOS offspring; a pilot study. PLoS One. 2016; 11(11): e0165033. doi:10.1371/journal. pone.0165033; Шарифулин Э.М., Лазарева Л.М., Каня О.В., Стефаненкова А.А., Белых Д.В., Сутурина Л.В. Состояние эндометрия при синдроме поликистозных яичников в репродуктивном возрасте. Acta biomedica scientifica. 2018; 3(3): 136-142.; Calabro P, Chang DW, Willerson JT, Yeh ETH. Release of Creactive protein in response to inflammatory cytokines by human adipocytes: Linking obesity to vascular inflammation. J Am Coll Cardiol. 2005; 46(6): 1112-1113. doi:10.1016/j.jacc.2005.06.017; Yeaman GR, Collins JE, Currie JK, Guyre PM, Wira CR, Fanger MW. IFN gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J Immunol. 1998; 160: 5145-5153.; Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MA. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014; 58: 247-259. doi:10.1387/ijdb.140083ms; Pioli PA, Weaver LK, Schaefer TM, Wright JA, Wira CR, Guyre PM. Lipopolysaccharide-induced IL-1 beta production by human uterine macrophages up-regulates uterine epithelial cell expression of human beta-defensin 2. J Immunol. 2006; 176: 6647-6655. doi:10.4049/jimmunol.176.11.6647; D’Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbesand microbiome: Recent insights on the inflammatory and immune “players” of the human endometrium. Am J Reprod Immunol. 2018; 80: e13065. doi:10.1111/aji.13065; Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, et al. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol. 2022; 13: 928475. doi:10.3389/fimmu.2022.928475; Danusevich IN, Sharifulin EM, Nemchenko UM, Kolesnikova LI. Features of the immune system functioning with persistence of infectious agents in women with chronic endometrial inflammation and reproductive disorders. Int J Biomed. 2020; 10(4): 362-368. doi:10.21103/Article10(4)_OA6; Danusevich IN, Lazareva LM, Nemchenko UM, Kolesnikova LI. Endometrial cytokines in women with reproductive disorders. Int J Biomed. 2021. 11(4): 526-531. doi:10.21103/Article11(4)_OA20; Tortorella C, Piazzolla G, Matteo M, Pinto V, Tinelli R, Sabbà C, et al. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil Steril. 2014; 101(1): 242-247. doi:10.1016/j.fertnstert. 2013.09.041; Кольцов И.П., Храмова И.А. Взаимосвязь секреторно-синтетических процессов в моноцитах/макрофагах с уровнем секреции интерлейкина-8 моноцитами крови при эндометрите. Тихоокеанский медицинский журнал. 2011; (3): 58-60.; Сорокин Ю.А., Гизингер О.А., Радзинский В.Е. Клинико-иммунологическое обоснование ультразвуковой кавитации в комплексном лечении бесплодия при хроническом эндометрите. Гинекология. 2022; 24(5): 355-361.; https://www.actabiomedica.ru/jour/article/view/4814

  11. 11
    Academic Journal

    Contributors: 1

    Source: Almanac of Clinical Medicine; Vol 52, No 8 (2024); 405-416 ; Альманах клинической медицины; Vol 52, No 8 (2024); 405-416 ; 2587-9294 ; 2072-0505

    File Description: application/pdf

  12. 12
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 9, № 4 (2024); 108-116 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4952/2863; Baim AD, Movahedan A, Farooq AV, Skondra D. The microbiome and ophthalmic disease. Exp Biol Med (Maywood). 2019; 244(6): 419-429. doi:10.1177/1535370218813616; Izzotti A, Saccà SC, Bagnis A, Recupero SM. Glaucoma and Helicobacter pylori infection: Correlations and controversies. Br J Ophthalmol. 2009; 93(11): 1420-1427. doi:10.1136/bjo.2008.150409; Saccà SC, Pascotto A, Venturino GM, Prigione G, Mastromarino A, Baldi F, et al. Prevalence and treatment of Helicobacter pylori in patients with blepharitis. Invest Ophthalmol Vis Sci. 2006; 47(2): 501-508. doi:10.1167/iovs.05-0323; Gasbarrini A, Serricchio M, Tondi P, Gasbarrini G, Pola P. Association of Helicobacter pylori infection with primary Raynaud phenomenon. Lancet. 1996; 348(9032): 966-967. doi:10.1016/S0140-6736(05)65386-X; Amedei A, Bergman MP, Appelmelk BJ, Azzurri A, Benagiano M, Tamburini C, et al. Molecular mimicry between Helicobacter pylori antigens and H+, K+-adenosine triphosphatase in human gastric autoimmunity. J Exp Med. 2003; 198(8): 1147-1156. doi:10.1084/jem.20030530; Gravina AG, Zagari RM, De Musis C, Romano L, Loguercio C, Romano M. Helicobacter pylori and extragastric diseases: A review. World J Gastroenterol. 2018; 24(29): 3204-3221. doi:10.3748/wjg.v24.i29.3204; Gürer MA, Erel A, Erbaş D, Cağlar K, Atahan C. The seroprevalence of Helicobacter pylori and nitric oxide in acne rosacea. Int J Dermatol. 2002; 41(11): 768-770. doi:10.1046/j.13654362.2002.01452.x; Graham DY. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World JGastroenterol. 2014; 20(18): 5191-5204. doi:10.3748/wjg.v20.i18.5191; Tirado-Hurtado I, Carlos C, Lancho L, Alfaro A, Ponce R, Schwarz LJ, et al. Helicobacter pylori: History and facts in Peru. Crit Rev OncolHematol. 2019; 134: 22-30. doi:10.1016/j.critrevonc.2018.12.005; Costa L, Corre S, Michel V, Le Luel K, Fernandes J, Ziveri J, et al. USF1 defect drives p53 degradation during Helicobacter pylori infection and accelerates gastric carcinogenesis. Gut. 2020; 69(9): 1582-1591. doi:10.1136/gutjnl-2019-318640; Sjomina O, Pavlova J, Niv Y, Leja M. Epidemiology of Helicobacter pylori infection. Helicobacter. 2018; 23(Suppl 1): e12514. doi:10.1111/hel.12514; Sgambato D, Visciola G, Ferrante E, Miranda A, Romano L, Tuccillo C, et al. Prevalence of Helicobacter pylori infection in sexual partners of H. pylori-infected subjects: Role of gastroesophageal reflux. United European Gastroenterol J. 2018; 6(10): 1470-1476. doi:10.1177/2050640618800628; Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014; 19(Suppl 1): 1-5. doi:10.1111/hel.12165; Leja M, Grinberga-Derica I, Bilgilier C, Steininger C. Review: Epidemiology of Helicobacter pylori infection. Helicobacter. 2019; 24(Suppl 1): e12635. doi:10.1111/hel.12635; Santos MLC, de Brito BB, da Silva FAF, Sampaio MM, Marques HS, Oliveira E, et al. Helicobacter pylori infection: Beyond gastric manifestations. World J Gastroenterol. 2020; 26(28): 40764093. doi:10.3748/wjg.v26.i28.4076; Sharndama HC, Mba IE. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 2022; 53(1): 33-50. doi:10.1007/s42770-021-00675-0; Crowe SE. Helicobacter pylori infection. N Engl J Med. 2019; 380(12): 1158-1165. doi:10.1056/NEJMcp1710945; Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, et al. Helicobacter pylori infection: Current status and future prospects on diagnostic, therapeutic and control challenges. Antibiotics (Basel). 2023; 12(2): 191. doi:10.3390/antibiotics12020191; Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol. 2021; 27(7): 545-560. doi:10.3748/wjg.v27.i7.545; Salvatori S, Marafini I, Laudisi F, Monteleone G, Stolfi C. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms. Int J Mol Sci. 2023; 24(3): 2895. doi:10.3390/ijms24032895; Mobley HL, Garner RM, Bauerfeind P. Helicobacter pylori nickel-transport gene nixA: Synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol. 1995; 16(1): 97-109. doi:10.1111/j.1365-2958.1995.tb02395.x; Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter. 2022; 27(3): e12891. doi:10.1111/hel.12891; de Brito BB, da Silva FAF, Soares AS, Pereira VA, Santos MLC, Sampaio MM, et al. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World JGastroenterol. 2019; 25(37): 5578-5589. doi:10.3748/wjg.v25.i37.5578; Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front Cell Infect Microbiol. 2016; 6: 159. doi:10.3389/fcimb.2016.00159; Hathroubi S, Hu S, Ottemann KM. Genetic requirements and transcriptomics of Helicobacter pylori biofilm formation on abiotic and biotic surfaces. NPJ Biofilms Microbiomes. 2020; 6(1): 56. doi:10.1038/s41522-020-00167-3; Ansari S, Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins (Basel). 2019; 11(11): 677. doi:10.3390/toxins11110677; Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, et al. Helicobacter pylori virulence factors – Mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 2020; 10(1): 27. doi:10.3390/cells10010027; Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2017; 22(Suppl 1). doi:10.1111/hel.12405; Niu Q, Zhu J, Yu X, Feng T, Ji H, Li Y, et al. Immune response in H. pylori-associated gastritis and gastric cancer. Gastroenterol Res Pract. 2020; 2020: 9342563. doi:10.1155/2020/9342563; Hamzah DN, Aljanaby AAJ. Immune response in patients infected with Helicobacter pylori in Al-Najaf City, Iraq. Int J Pharmaceut Res. 2020; 12(3): 901-911. doi:10.31838/ijpr/2020.12.03.139; Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol. 2014; 20(19): 5583-5593. doi:10.3748/wjg.v20.i19.5583; Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins (Basel). 2017; 9(3): 101. doi:10.3390/toxins9030101; Eberhardt M, Rammohan G. Blepharitis. Treasure Island (FL): StatPearls Publishing; 2023.; Daković Z, Vesić S, Vuković J, Milenković S, JankovićTerzić K, Dukić S, et al. Ocular rosacea and treatment of symptomatic Helicobacter pylori infection: A case series. Acta Dermatovenerol Alp Pannonica Adriat. 2007; 16(2): 83-86.; van Zuuren EJ, Arents BWM, van der Linden MMD, Vermeulen S, Fedorowicz Z, Tan J. Rosacea: New concepts in classification and treatment. Am J Clin Dermatol. 2021; 22(4): 457-465. doi:10.1007/s40257-021-00595-7; Bernardes TF, Bonfioli AA. Blepharitis. Semin Ophthalmol. 2010; 25(3): 79-83. doi:10.3109/08820538.2010.488562; Zhu W, Hamblin MR, Wen X. Role of the skin microbiota and intestinal microbiome in rosacea. Front Microbiol. 2023; 14: 1108661. doi:10.3389/fmicb.2023.1108661; Farshchian M, Daveluy S. Rosacea. Treasure Island (FL): StatPearls Publishing; 2023.; Batioglu-Karaaltin A, Saatci O, Akpinar M, Celik MO, Develioglu O, et al. Helicobacter pylori in lacrimal secretions. Ear Nose Throat J. 2016; 95(3): E8-E11. doi:10.1177/014556131609500303; https://www.actabiomedica.ru/jour/article/view/4952

  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Source: Medicine in Kuzbass; Том 22, № 4 (2023): декабрь; 87-92 ; Медицина в Кузбассе; Том 22, № 4 (2023): декабрь; 87-92 ; 2588-0411 ; 1819-0901

    File Description: application/pdf; text/html

  17. 17
    Academic Journal

    Contributors: The study was supported by the Council for Grants of the President of the Russian Federation (MK-3302.2022.1.4)., Исследование выполнено при финансовой поддержке Совета по грантам Президента Российской Федерации (МК-3302.2022.1.4).

    Source: PULMONOLOGIYA; Том 33, № 4 (2023); 552-558 ; Пульмонология; Том 33, № 4 (2023); 552-558 ; 2541-9617 ; 0869-0189

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/2419/3549; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1059; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1060; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1061; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2419/1062; Jussi K. Kuopio Ischemic Heart Disease Risk Factor Study. In: Gell-man M., Turner J., eds. Encyclopedia of behavioral medicine. N.Y.: Springer; 2016. DOI:10.1007/978-1-4614-6439-6_328-2.; Laakso M., Kuusisto J., Stancakova A. et al. The metabolic syndrome in men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid. Res. 2017; 58 (3): 481-493. DOI:10.1194/jr.O072629.; Richardson T.G., Sanderson E., Palmer T.M. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020; 17 (3): e1003062. DOI:10.1371/journal.pmed.1003062.; Holmes M.V., Asselbergs F.W., Palmer T.M. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015; 36 (9): 539-550. DOI:10.1093/eurheartj/eht571.; Virtanen H.E.K., Koskinen T.T., Voutilainen S. et al. Intake of different dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor Study. Br. J. Nutr. 2017; 117 (6): 882-893. DOI:10.1017/S0007114517000745.; Yeh H.C., Punjabi N.M., Wang N.Y. et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the Atherosclerosis Risk In Communities (ARIC) study. Diabetes Care. 2008; 31 (4): 741-746. DOI:10.2337/dc07-1464.; Koton S., Sang Y., Schneider A.L.C. et al. Trends in stroke incidence rates in older US adults: an update from the Atherosclerosis Risk In Communities (ARIC) cohort study. JAMA Neurol. 2020; 77 (1): 109-113. DOI:10.1001/jamaneurol.2019.3258.; Mansour O., Golden S.H., Yeh H.C. Disparities in mortality among adults with and without diabetes by sex and race. J. Diabetes Complications. 2020; 34 (3): 107496. DOI:10.1016/j.jdiacomp.2019.107496.; Boriek A.M., Lopez M.A., Velasco C. et al. Obesity modulates diaphragm curvature in subjects with and without COPD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 313 (5): R620-629. DOI:10.1152/ajpregu.00173.2017.; Dixon A.E., Peters U. The effect of obesity on lung function. Expert. Rev. Respir. Med. 2018; 12 (9): 755-767. DOI:10.1080/17476348.2018.1506331.; Будневский А.В., Малыш Е.Ю., Овсянников Е.С., Дробышева Е.С. Бронхиальная астма и метаболический синдром: клинико-патогенетические взаимосвязи. Терапевтический архив. 2015; 87 (10): 110-114. DOI:10.17116/terarkh20158710110-114.; Будневский А.В., Овсянников Е.С., Лабжания Н.Б. Сочетание хронической обструктивной болезни легких и метаболического синдрома: патофизиологические и клинические особенности. Терапевтический архив. 2017; 89 (1): 123-127. DOI:10.17116/terarkh2017891123-127.; Choi H.S., Rhee C.K., Park Y.B. et al. Metabolic syndrome in early chronic obstructive pulmonary disease: gender differences and impact on exacerbation and medical costs. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 2873-2883. DOI:10.2147/COPD.S228497.; Kolahian S., Leiss V., Nurnberg B. Diabetic lung disease: fact or fiction? Rev. Endocr. Metab. Disord. 2019; 20 (3): 303-319. DOI:10.1007/s11154-019-09516-w.; Baffi C.W., Wood L., Winnica D. et al. Metabolic syndrome and the lung. Chest. 2016; 149 (6): 1525-1534. DOI:10.1016/j.chest.2015.12.034.; Kuziemski K., Specjalski K., Jassem E. Diabetic pulmonary microangiopathy - fact or fiction? Endokrynol. Pol. 2011; 62 (2): 171-176.; Yang J., Xue Q., Miao L., Cai L. Pulmonary fibrosis: a possible diabetic complication. Diabetes Metab. Res. Rev. 2011; 27 (4): 311-317. DOI:10.1002/dmrr.1175.; Burgstaller G., Oehrle B., Gerckens M. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 2017; 50 (1): 1601805. DOI:10.1183/13993003.01805-2016.; Hu Y., Ma Z., Guo Z. et al. Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis. Cell. Biochem. Biophys. 2014; 70 (2): 1385-1391. DOI:10.1007/s12013-014-0068-4.; Nie Z., Jacoby D.B., Fryer A.D. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am. J. Respir. Cell. Mol. Biol. 2014; 51 (2): 251-261. DOI:10.1165/rcmb.2013-0452OC.; Singh S., Bodas M., Bhatraju N.K. et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 310 (9): L837-845. DOI:10.1152/ajplung.00091.2015.; Wang Z., Li W., Guo Q. et al. Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed. Res. Int. 2018; 6057589. DOI:10.1155/2018/6057589.; Berair R., Saunders R., Brightling C.E. Origins of increased airway smooth muscle mass in asthma. BMC Med. 2013; 11: 145. DOI:10.1186/1741-7015-11-145.; Pain M., Bermudez O., Lacoste P. et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 2014; 23 (131): 118-130. DOI:10.1183/09059180.00004413.; Zheng H., Wu J., Jin Z., Yan L.J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017; 8 (1): 7-16. DOI:10.14336/AD.2016.0627.; Zheng H., Wu J., Jin Z., Yan L.J. Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochem. Insights. 2016; 9: 1-9. DOI:10.4137/BCI.S36141.; Green C.E. Lung function and endothelial dysfunction: is there a relationship without the presence of lung disease? Respirology. 2020; 25 (1): 49-50. DOI:10.1111/resp.13573.; Hancox R.J., Thomas L., Williams M.J.A., Sears M.R. Associations between lung and endothelial function in early middle age. Respirol-ogy. 2020; 25 (1): 89-96. DOI:10.1111/resp.13556.; Wheatley C.M., Baldi J.C., Cassuto N.A. et al. Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes: alveolar-capillary membrane conductance in type 1 diabetes. Eur. J. Appl. Physiol. 2011; 111 (3): 567-578. DOI:10.1007/s00421-010-1663-8.; Wasserman D.H., Wang T.J., Brown N.J. The vasculature in prediabetes. Circ. Res. 2018; 122 (8): 1135-1150. DOI:10.1161/CIRCRE-SAHA.118.311912.; Wu X., Lu W., He M. et al. Structural and functional definition of the pulmonary vein system in a chronic hypoxia-induced pulmonary hypertension rat model. Am. J. Physiol. Cell. Physiol. 2020; 318 (3): C555-569. DOI:10.1152/ajpcell.00289.2019.; Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018; 40 (2): 215-224. DOI:10.1007/s00281-017-0666-5.; Santilli F., Vazzana N., Liani R. et al. Platelet activation in obesity and metabolic syndrome. Obes. Rev. 2012; 13 (1): 27-42. DOI:10.1111/j.1467-789X.2011.00930.x.; Lei H., Li H., Tian L. et al. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug. Des. Devel. Ther. 2018; 12: 1743-1751. DOI:10.2147/DDDT.S166734.; Peters U., Suratt B.T., Bates J.H.T. et al. Obesity and lung disease. Chest. 2018; 153 (3): 702-709. DOI:10.1016/j.chest.2017.07.010.; Melo L.C., Silva M.A., Calles A.C. Obesity and lung function: a systematic review. Einstein (Sao Paulo). 2014; 12 (1):120-125. DOI:10.1590/s1679-45082014rw2691.; Huang L., Ye Z., Lu J. et al. Effects of fat distribution on lung function in young adults. J. Physiol. Anthropol. 2019; 38 (1): 7. DOI:10.1186/s40101-019-0198-x.; He S., Yang J., Li X. et al. Visceral adiposity index is associated with lung function impairment: a population-based study. Respir. Res. 2021; 22 (1): 2. DOI:10.1186/s12931-020-01599-3.; Agrawal M., Kern P.A., Nikolajczyk B.S. The immune system in obesity: developing paradigms amidst inconvenient truths. Curr. Diab. Rep. 2017; 17 (10): 87. DOI:10.1007/s11892-017-0917-9.; McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018; 36 (1): 14-20. DOI:10.1016/j.clindermatol.2017.09.004.; Крюков Н.Н., Гинзбург М.М., Киселева Е.В. Современный взгляд на роль асептического воспаления жировой ткани в генезе ожирения и метаболического синдрома. Артериальная гипертензия. 2013; 19 (4): 305-310.; Suzukawa M., Koketsu R., Baba S. et al. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L801-811. DOI:10.1152/ajplung.00365.2014.; Hao W., Wang J., Zhang Y. et al. Leptin positively regulates MUC5AC production and secretion induced by interleukin-13 in human bronchial epithelial cells. Biochem. Biophys. Res. Commun. 2017; 493: 979-984. DOI:10.1016/j.bbrc.2017.09.106.; La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017; 98: 51-58. DOI:10.1016/j.cyto.2016.10.011.; Hsu P.S., Lin C.M., Chang J.F. et al. Participation of NADPH oxidase-related reactive oxygen species in leptin-promoted pulmonary inflammation: regulation of cPLA2a and COX-2 expression. Int. J. Mol. Sci. 2019; 20 (5): 1078. DOI:10.3390/ijms20051078.; https://journal.pulmonology.ru/pulm/article/view/2419

  18. 18
  19. 19
  20. 20