Εμφανίζονται 1 - 20 Αποτελέσματα από 97 για την αναζήτηση '"ХРОНИЧЕСКИЕ ЗАБОЛЕВАНИЯ ВЕН"', χρόνος αναζήτησης: 0,92δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Biomedical Photonics; Том 12, № 4 (2023); 15-21 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/621/431; Мазайшвили К.В., Киян К.А., Суханов А.В., Шириязданова Ю.Ф. Распространенность и сочетаемость хронических венозных расстройств нижних конечностей, синдрома беспокойных ног, тревоги и депрессивных состояний среди работников предприятий Московского региона // Флебология. – 2019. – Т.13, №1. – С. 12-20. doi 10.17116/flebo20191301112.; Kirsten N., Mohr N., Gensel F., Alhumam A., Bruning G., Augustin M. Population-Based Epidemiologic Study in Venous Diseases in Germany – Prevalence, Comorbidity, and Medical Needs in a Cohort of 19,104 Workers // Vasc Health Risk Manag. – 2021. – Vol. 17. – P. 679-687. doi:10,2147/VHRM.S323084; Rabe E., Guex J.J., Puskas A., Scuderi A., Fernandez Quesada F; VCP Coordinators. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program // Int Angiol. – 2012. – Vol. 31(2). – P. 105-115.; Vuylsteke M.E., Thomis S., Guillaume G., Modliszewski M.L., Weides N., Staelens I. Epidemiological study on chronic venous disease in Belgium and Luxembourg: prevalence, risk factors, and symptomatology // Eur J Vasc Endovasc Surg. – 2015. – Vol. 49(4). – P. 432-439. doi: 10,1016/j.ejvs.2014.12.031; Zolotukhin I.A., Seliverstov E.I., Shevtsov Y.N., Avakiants I.P., Nikishkov A.S., Tatarintsev A.M., Kirienko A.I. Prevalence and Risk Factors for Chronic Venous Disease in the General Russian Population // Eur J Vasc Endovasc Surg. – 2017. – Vol. 54(6). – P. 752-758. doi: 10,1016/j.ejvs.2017.08.033; Чепеленко Г.В. Роль лимфатической системы в потенцировании клинических стадий хронической венозной недостаточности нижних конечностей // Ангиология и сосудистая хирургия. – 2004. – Т.10, №2. – С. 124-128.; Поташов Л.В. и др. // Хирургическая лимфология. – СПб: Изд-во СПб ГЭТУ «ЛЭТИ» . – 2000. – Т.270. – С. 80-86.; Лимашова Ю.Б., Чернова В.И. Национальное руководство по радионуклиидной диагностике / Томск: ТТ . – 2010 . – Т. 2. – С. 418.; Леванович В.В., Ялфимов А.Н., Канина Л.Я. и др. Способ диагностики лимфедем конечностей // Патент № 2577766 C1, МПК A61B 5/055, A61K 49/06.; Ярема И.В., Полсачев В.И., Мушникова Н.Ю. Флюоресцентная лимфография как метод визуализации лимфатической системы. Первый опыт / Хирург. – 2012. – № 4. – С. 24-26. – EDN SGZZLT; Keo H.H., Husmann M., Groechenig E., Willenberg T., Gretener S.B. Diagnostic accuracy of fluorescence microlymphography for detecting limb lymphedema // Eur J Vasc Endovasc Surg. – 2015. – Vol. 49(4). – P. 474-479. doi:10.1016/j.ejvs.2014.12.033; Yamamoto T., Yoshimatsu H., Narushima M., Yamamoto N., Hayashi A., Koshima I. Indocyanine Green Lymphography Findings in Primary Leg Lymphedema // Eur J Vasc Endovasc Surg. – 2015. – Vol. 49(1). – P. 95-102. doi:10,1016/j.ejvs.2014.10.023; Unno N., Nishiyama M., Suzuki M., et al. Quantitative lymph imaging for assessment of lymph function using indocyanine green fluorescence lymphography // Eur J Vasc Endovasc Surg. – 2008. – Vol. 36(2). – P. 230-236. doi:10,1016/j.ejvs.2008.04.013; Proulx S.T., Luciani P., Derzsi S., et al. Quantitative imaging of lymphatic function with liposomal indocyanine green // Cancer Res. – 2010. – Vol. 70(18). – P. 7053-7062. doi:10.1158/0008-5472.CAN10-0271; Rasmussen J.C., Aldrich M.B., Guilliod R., Fife C.E., O’Donnell T.F., Sevick-Muraca E.M. Near-infrared fluorescence lymphatic imaging in a patient treated for venous occlusion // J Vasc Surg Cases. – 2015. – Vol. 1(3). – P. 201-204. doi:10,1016/j.jvsc.2015.05.004; Ярема В.И., Фатуев О.Э., Абдувосидов Х.А. и др. Лимфатическая система нижних конечностей при хронической венозной недостаточности // Хирург. – 2016. – № 1. – С. 10-20.; Ярема В.И., Абдувосидов Х.А., Фатуев О.Э. и др. Способ прижизненного изучения анатомо-физиологических особенностей поверхностных лимфатических сосудов нижних конечностей в норме и при хронической венозной недостаточности // Патент № 2705235 C1, МПК A61B 5/0215, A61K 49/00, A61P 43/00.; Чепеленко Г.В. Функциональная оценка лимфатического русла больных с поздними клиническими классами хронической венозной недостаточности по международной классификации СЕАР // Ангиология и сосудистая хирургия. – 2006. – Т.12. №4. – С. 95-102.; Ярема В.И., Абдувосидов Х.А., Макеева Е.А., Карчевская В.А. Применение метода флюоресуцентной лимфографии для прижизненного изучения анатомии поверхностных лимфатических сосудов нижних конечностей // Морфологические ведомости. – 2017. – Т. 25, № 2. – С. 69-71. doi 10,20340/mv-mn.17(25).02.15

  2. 2
  3. 3
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/10380

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/10380

  4. 4
    Academic Journal

    Πηγή: Medical Visualization; Том 25, № 4 (2021); 53-74 ; Медицинская визуализация; Том 25, № 4 (2021); 53-74 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/902/687; https://medvis.vidar.ru/jour/article/downloadSuppFile/902/862; Skutta B., Furst G., Eilers J., Ferbert A., Kuhn F.P. Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography. Am. J. Neuroradiol. 1999; 20 (5): 791–779. PMID 10369348. https://www.ncbi.nlm.nih.gov; Kaatee R., Beek F.J., de Lange E.E. Renal artery stenosis: detection and quantification with spiral CT angiography versus optimized digital subtraction angiography. Radiology. 1997; 205: 121–127. https://doi.org/10.1148/radiology.205.1.9314973; Fishman E.K. From the RSNA Refresher Courses. RadioGraphics. 2001; 21 (1): 3–16. https://doi.org/10.1148/radiographics.21.suppl_1.g01oc23s3; Kim K.I., Muller N.L., Mayo J.R. Clinically suspected pulmonary embolism: utility of spiral CT. Radiology. 1999; 210 (3): 693–697. https://doi.org/10.1148/radiology.210.3.r99mr01693; Lawrence J.A., Kim D., Kent K.C., Stehling M.K., Rosen M.P., Raptopoulos V. Lower extremity spiral CT angiography versus catheter angiography. Radiology. 1995; 194: 903– 908. https://doi.org/10.1148/radiology.194.3.7862999; Rieker O., Duber C., Neufang A., Pitton M., Schweden F., Thelen M. CT angiography versus intraarterial digital subtraction angiography for assessment of aortoiliac occlusive disease. Am. J. Roentgenol. 1997; 169: 1133– 1138. https://doi.org/10.2214/ajr.169.4.9308477; Rieker O., Duber C., Schmiedt W., von Zitzewitz H., Schweden F., Thelen M. Prospective comparison of CT angiography of the legs with intraarterial digital subtraction angiography. Am. J. Roentgenol. 1996; 166: 269–276. https://doi.org/10.2214/ajr.166.2.8553929; Donnelly L.F., Frush D.P., Nelson R.C. Multislice helical CT to facilitate combined CT of the neck, chest, abdomen and pelvis in children. Am. J. Roentgenol. 2000; 174 (6): 1620–1622. https://doi.org/10.2214/ajr.174.6.1741620; Lawler L.P., Fishman E.K. Multi-detector row CT of thoracic disease with emphasis on 3-D volume rendering and CT angiography. RadioGraphics. 2001 21 (5): 1257– 1273. https://doi.org/10.1148/radiographics.21.5.g01se021257; Siegel M.J. Multislice computed tomography: Practice Guidelines. Berlin; Heidelberg: Springer-Verlag, 2004. https://www.link.springer.com. https://doi.org/10.1007/978-3-642-18758-2_3; Claussen C.D., Elliot K., Marincek B., Reiser M. Multislice CT. Springer-Link, 2004. https://doi.org/10.1007/978-3-642-18758-2; Rubin G.D., Zarins C.K. MR and Spiral CT Imaging of Low Extremity Occlusive Disease. J. Surg. Clin. N. Am. 1995; 75 (4): 607–619. https://doi.org/10.1016/s0039-6109(16)46685-5; Rubin G.D., Schmidt A.J., Logan L.J., Sofilos M.C. Multidetector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology. 2001; 221: 146–158. https://doi.org/10.1148/radiol.2211001325; Fleischmann D., Rubin G.D., Paik D.S., Yen S.Y., Hifiker P.R. Stair-step artifacts with single versus multiple detectorrow helical CT. Radiology. 2000; 216: 185–196. https://doi.org/10.1148/radiology.216.1.r00jn13185; Rubin G.D., Shiau M.C., Leung A.N., Kee S.T., Logan L.J., Sofilos M.C. Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology. 2000; 215: 670–676. https://doi.org/10.1148/radiology.215.3.r00jn18670; Martin M.L., Tay K.H., Flak B., Fry P.D. Multidetector CT Angiography of the Aortoiliac System and Lower Extremities: A Prospective Comparison with Digital Subtraction Angiography. Am. J. Roentgenol. 2003; 180 (4): 1085– 1091. https://doi.org/10.2214/ajr.180.4.1801085; Owen R.S., Carpenter J.P., Baum R.A., Perloff L.J., Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N. Engl. J. Med. 1992; 326: 1577–1581. https://doi.org/10.1056/nejm199206113262428; Flohr T.G., Schaller S., Stierstorfer K., Bruder H., Ohnesorge B.M., Schoepf U.J. Multi-Detector Row CT Systems and Image-Reconstruction Techniques. J. Radiol. 2005; 235: 756–773. https://doi.org/10.1148/radiol.235304037; Polacin A., Kalender W.A., Marchal G. Evaluation of section sensitivity profiles and image noise in spiral CT. J. Radiol. 1992; 185: 29–35. https://doi.org/10.1148/radiology.185.1.1523331; Rubin G.D., Napel S. Increased scan pitch for vascular and thoracic spiral CT. J. Radiol. 1995; 197: 316–317. https://doi.org/10.1148/radiology.197.1.316-c; Pelberg R., Mazur W. Vascular CT Angiography Manual. Springer, 2010. ISBN 978-1-84996-260-5. https://www.springer.com; Kachelriess M., Ulzheimer S., Kalender W. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med. Phys. 2000; 27: 1881–1902. https://doi.org/10.1118/1.1286552; Ohnesorge B., Flohr T., Becker C. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. J. Radiol. 2000; 217: 564–571. https://doi.org/10.1148/radiology.217.2.r00nv30564; Flohr T., Bruder H., Stierstorfer K., Simon J., Schaller S., Ohnesorge B. New technical developments in multislice CT. Sub-multimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo. 2002; 174: 1022–1027. https://doi.org/10.1055/s-2002-32930; Lell M., Wildberger J., Heuschmid M. CT-angiography of carotid artery: first results with a novel 16-slice spiral CT scanner. Rofo. 2002; 174: 1165–1069. https://doi.org/10.1055/s-2002-33935; Nieman K., Cademartiri F., Lemos P.A., Raaijmakers R., Pattynama P.M. Reliable noninvasive coronary angiography with fast submillimeter multislise spiral computed tomography. Circulation. 2002; 106: 2051–2054. https://doi.org/10.1161/01.cir.0000037222.58317.3d; Pennell D.J., Sechtem U.P., Prasad S., Rademakers F.E. Cardiovascular Magnetic Resonance. Book Chapter published in The ESC Textbook of Cardiovascular Medicine. 2009. https://doi.org/10.1093/med/9780199566990.003.005; Plein S., Greenwood J., Ridway J.P. Cardiovascular MR Manual. Springer, 2015. ISBN 978-3-319-20940-1. https://www.springer.com; Sidorova E., Kondratyev E., Shirocov V., Karmazanovsky G. Minimalisation of contrast media volume with 256-slice CT angiography of the abdominal aorta and arteries of low extremities. Congress ECR. 2010. https://doi.org/10.1594/ecr2010/C-3053; The 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases in collaboration with the European Society for Vascular Surgery. Eur. J. Vasc. and Endovasc. Surg. 2018; 55 (3). https://doi.org/10.1016/j.ejvs.2018.03.004; Mukherjee D., Rajagopalan S. CT and MR Angiography of the Peripheral Circulation. Practical Approach with Clinical Protocols. CRC Press, 2019. ISBN 9780367389062. https://www.routiedge.com; Kalva S.P., Jagannathan J.P., Hahn P.F., Wicky S.T. Venous thromboembolism: indirect CT venography during CT pulmonary angiographyshould the pelvis be imaged? Radiology. 2008; 246: 605–611. https://doi.org/10.1148/radiol.2462070319; Kelly A.M., Patel S, Carlos R.C., Cronin P., Kazerooni E.A. Multidetector row CT pulmonary angiography and indirect venography for the diagnosis of venous thromboembolic disease in intensive care unit patients. Acad. Radiol. 2006; 13: 486–495. https://doi.org/10.1016/j.acra.2006.01.041; Kulkarni N.M., Sahani D.V., Desai G.S., Kalva S.P. Indirect computed tomography venography of the lower extremities using single-source dual-energy computed tomography: advantage of Low-Kiloelectron volt monochromatic images. J. Vasc. Interv. Radiol. 2012; 23: 879–886. https://doi.org/10.1016/j.jvir.2012.04.012; Coche E.E., Hamoir X.L., Hammer F.D., Hainaut P., Goffette P.P. Using dual-detector helical CT angiography to detect deep venous thrombosis in patients with suspicion of pulmonary embolism: diagnostic value andadditional findings. Am. J. Roentgenol. 2001; 176: 1035–1039. https://doi.org/10.2214/ajr.176.4.1761035; Das M., Muhlenbruch G., Mahnken A.H. Optimized image reconstruction for detection of deep venous thrombosis at multidetector-row CT venography. Eur. Radiol. 2006; 16: 269–275. https://doi.org/10.1007/s00330-005-2868-9; Gregory Cheng. Deep Vein Thrombosis, edited by Dr. Gregory Cheng. “INTECH”, 2012. https://doi.org/10.5772/1171; Reicherta M., Henzlera T., Krissak R., Apfaltrer P., Huck K., Buesing K., Sueselbeck T. Venous thromboembolism: Additional diagnostic value and radiation dose of pelvic CT venography in patients with suspected pulmonary embolism. Eur. J. Radiol. 2011; 80: 50–53. https://doi.org/10.1016/j.ejrad.2010.12.101; Uhl J.F., Gillot C. Embriology and threedimensional anatomy of the superficial venous system of the lower limbs. Phlebology. 2007; 22 (5): 194–206. https://doi.org/10.1258/026835507782101717; Uhl J.F. Three-dimensional modelling of the venous system by direct multislice helical computed tomography venography: technique, indications and results. Phlebology. 2012; 27: 270–288. https://doi.org/10.1258/phleb.2012.012j07; Slater S., Oswal D., Bhartia B. A retrospective study of the value of indirect CT venography: a British perspective. Br. J. Radiol. 2012; 85: 917–920. https://doi.org/10.1259/bjr/28355108; Stehling M.K., Rosen M.P., Weintraub J., Kim D., Raptopoulos V. Spiral CT Venography of the lower extremity. Am. J. Roentgenol. 1994; 163: 451–453. https://doi.org/10.2214/ajr.163.2.8037048; Аскерханов Р.Г., Казакмурзаев М.А., Махатилов М.Г. Способ мультиспиральной компьютерной томографии-флебографии вен нижних конечностей. Патент на изобретение RU №2548139 С2, приоритет от 22.08.2013, опубликован 27.02.2015, Бюл №6. https://www.fips.ru; Wan-Yin Shi, Li-Wei Wang, Shao-Suan Wang, Xin-Dao Yin, Jian-Ping Gu. Combined Direct and Indirect CT Venography (Combined CTV) in Detecting Lower Extremity Deep Vein Thrombosis. Medicine. 2016; 95 (11): 1–7. https://doi.org/10.1097/md.0000000000003010; Sevitt S., Gallagher N. Venous thrombosis and pulmonary embolism. A clinic-pathological study in injured and burned patient. Br. J. Surg. 1961; 48: 475–489. https://doi.org/10.1002/bjs.18004821103; Mozer K.M. Frequent asymptomatic pulmonary embolism in patients with deep venous thrombosis. JAMA. 1994; 271 (3): 223–225. https://doi.org/10.1001/jama.271.3.223; Johnson M.S. Current strategies for diagnosis of pulmonary embolism. J. Vasc. Interv. Radiol. 2002; 13: 13– 23. https://doi.org/10.1016/s1051-0443(07)60003-7; Blachere H., Latrabe V., Montaudon M., valli N, Coouffinal T., Raherisson C., Leccia F., Laurent F. Pulmonary embolism revealed on helical CT angiography: comparison with ventilation-perfusion radionuclide lung scanning. Am. J. Roentgenol. 2000; 174: 1041–1047. https://doi.org/10.2214/ajr.174.4.1741041; Российские клинические рекомендации по диагностике и лечению хронических заболеваний вен. Флебология. 2018; 3: 146–240. ISSN 1997-6976. https://doi.org/10.17116/flebo20187031146; Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений. Флебология. 2015; 9 (2): 52 c. ISSN 1997–6976. https://www.mediasphera.ru; Постнова Н.А. Ультразвуковая диагностика заболеваний вен нижних конечностей. М.: ООО “Фирма СТРОМ”, 2011. ISBN 978-5-900094-37-3.; Шевченко Ю.Л., Стойко Ю.М. Клиническая флебология. М.: Пресс, 2016. ISBN 978-5-91976-090-0.; Malinowski A.K., Porrish S. Venous thromboembolism in the obese pregnant patient. Chepter in Book: Pregnancy and Obesity by eds. Maxwell C., Farine D. Berlin, Boston: De Gruyter, 2017. https://doi.org/10.1515/9783110487817; Olie V., Canonico M., Scarabin P. Postmenopausal hormone therapy and venous thromboembolism. Thrombosis Research. 2011; 127: 26–29. https://doi.org/10.1016/s0049-3848(11)70008-1; Fraser J.D., Anderson D.R. Deep venous thrombosis: recent advances and optimal investigation with US. Radiology. 1999; 211 (1): 9–24. https://doi.org/10.1148/radiology.211.1.r99ap459; Mendichovszky I.A., Priest A.N., Bowden D.J., Hunter S., Joubert I., Hilborne S., et al. Combined MR direct thrombus imaging and non-contrast magnetic resonance venography reveal the evolution of deep vein thrombosis: a feasibility study. Eur. Radiol. 2017; 27: 2326–2332. https://doi.org/10.1007/s00330-016-4555-4; Guoxi Xie, Hanwei Chen, Xueping He, Jianke Liang, Wei Deng, Zhuonan He, Yufeng Ye. Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis. J. Cardiovasc. Magn. Reson. 2017; 19 (1). https://doi.org/10.1186/s12968-016-0320-8; Hanwei Chen, Xueping He, Guoxi Xie, Jianke Liang, Yufeng Ye, Wei Deng et al. Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1,5 Tesla. J. Cardiovasc. Magn. Reson. 2018; 20 (1). https://doi.org/10.1186/s12968-018-0459-6; Spritzer C.E. Progress in MR imaging of the venous system. Perspect. Vasc. Surg. Endovasc. Ther. 2009; 21(2): 105–116. https://doi.org/10.1177/1531003509337259; Loud P.A., Katz D.S., Bruce D.A. Deep venous thrombosis with suspected pulmonary embolism: detection with combined CT venography and pulmonary angiography. Radiology. 2001; 219: 498–502. h ttps://doi.org/10.1148/radiology.219.2.r01ma26498; Ghaye B., Szapiro D., Willems V. Pitfalls in CT venography of lower limbs and abdominal veins. Am. J. Roentgenol. 2002; 178: 1465–1471. https://doi.org/10.2214/ajr.178.6.1781465; Uhl J.F, Verdeille S, Martin-Bouyer Y. Three-dimensional spiral CT venography for the preoperative assessment of varicose patients. Vasa. 2003; 32 (2): 91–94. https://doi.org/10.1024/0301-1526.32.2.91; Uhl J.F., Caggiati A. Three-dimensional evaluation of the venous system in varicose limbs by multidetector spiral CT. In: Catalano C. Passariello, eds. Multidetector-Row CT Angiography. Berlin; Heidelberg: Springer, 2005: 199–206. https://doi.org/10.1007/3-540-26984-3_15; Gloviczki P. The care of patients with varicose veins and associated chronic venous diseases: Clinical Practice Guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5): 2–48. https://doi.org/10.1016/j.jvs.2011.01.079; Санников А.Б., Емельяненко В.М., Рачков М.А., Дроздова И.В. Анатомическое строение венозного коллектора икроножной мышцы по данным МСКТ-флебографии. Вестник Национального Медико-хирургического Центра им. Н.И. Пирогова. 2019; 14 (1): 81– 87. https://doi.org/10.25881/BPNMSC.2019.77.81.017; Санников А.Б., Емельяненко В.М., Рачков М.А. Особенности строения внутримышечных вен голени в норме и при хронических заболеваниях по данным мультиспиральной компьютерной флебографии. Флебология. 2018; 4(12): 292–299. https://doi.org/10.17116/flebo201812041292; Шайдаков Е.В., Санников А.Б., Емельяненко В.М., Рачков М.А., Дроздова И.В. Варианты развития эктазии внутримышечных вен голени у пациентов с хроническими заболеваниями вен по данным мультиспиральной компьютерной томографии-флебографии. Оперативная хирургия и клиническая анатомия. 2019; 3 (3): 22–30. https://doi.org/10.17116/operhirurg2019302122-30; Uhl J.F. A New Tool to Study the 3D Venous Anatomy of the Human Embryo: The Computer-Assisted Anatomical Dissection. J. Vasc Surg: Venous and Limphatic Disorders. 2014; 2 (1): 111–112. https://doi.org/10.1016/j.jvsv.2013.10.025; Uhl J.F., Gillot C. Anatomy of the veno-muscular pumps of the lower limb. Phlebology: J. Venous Dis. 2015; 30 (3): 180–193. https://doi.org/10.1177/0268355513517686; Uhl J.F., Gillot C. Anatomy of the foot venous pump: physiology and influence on chronic venous disease. Phlebology: J. Venous Dis. 2012; 27 (5): 219–230. https://doi.org/10.1258/phleb.2012.012b01; Игнатьев И.М. Реконструктивная хирургия посттромботической болезни. Казань: Медицина, 2017. ISBN 978-5-7645-0636-4.; https://medvis.vidar.ru/jour/article/view/902

  5. 5
    Academic Journal

    Πηγή: Medical Visualization; Том 25, № 1 (2021); 117-139 ; Медицинская визуализация; Том 25, № 1 (2021); 117-139 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1014/641; Criqui M.H., Jamosmos M., Fronek A. Chronic venous disease in an ethnically diverse population: The San Diego Population Study. Submitted 2002, San Diego population study. J. Vasc. Surg. 2004; 37 (5): 823–828. https://doi.org/10.1093/aje/kwg166; Eklof B., Perrin M., Delis K.T., Rutherford R.B., Glovieszki P. Updated terminology of chronic venous disorders: the Vein-Term transatlantic interdisciplinary consensus document. J. Vasc. Surg. 2009; 49 (2): 498–501. https://doi.org/10.1016/j.jvs.2008.09.014; Yamaki T., Nozaki M., Sakurai H., Takeuchi M., Soejima K., Kono T. Presence of lower limb deep vein thrombosis and prognosis in patients with symptomatic pulmonary embolism: preliminary report. Eur. J. Vasc. Endovasc. Surg. 2009; 37: 225–231. https://doi.org/10.1016/j.ejvs.2008.08.018; Goldhaber S.Z., Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet. 2012; 379: 1835– 1846. https://doi.org/10.1016/s0140-6736(11)61904-1; Silverstein M.D., Heit J.A., Mohr D.N., Petterson T.M., O'Fallon M., Melton L.J. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch. Intern. Med. 1998; 158: 585–593. https://doi.org/10.1001/archinte.158.6.585; Houman F.M., Lopes R.D., Stashenko G.J. Treatment of venous thromboembolism: guidelines translated for the clinician. J. Thromb. Thrombolysis. 2009; 28: 270–275. https://doi.org/10.1007/s11239-009-0374-7; Kearon C. Natural history of venous thromboembolism. Circulation. 2003; 107: 122–130. https://doi.org/10.1161/01.cir.0000078464.82671.78; Yamaki T., Nozaki M., Sakurai H., Takeuchi M., Soejima K., Kono T. Uses of different D-dimer levels can reduce the need for venous duplex scanning to rule out deep vein thrombosis in patients with symptomatic pulmonary embolism. J. Vasc. Surg. 2007; 46: 526–532. https://doi.org/10.1016/j.jvs.2007.05.026; Girard P., Sanchez O., Leroyer C., Musset D., Meyer G. Deep venous thrombosis in patients with acute pulmonary embolism: prevalence, risk factors, and clinical significance. Chest. 2005; 128: 1593–1600. https://doi.org/10.1378/chest.128.3.1593; Christie A., Rodidti G. Radiological Imaging and Intervention in Venous Thrombosis. Chapter in Book: Deep Vein Thrombosis, edited by Cheng Gregory. Intech. Open. 2012: 78–98. https://www.intechopen.com. https://doi.org/10.5772/33605; Spritzer C.E., Arata M.A., Freed K.S. Isolated pelvic deep venous thrombosis: relative frequency as detected with MR imaging. Radiology. 2001; 219: 521–525. https://doi.org/10.1148/radiology.219.2.r01ma25521; Miller N., Satin R., Tousignant L., Sheiner N.M. A prospective study comparing duplex scan and venography for diagnosis of lower-extremity deep vein thrombosis. Cadiovasc. Surg. 1996; 4 (4): 505–508. https://doi.org/10.1016/0967-2109(95)00148-4; Suwanabol P.A., Tefera G., Schwarze M.L. Syndromes associated with the deep veins: phlegmasia cerulean dolens, May-Thurner syndrome, and nutcracker syndrome. Perspect. Vasc. Surg. Endovasc. Ther. 2010; 22 (4): 223–230. https://doi.org/10.1177/1531003511400426; Marston W., Fish D., Unger J., Keagy B. Incidence of and risk factors for iliocaval venous obstruction in patients with active or healed venous leg ulcers. J. Vasc. Surg. 2011; 53 (5): 1303–1308. https://doi.org/10.1016/j.jvs.2010.10.120; Oguzkurt L., Ozkan U., Ulusan S., Tercan F., Koc Z. Compression of the Left Common Iliac Vein in Asymptomatic Subjects and Patients with Left Iliofemoral Deep Vein Thrombosis. J. Vasc. Int. Radiol. 2008; 19 (3): 366– 370. https://doi.org/10.1016/j.jvir.2007.09.007; Yin-Chen H., Yao-Kuang H., Li-Sheng H., Pang-Yen C., Chen-Wei C. Using non-contrast-enhanced magnetic resonance venography for the evaluation of May–Thurner syndrome in patients with renal insufficiency. Medicine. 2019; 98 (52): 18427. https://doi.org/10.1097/MD.0000000000018427; Davidson B.L., Elliot C.G., Lensing A.W. Low accuracy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients: the RD heparin arthroplasty group. Ann. Int. Med. 1992; 117: 735–738. https://doi.org/10.7326/0003-4819-117-9-735; Holtz D.J., Debatin J.K., McKinnon G.C., Unterweger M., Widermuth S. MR venography of the calf: value of flowenhanced time-of-flight echoplaner imaging. Am. J. Roent genol. 1996; 166 (3): 663–668. https://doi.org/10.2214/air.166.3.8623646; Wells P.S., Lensing A.W., Davidson B.L., Prins M.H., Hirsh J. Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery: a meta-analysis. Ann. Intern. Med. 1995; 122: 47–52. https://doi.org/10.7326/0003-4819-122-1-199501010-00008; Aschauer M., Deutschmann H.A., Stollberger R., Hausegger K.A., Obernoster A., Schollnast H., Ebner F. Value of blood pool contrast agent in MR venography of the lower extremities and pelvis: Preliminary results in 12 patients. J. Magn. Res. Med. 2003; 50 (5): 993– 1002. https://doi.org/10.1002/mrm.10607; Leen E., Averkiou M., Arditi M., Burns P., Bokor D., Gauthier T., Kono Y., Lucidarme O. Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials. Eur. Radiol. 2012; 22: 1442–1450. https://doi.org/10.1007/s00330-011-2373-2; Hocke M., Dietrich C.F. New technology-combined use of 3D contrast enhanced endoscopic ultrasound techniques. Ultraschall Med. 2011; 32 (3): 317–318. https://doi.org/10.1055/s-0031-1274695; Claudon M., Cosgrove D., Albrecht T. et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – Update 2008. Ultraschall Med. 2008; 29 (1): 28–44. https://doi.org/10.1055/s-2007-963785; Dietrich C.F., Averkiou M., Barr R.G. et al. How to perform Contrast-Enhanced Ultrasound – CEUS. Ultrasound Int. Open. 2018; 4 (1): 2–15. https://doi.org/10.1055/s-0043-123931; Jenssen C., Hocke M., Fusaroli P. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV – EUSguided Interventions: General aspects and EUS-guided sampling (Long Version). Ultraschall Med. 2015; 37 (2): 33–76. https://doi.org/10.1055/s-0035-1553785; Delis K.T., Bjarnanson H., Wennberg P.W. Successful iliac vein and inferior vena cava stenting ameliorates venous claudication and improves venous outflow, calf muscle pump function, and clinical status in post-thrombotic syndrome. Ann. Surg. 2007; 245 (1): 130–139. https://doi.org/10.1097/01.sla.0000245550.36159.93; Garg N., Gloviczki P., Karimi K.M., Duncan A.A., Bjarnason H., Kalra M., Oderich G.S., Bower T.C. Factors affecting outcome of open and hybrid reconstructions for malignant obstruction of iliofemoral veins and inferior vena. J. Vasc. Surg. 2011; 53 (2): 383–393. https://doi.org/10.1016/j.jvs.2010.08.086; Ghaye B., Szapiro D., Willems V., Dondelinger R.F. Pitfalls in CT venography of lower limbs and abdominal veins. Am. J. Roentgenol. 2002; 178 (6): 1465–1471. https://doi.org/10.2214/ajr.178.6.1781465; Shi W.Y., Wang L.W., Wang S.J., Yin X.D., Gu J.P. Combined Direct and Indirect CT Venography (Combined CTV) in Detecting Lower Extremity Deep Vein Thrombosis. Medicine. 2016; 95 (11): 1–7. https://doi.org/10.1097/md.0000000000003010; Loud P.A., Katz D.S., Bruce D.A., Klippenstein D.L., Grossman Z.D. Deep venous thrombosis with suspected pulmonary embolism: detection with combined CT veno graphy and pulmonary angiography. Radiology. 2001; 219 (2): 498–502. https://doi.org/10.1148/radiology.219.2.r01ma26498; Righini M., Le gal G., Aujesky D. et al. Diagnosis of pulmonary embolism by multidetector CT alone or combined with venous ultrasonography of the leg: a randomized non-inferiority trial. Lancet. 2008; 371 (9621): 1343–1352. https://doi.org/10.1016/s0140-6736(08)60594-2; Kalva S.P., Jagannathan J.P., Hahn P.F., Wicky S.T. Venous thromboembolism: indirect CT venography during CT pulmonary angiography should the pelvis be imaged? Radiology. 2008; 246: 605–611. https://doi.org/10.1148/radiol.2462070319; Davies A.H. Management of Chronic Venous Disease. Clinical Practice Guidelines of European Society for Vascular Surgery (ESVS). Eur. J. Endovasc. Surg. 2016; 51 (1): 156. https://doi.org/10.1016/j.ejvs.2015.09.024; Uhl J.F, Verdeille S, Martin-Bouyer Y. Three-dimensional spiral CT venography for the preoperative assessment of varicose patients. Vasa. 2003; 32 (2): 91–94. https://doi.org/10.1024/0301-1526.32.2.91; Uhl J.F., Caggiati A. Three-dimensional evaluation of the venous system in varicose limbs by multidetector spiral CT. In: Catalano C. Passariello, eds. Multidetector-Row CT Angiography. Berlin; Heidelberg: Springer, 2005: 199–206. https://doi.org/10.1007/3-540-26984-3_15; Uhl J.F. A New Tool to Study the 3D Venous Anatomy of the Human Embryo: The Computer-Assisted Anatomical Dissection. J. Vasc. Surg: Venous and Limphatic Disorders. 2014; 2 (1): 111–112. https://doi.org/10.1016/j.jvsv.2013.10.025; Uhl J.F., Gillot C. Anatomy of the foot venous pump: physiology and influence on chronic venous disease. Phlebology: J. Venous Dis. 2012; 27 (5): 219–230. https://doi.org/10.1258/phleb.2012.012b01; Uhl J.F., Gillot C. Anatomy of the veno-muscular pumps of the lower limb. Phlebology: J. Venous Dis. 2015; 30 (3): 180–193. https://doi.org/10.1177/0268355513517686; Gloviczki P., Comerota A.J., Dalsing M.C., Eklof B.G., Gillespie D.L., Gloviczki M.L., Lohr J.M., McLafferty R.B., Meissner M.H., Murad M.H., Padberg F.T., Pappas P.J., Passman M.A., Raffetto J.D., Vasquez M.A., Wakefield T.W; Society for Vascular Surgery; American Venous Forum. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the society for vascular surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5): 2–48. https://doi.org/10.1016/j.jvs.2011.01.079; Schneider G., Prince M.R., Meaney J.F.M., Ho V.B. Magnetic Resonance Angiography. Techniques, Indications and Practical Applications, foreword by E.J. Potchen. Italia: Springer-Verlag, 2005. ISBN 88-470-0266-4. https://www.springer.com. https://doi.org/10.1007/b138651; Carpenter J.P., Holland G.A., Baum R.A., Owen R.S., Carpenter J.T., Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: Comparison with contrast venography and duplex Doppler ultrasonography. J. Vasc. Surg. 1993; 18 (5): 734–741. https://doi.org/10.1016/0741-5214(93)90325-g; Spritzer C.E. Progress in MR imaging of the venous system. Perspect. Vasc. Surg. Endovasc. Ther. 2009; 21 (2): 105–116. https://doi.org/10.1177/1531003509337259; Laissy J.P., Cinqualbre A., Loshkajian A. Assessment of deep venous thrombosis in the lower limbs and pelvic: MR venography versus duplex Doppler sonography. Am. J. Roentgenol. 1996; 167: 971–975. https://doi.org/10.2214/ajr.167.4.8819396; Kanne J.P., Lalani T.A. Role of Computed Tomography and Magnetic Resonance Imaging for Deep Venous Throm bosis and Pulmonary Embolism. J. Circulation. 2004; 12 (1): 15–21. https://doi.org/10.1161/01.CIR.0000122871.86662.72; Nicolaides A.N., Kakkar W., Field E.S. The origin of deep venous thrombosis: a venographic study. Br. J. Radiol. 1971; 44: 653–663. https://doi.org/10.1259/0007-1285-44-525-653; Cronan J.J. Ultrasound evaluation of deep venous thrombosis. Semin. Roentgenol. 1992; 27 (1): 39–52. https://doi.org/10.1016/0037-198x(92)90045-4; Evans A.J., Sostman H.D., Knelson M.H., Spritzer C.E., Newman G.E., Paine S.S., Beam C.A. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. Am. J. Roentgenol. 1993; 161: 131–139. https://doi.org/10.2214/ajr.161.1.8517292; Davidson B.L., Elliott G., Lensing A.W.A. Low accurancy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients. Ann. Intern. Med. 1992; 117: 735–738. https://doi.org/10.7326/0003-4819-117-9-735; Wells P.S., Lensing S.W.A., Davidson B.L. Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery. Ann. Intern. Med. 1995; 122: 47–53. https://doi.org/10.7326/0003-4819-122-1-199501010-00008; Dupas B., el Kouri D., de Fancal P., Planchon B., Pelter P. Angiomagnetic resonance imaging of iliofemorocaval venous thrombosis. Lancet. 1995; 346: 17–19. https://doi.org/10.1016/s0140-6736(95)92650-x; Gao J.H., Gore J.C. NMR signal from flowing nuclei in fast gradient-echo pulse sequences with refocusing. Phys. Med. Biol. 1994; 39 (12): 2305–23218. https://doi.org/10.1088/0031-9155/39/12/012; Oshinski J.N., Ku D.N., Pettigrew R.I. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Magn. Reson. Med. 1995; 33 (2): 193–199. https://doi.org/10.1002/mrm.1910330208; Evans A.J., Blinder R.A., Herfkens R.J., Spritzer C.E., Kuethe D.O., Fram E.K., Hedlund L.W. Effects of turbulence on signal intensity in gradient echo images. Invest. Radiol. 1988; 23 (7): 512–518. https://doi.org/10.1097/00004424-198807000-00006; Meckel S., Reisinger C., Bremerich J., Damm D., Wolbers M., Engelter S., Scheffler K., Wetzel S.G. Cerebral Venous Thrombosis: Diagnostic Accuracy of Combined, Dynamic and Static, Contrast-Enhanced 4D MR Venography. Am. J. Neuroradiol. 2010; 31 (3): 527–535. https://doi.org/10.3174/ajnr.a1869; Siegel J.M. Jr., Oshinski J.N., Pettigrew R.I., Ku D.N. Computational simulation of turbulent signal loss in 2D time-of-flight magnetic resonance angiograms. Magn. Reson. Med. 1997; 37 (4): 609–614. https://doi.org/10.1002/mrm.1910370421; Babiarz L.S., Romero J.M., Murphy E.K., Brobeck B., Schaefer P.W., González R.G., Lev M.H. ContrastEnhanced MR Angiography Is Not More Accurate Than Unenhanced 2D Time-of-Flight MR Angiography for Determining ≥70% Internal Carotid Artery Stenosis. Am. J. Neuroradiol. 2009; 30 (4): 761–768. https://doi.org/10.3174/ajnr.a1464; Ono A., Murase K., Taniguchi T., Shibutani O., Takata S., Kobashi Y., Hashiguchi Y., Miyazaki M. Deep venous thrombosis: Diagnostic value of non-contrast-enhanced MR venography using electrocardiography triggered three-dimensional half-fourier FSE. Magn. Reson. Med. 2010; 64: 88–97. https://doi.org/10.1002/mrm.22374; Lindquist C.M., Karlicki F., Lawrence P., Strzelazyk J., Pawlyshyn N., Kirpatrick I. Utility of balanced streadystate free procession MR venography in the diagnosis of lower extremity deep venous thrombosis. Am. J. Roentg enol. 2010; 194: 1357–1364. https://doi.org/10.2214/ajr.09.3552; Plein S., Geenwood J., Ridgway J.P. Cardiovascular MR Manual. Springer International Publishing, 2015. ISBN 978-3-319-20940-1. https://doi.org/10.1007/978-3-319-20940-1; Ruehm S.G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4; Bradley W.G. Jr., Waluch V. Blood flow: magnetic resonance imaging. J. Radiol. 1985; 154 (2): 443–450. https://doi.org/10.1148/radiology.154.2.3966131; Dumoulin C.L., Hart H.R. Jr. Magnetic resonance angiography. J. Radiol. 1986; 161 (3): 717–720. https://doi.org/10.1148/radiology.161.3.3786721; Edelman R.R., Wentz K.U., Mattle H., Zhao B., Liu C., Kim D., Laub G. Projection arteriography and venography: initial clinical results with MR. J. Radiol. 1989; 172 (2): 351–357. https://doi.org/10.1148/radiology.172.2.2748814; Lenz G.W., Haacke E.M., Masaryk T.J., Laub G. In plane vascular imaging: pulse sequence design and strategy. J. Radiol. 1988; 166 (3): 875–882. https://doi.org/10.1148/radiology.166.3.3340788; Frahm J., Merboldt K.D., Hanicke W., Gyngell M.L., Bruhn H. Rapid line scan NMR angiography. Magn. Reson. Med. 1988; 7: 79–87. https://doi.org/10.1002/mrm.1910070109; Constantinesco A., Mallet J.J., Bonmartin A., Lallot C., Briguet A. Spatial or flow velocity phase encoding gradients in NMR imaging. Magn. Reson. Imaging. 1984; 2: 335– 340. https://doi.org/10.1016/0730-725x(84)90200-5; Edelman R.R., Zhao B., Liu C., Wentz K.U., Mattle H.P., Finn J.P., McArdle C. MR angiography and dynamic flow evaluation of the portal venous system. Am. J. Roentgenol. 1989. 153: 755–760. https://doi.org/10.2214/ajr.153.4.755; Pelc N.J., Herfkens R.J., Shimakawa A. Phase contrast cine magnetic resonance imaging. Magn. Reson. 1991; 7: 229–254. https://www.ncbi.nim.nih.gov; Saha P., Andia M.E., Modarai B. Magnetic resonance T1 relaxation time of venous thrombus is determined by iron processing and predicts susceptibility to lysis. Circulation. 2013; 128: 729–736. https://doi.org/10.1161/circulationaha.113.001371; Moody A.R., Pollock J.G., O’Connor A.R., Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. J. Radiol. 1998; 209 (2): 349–355. https://doi.org/10.1148/radiology.209.2.9807558; Westerbeek R.E., Van Rooden C.J., Tan M., van Gils A.P.G., Kok S., De Bats M.J., De Roos A., Huisman M.V. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg. J. Thromb. Haemost. 2008; 6: 1087–1092. https://doi.org/10.1111/j.1538-7836.2008.02986.x; Tan M., Mol G.C., van Rooden C.J. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis. Blood. 2014; 124: 623–627. https://doi.org/10.1182/blood-2014-04-566380; Treitl K.M., Treitl M., Kooijman-Kurfuerst H., Kammer N.N., Coppenrath E., Suderland E., Czihal M., Hoffmann U., Reiser M.F., Saam T. Three-dimensional black-blood T1- weighted tirbo spin-echo techniques for the diagnosis of deep vein thrombosis in comparison with contrastenhanced magnetic resonance imaging: a pilot study. Invest. Radiol. 2015; 50: 401–408. https://doi.org/10.1097/rli.0000000000000142; Mendichovszky I.A., Priest A.N., Bowden D.J., Hunter S., Joubert I., Hilborne S., Graves M.J., Baglin T., Lomas D.J. Combined MR direct thrombus imaging and non-contrast magnetic resonance venography reveal the evolution of deep vein thrombosis: a feasibility study. Eur. Radiol. 2017; 27: 2326–2332. https://doi.org/10.1007/s00330-016-4555-4; Guoxi Xie, Hanwei Chen, Xueping He, Jianke Liang, Wei Deng, Zhuonan He, Yufeng Ye. Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis. J. Cardiovasc. Magn. Reson. 2017; 19 (1). https://doi.org/10.1186/s12968-016-0320-8; Hanwei C., Xueping H., Guoxi X., Jianke L., Yufeng Y., Wei D., Zhuonan H., Dexiang L., Debiao L., Xin L., Zhaoyang F. Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1,5 Tesla. J. Cardiovasc. Magn. Reson. 2018; 20 (1). https://doi.org/10.1186/s12968-018-0459-6; Meaney J.F., Johansson L.O., Ahlstrom H., Prince M.R. Pulmonary magnetic resonance angiography. J. Magn. Reson. Imaging. 1999; 10: 326–338. https://doi.org/10.1002/(sici)1522-2586(199909)10; Zhang H.L., Kaki J.H., Prince M.R. 3D contrast-enhanced MR angiography. J. Magn. Reson. Imaging. 2007; 25 (1): 13–25. https://doi.org/10.1002/jmri.20767; Vrachliotis T.G., Bis K.G., Shetty A.N., Ravikrshan K.P. Contrast-enhanced three-dimensional MR angiography of the pulmonary vascular tree. Int. J. Cardiovasc. Imaging. 2002; 18: 283–293. https://doi.org/10.1023/a:1015541931895; Haage P., Piroth W., Krombach G., Karaagac S., Schaffer T., Gunther R.W., Bucker A. Pulmonary embolism: comparison of angiography with spiral computed tomography, magnetic resonance angiography, and realtime magnetic resonance imaging. Am. J. Respir. Crit. Care Med. 2003; 167: 729–734. https://doi.org/10.1164/rccm.200208-899oc; Oudkerk M, van Beek E.J., Wielopolski P., van Ooijen P. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002; 359: 1643–1647. https://doi.org/10.1016/s0140-6736(02)08596-3; Kirchhof K., Welzel T., Jansen O., Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology. 2002; 224 (3): 804–810. https://doi.org/10.1148/radiol.2243011019; Rollins N., Ison C., Reyes T., Chia J. Cerebral MR venography in children: comparison of 2D time-of-flight and gadolinium-enhanced 3D gradient-echo techniques. Radiology. 2005; 235 (2): 1011–1017. https://doi.org/10.1148/radiol.2353041427; Bosmans H., Marchal G., Lukito G., Yicheng N., Wilms G., Laub G., Baert A.L. Time-of-flight MR angiography of the brain: comparison of acquisition techniques in healthy volunteers. Am. J. Roentgenol. 1995; 164 (1): 161–167. https://doi.org/10.2214/ajr.164.1.7998531; Klingebiel R., Bauknecht H.C., Bohner G., Kirsch R., Berger J., Masuhr F. Comparative evaluation of 2D timeof-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis. Eur. J. Neurol. 2007; 14 (2): 139–143. https://doi.org/10.1111/j.1468-1331.2006.01574.x; Blatter D.D., Parker D.L., Robison R.O. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology. 1991; 179 (3): 805–811. https://doi.org/10.1148/radiology.179.3.2027996; Gupta A., Baradaran H., Kamel H., Mangla A., Pandya A., Fodera V., Dunning A., Sanelli P.C. Intraplaque highintensity signal on 3d time-of-flight mr angiography is strongly associated with symptomatic carotid artery stenosis. Am. J. Neuroradiol. 2014; 35 (3): 557–561. https://doi.org/10.3174/ajnr.a3732; Doepp F., Würfel J.T., Pfueller C.F., Valdueza J.M., Petersen D., Paul F., Schreiber S.J. Venous drainage in multiple sclerosis: a combined MRI and ultrasound study. Neurology. 2011; 77 (19): 1745–1751. https://doi.org/10.1212/wnl.0b013e318236f0ea; Huang S.Y., Kim C.Y., Miller M.J., Gupta R T., Lessne M.L. Abdominopelvic and lower extremity deep venous thrombosis: Evaluation with contrast-enhanced MR Venography with a blood-pool agent. Am. J. Roentgenol. 2013; 201: 208–214. https://doi.org/10.2214/ajr.12.9611; Cantwell C.P., Cradock A., Bruzzi J., Cradock A., Bruzzi J., Fitzpatrick P. MR venography with true fast imaging with steady-state procession for suspected lower-limb deep vein thrombosis. J. Vasc. Interv. Radiol. 2006; 17: 1763–1769. https://doi.org/10.1097/01.rvi.0000242502.40626.53; Prince M.R., Grist T.M., Debatin J.F. 3D Contrast MR Angiography. 3rd ed. New York; Berlin; Heidelberg: Springer, 2003: 163–172. https://www.springer.com; Parmelee D.J., Walovitch R.C., Ouellet H.S., Lauffer R.B. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest. Radiol. 1997; 32 (12): 741–747. https://doi.org/10.1097/00004424-199712000-00004; Lauffer R.B., Parmelee D.J., Dunham S.U., Ouellet H.S., Dolan R.P., Witte S., McMurry T.J., Walovitch R.C. MS325: albumin-targeted contrast agent for MR angiography. Radiology. 1998; 207 (2): 529–538. https://doi.org/10.1148/radiology.207.2.9577506; Kramer L.A., Cohen A.M., Hasan K.M., Heimbigner J.H., Barreto A.D., Brod S.A. Contrast enhanced MR venography with gadofosveset trisodium: Evalution of the intracranial and extracranial venous system. J. Magn. Reson. 2014; 40 (3): 630–640. https://doi.org/10.002/jmri.24409]; Hadizadeh D.R., Kukuk G.M., Fahlenkamp U.L., Pressacco J., Schäfer C., Rabe E., Koscielny A., Verrel F., Schild H.H., Willinek W.A. Simultaneous MR arteriography and venography with blood pool contrast agent detects deep venous thrombosis in suspected arterial disease. Am. J. Roentgenol. 2012; 198 (5): 1188– 1195. https://doi.org/10.2214/ajr.11.7306; Duan X., Ling F., Shen Y., Yang J., Xu H.Y. Venous spasm during contrast-guided axillary vein puncture for pacemaker or defibrillator lead implantation. Europace. 2012; 14 (7): 1008–1011. https://doi.org/10.1093/europace/eus066; Barber C.J. Central venous catheter placement for intravenous digital subtraction angiography: an assessment of technical problems and success rate. Br. J. Radiol. 1989; 62: 599–602. https://doi.org/10.1259/0007-1285-62-739-599; Singh R.N., Salvoza M.I. Laminar flow due to venous valves masquerading as vein graft spasm. Cathet. Cardiovasc. Diagn. 1983; 9: 569–575. https://doi.org/10.1002/ccd.1810090606; Nikolaou K., Kramer H., Grosse C., Clevert D., Dietrich O., Hartmann M., Chamberlin P., Assmann S., Reiser M.F., Schoenberg S.O. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006; 241: 861– 872. https://doi.org/10.1148/radiol.2413060053; Lebowitz J.A., Rofsky N.M., Krinsky G.A., Weinreb J.C. Gadolinium-enhanced body MR venography with subtraction technique. Am. J. Roentgenol. 1997; 169 (3): 755–758. https://doi.org/10.2214/ajr.169.3.9275892; Weishaupt D., Hetzer F.H., Rühm S.G., Patak M.A., Schmidt M., Debatin J.F. Three-dimensional contrast enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study. Eur. Radiol. 2000; 10 (12): 1958–1564. https://doi.org/10.1007/s003300000519; Weishaupt D., Rühm S.G., Binkert C.A., Schmidt M., Patak M.A., Steybe F., McGill S., Debatin J.F. Equilibriumphase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am. J. Roentgenol. 2000; 175 (1): 189–195. https://doi.org/10.2214/ajr.175.1.1750189; Aschauer M., Deutschmann H.A., Stollberger R., Haus egger K.A., Obernosterer A., Schllnast H., Ebner F. Value of a blood pool contrast agent in MR venography of the lower extremities and pelvis: Preliminary results in 12 patients. Magn. Reson. Med. 2003; 50 (5): 993–1002. https://doi.org/10.1002/mrm.10607; Larsson E.M., Sunden P., Olsson C.G., Debatin J., Duerinckx A.J., Baum R. MR Venography an Intravascular Contrast Agent: Results from a Multicenter Phase 2 Study of Dosage. Am. J. Roentgenol. 2003; 180 (1): 227–232. http://doi.org/10.2214/air.180.1.1800227; Spinowitz B.S., Kausz A.T., Baptista J., Noble S.D., Sothinathan R., Bernardo M.V., Brenner L., Pereira B.J. Ferumoxytol for treating iron deficiency anemia in CKD. J. Am. Soc. Nephrol. 2008; 19: 1599–1605. https://doi.org/10.1681/asn.2007101156; Li W., Salanitri J., Tutton S., Dunkle E.E., Schnieder J.R. Lower extremity deep venous thrombosis: Evaluation with Ferumoxytol-enhanced MR Imaging and dual-contrast mechanism-ereliminary experience. Radiology. 2007; 242: 873–881. https://doi.org/10.1148/radiol.2423052101.; Hamilton B.E., Nesbit G.M., Dosa E., Gahramanov S., Rooney B., Nesbit E.G., Raines J., Neuwelt E.A. Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging. Am. J. Roentgenol. 2011; 197 (4): 981–988. https://doi.org/10.2214/ajr.10.5992; Singh A., Patel T., Hertel J., Bernardo M., Kausz A., Brenner L. Safety of Ferumoxytol in Patients With Anemia and CKD. Am. J. Kidney Dis. 2008; 52 (5): 907–905. https://doi.org/10.1053/j.ajkd.2008.08.001; Bashir M.R., Jaffe T.A., Brennan T.V., Patel U.D., Ellis M.J. Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplan tation. 2013; 96: 91–96. https://doi.org/10.1097/tp.0b013e318295464c; Shinde T.S., Lee V.S., Rofsky N.M. Three-dimensional gadolinium-enhanced MR venographic evaluation of patency of central veins in the thorax: initial experience. J. Radiol. 1999; 213: 555–560. https://doi.org/10.1148/radiology.213.2.r99nv27555; Lebowitz J.A., Rofsky N.M., Krinsky G.A., Weinreb J.C. Gadolinium-enhanced body MR venography with subtraction technique. Am. J. Roentgenol. 1997; 169: 755– 758. https://doi.org/10.2214/ajr.169.3.9275892; Fraser D.G., Moody A.R., Davidson I.R., Martel A.L., Morgan P.S. Deep venous thrombosis: Diagnosis by using venous enhanced subtracted peak arterial MR Venography versus conventional venography. Radiology. 2003; 226: 812–820. https://doi.org/10.1148/radiol.2263012205; Du J., Thornton F., Mistretta C., Grist T.M. Dynamic MR venography: An intrinsic benefit of time-resolved MR angiography. J. Magn. Reson. Imaging. 2006; 24 (2): 922–927. https://doi.org/10.1002/jmri.20716; Ruehm S.G., Wiesner W., Debatin J.F. Pelvic and Lower Extremity Veins: Contrast-enhanced Three-dimensional MR Venography with a Dedicated Vascular Coil-Initial Experiencel. J. Radiol. 2000; 215 (2): 421–427. https://doi.org/10.1148/radiology.215.2.r00ap27421; Ruehm S.G., Wiesner W., Debatin J.F. Direct contrastenhanced 3D MR venjgraphy. J. Eur. Radiol. 2001; 11 (1): 102–112. https://doi.org/10.1007/s003300000586; Ruehm S.G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88- 470-0266-4. https://www.springer.com; Gurel S., Karavas E., Buharalioglu Y., Daglar B. [Gurel K., Gurel S., Karavas E., Buharalioglu Y., Daglar B. Direct contrast-enhanced MR venography in the diagnosis of May-Thurner Syndrome. Eur. J. Radiol. 2011; 80 (2): 533–536. https://doi.org/10.1016/j.ejrad.2010.04.033A].; Yin-Chen H., Yao-Kuang H., Li-Sheng H., Pang-Yen C., Chen-Wei C. Using non-contrast-enhanced magnetic resonance venography for the evaluation of May–Thurner syndrome in patients with renal insufficiency. Medicine. 2019; 98 (52): 18427. https://doi.org/10.1097/MD.0000000000018427.; Girardi M., Kay J., Elston D.M., Leboit P.E., Abu-Alfa A., Cowper S.E. Nephrogenic systemic fibrosis: clinicopathological definition and workup recommendations. J. Am. Acad. Dermatol. 2011; 65 (6): 1095–1106.e7. https://doi.org/10.1016/j.jaad.2010.08.041; Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM et al. High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology. 2015; 276: 836–844. https://doi.org/10.1016/j.jaad.2010.08.041; Bae S., Lee H.J., Han K., Park Y.W., Choi Y.S., Ahn S.S., Kim J., Lee S.K. Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur. Radiol. 2017; 27 (8): 3353–3361. https://doi.org/10.1007/s00330-016-4724-5; Abu-Alfa A.K. Nephrogenic Systemic Fibrosis and Gadalinium Based Contrast Agents. Adv. Chronic Kidney Dis. 2011; 18 (3): 188–198. https://doi.org/10.1053/j.ackd.2011.03.001; Bjarnason H. Direct contrast venography. Book Chapter in Handbook of Venous and Lymphatic Disorders. 4th ed. Guidelines of the American Venous Forum by ed: Glovezki P. 2017: 169–176. https://doi.org/10.1201/9781315382449-15; Stein P.D. Ascending CT-Venography and Venous Phase CT-Venography for Diagnosis of Deep Venous Thrombosis. Book Chapter in Pulmonary Embolism 3th ed. Wiley, 2016: 250–254. ISBN 9781119039082. https://doi.org/10.1002/9781119039112.ch51; https://medvis.vidar.ru/jour/article/view/1014

  6. 6
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Сборник статей "V Международная (75 Всероссийская) научно-практическая конференция "Актуальные вопросы современной медицинской науки и здравоохранения". 2020. №1; http://elib.usma.ru/handle/usma/2209

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/2209

  7. 7
    Academic Journal

    Πηγή: Medical Visualization; Том 24, № 4 (2020); 81-101 ; Медицинская визуализация; Том 24, № 4 (2020); 81-101 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/973/630; De Valois J.C., van Schaik C.C., Verzijlbergen F., van Ramshorst B., Eikelboom B.C., Meuwissen O.J.A.Th. Contrast venography: from gold standard to golden backup in clinically suspected deep vein thrombosis. Eur. J. Radiol. 1990; 11: 131–137. https://doi.org/10.1016/0720-048x(90)90162-5; Ozbudak O., Erogullari I., Ogus C., Cilli A., Turkay M., Ozdemir T. Doppler ultrasonography versus venography in the detection of deep vein thrombosis in patients with pulmonary embolism. J. Thromb. Thrombolysis. 2006; 21: 159–162. https://doi.org/10.1007/s11239-006-5207-3; Gloviczki Р., Comerota A.J., Dalsing M.C., Eklof Bo G., Gillespie D.L. The care of patients with varicose veins and associated chronic venous diseases: Clinical Practice Guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5, Suppl.): 2S–48S. https://doi.org/10.1016/j.jvs.2011.01.079; Wittens C., Davies A.H. Management of Chronic Venous Disease. Clinical Practice Guidelines of European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2015; 49 (6): 678–737. https://doi.org/10.1016/j.ejvs.2015.09.024; Mintz B.L., Araki C.T., Kritharis A., Hobson R.W. Venous Duplex Ultrasound of the Lower Extremity in Diagnosis of Deep Venous Thrombosis. Chapter in Book: Noninvasive Vascular Diagnosis. Eds Abu Rahma A.F., Bergan J.J. London: Springer, 2007: 385–393. https://doi.org/10.1007/978-1-84628-450-2_35; Righini M. Is it worth diagnosing and treating distal deep venous thrombosis? No. J. Thromb. Haemost. 2007; 5 (1): 55–59. https://doi.org/10.1111/j.1538-7836.2007.02468.x; Dalsing M., Eklof B. Management of chronic venous disorders. Book Chapter in Handbook of Venous Dis or ders. CRS Press; 2008. https://doi.org/10.1201/b13654-32; Kanne J.P., Lalani T.A. Role of Computed Tomography and Magnetic Resonance Imaging for Deep Venous Thrombosis and Pulmonary Embolism. Circulation. 2004; 109 (12): 15–21. https://doi.org/10.1161/01.cir.0000122871.86662.72; Carpenter J.P., Holland G.A., Baum R.A., Owen R.S., Carpenter J.T., Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: Comparison with contrast venography and duplex Doppler ultrasonography. J. Vasc. Surg. 1993; 18 (5): 734–741. https://doi.org/10.1016/0741-5214(93)90325-g; Moody A.R., Pollock J.G., O’Connor A.R., Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. J. Radiol. 1998; 209 (2): 349–355. https://doi.org/10.1148/radiology.209.2.9807558; Coche E.E., Hamoir X.L., Hammer F.D., Hainaut P., Goffette P.P. Using dual-detector helical CT angiography to detect deep venous thrombosis in patients with suspicion of pulmonary embolism: diagnostic value andadditional findings. Am. J. Roentgenol. 2001; 176: 1035–1039. https://doi.org/10.2214/ajr.176.4.1761035; Evert J Blink. Basic MRI Physics, Application specialist MRI, 2004. https://www.mri-physics.net; Idrees M. An overview on MRI physics and its clinical applications. Int. J. Curr. Pharmac. & Clin. Res. 2014; 4: 185–193. https://www.researchgate.net; Kangarlu A., Robitaille P.M. Biological effects and health implications in magnetic resonance imaging. Concepts Magn. Resonance. 2000; 12: 321–359. https://doi.org/10.1002/1099-0534(2000); Anderson C.M., Edelman R.R., Turski P.A. Clinical Magnetic Resonance Angiography. New York: Raven Press, 1993. https://doi.org/10.1002/mrm.1910310519; Brown R.W., Cheng Yu.N., Haacke E.M., Thompson M.R., Venkatesan R. Magnetic Resonans Imaging. Physical Priciples and Sequence Design. 2nd ed. Wiley Blackwell, 2014. ISBN: 9781118633984. https://doi.org/10.1002/9781118633953; Westbrook C., Roth C., Talbot J. MRI in Practice. 4th ed. Oxford, UK: Blackwell Publishing, 2011. ISBN 978- 1444337433. https://doi.org/10.2214/ajr.11.8252; Obuchowski N.A., Gazelle G.S. Handbook for Clinical Trials of Imaging and Image-Guided Interventions. Wiley Blackwell, 2016. ISBN: 9781118849569. https://doi.org/10.1002/9781118849712.; Brawn M.A., Nishino T., Semelka R. MRI: Basic Principles and Applications. J. Med. Phy. 2004; 31 (1): 170. https://doi.org/10.1118/1.1636163; Kwong R.Y. Cardiovascular Magnetic Resonance Imaging. Springer nature Switzerland AG, 2008. ISBN 978-1- 59745-306-6. https://www.springer.com; Nasif M. Cardiovascular magnetic resonance imaging. J. Radiol. Brasileira. 2008; 41 (2): 18. https://doi.org/10.1590/s0100.39842008000100016; Dale B.M., Brown M.A,, Semelka R.C. MRI Basic Principles and Applications. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781119013068; Va Hecke P., Rink P.A. Magnetic resonance in medicine. The Basic Texbook of the European Magnetic Resonance Forum. Eur. Radiol. 2002. https://www.link.Springer.com. https://doi.org/10.1007/s00330-001-1154-8; Schneider G., Prince M.R., Meaney J.F.M., Ho V.B. Magnetic Resonance Angiography. Techniques, Indi cations and Practical Applications, foreword by E.J. Potchen. Italia: Springer-Verlag, 2005. ISBN 88-470-0266-4. https://www.springer.com; Reichenboch J.R., Haacke E.M. Gradient Echo Imaging. Book Chapter in Susceptibility Weighted Imaging in MRI. Wiley-Blackwell, 2011. ISBN 9780470043431. https://doi.org/10.1002/9780470905203; Lenz G, Haacke E, Masaryk T, Laub G.A. Inplane vascular imaging: pulse sequence design and strategy. J. Radiol. 1988; 166 (3): 875–882. https://doi.org/10.1148/radiology.166.3.3340788; Laub G.A., Kaiser W.A. MR angiography with gradient motion refocusing. J. Comput. Assist. Tomogr. 1988; 12: 377–382. https://doi.org/10.1097/00004728-198805010-00002; Backeus M., Schmitz B. Unenhanced MR Angiography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com; Keller P.J., Drayer B.P., Fram E.K., Williams K.D. MR angiography with two-dimensional acquisition and threedimensional display. J. Radiol. 1989; 173 (2): 527–532. https://doi.org/10.1148/radiology.173.2.2798885; Parker D.L., Yuan C., Blatter D.D. MR angiography by multiple thin-slab 3D acquisitions. J. Magn. Reson. Med. 1991; 17 (2): 434–451. https://doi.org/10.1002/mrm.1910170215; Atkinson D., Brant-Zawadzki M., Gillan G. Improved MR angiography: Magnetization transfer suppression with variable flip angles excitation and increased resolution. J. Radiol. 1994; 190: 890–894. https://doi.org/10.1148/radiology.190.3.8115646; Axel L., Morton D. MR flow imaging by velocity-compensated/ uncompensated difference images. J. Comput. Assist. Tomogr. 1987; 11 (1): 31–34. https://doi.org/10.1097/00004728-198701000-00006; Dumoulin C.L., Hart H.R. Magnetic Resonance Angiography. J. Radiology. 1986; 161 (3): 717–720. https://doi.org/10.1148/radiology.161.3.3786721; Dumoulin C.L., Souza S.P., Walker M.F., Wagle W. Threedimensional phase contrast angiography. J. Magn. Reson. Med. 1989; 9 (1): 139–149. https://doi.org/10.1002/mrm.1910090117; Kaufman J.A., McCarter D., Geller S.C., Waltman A.C. Two-dimensional time-of-flight MR angiography of the lower extremities: artifacts and pitfalls. Am. J. Roentgenol. 1998; 171 (1): 129–135. https://doi.org/10.2214/ajr.171.1.9648776; Plein S., Geenwood J., Ridgway J.P. Cardiovascular MR Manual. Springer International Publishing, 2015. ISBN 978-3-319-20940-1. https://doi.org/10.1007/978-3-319-20940-1; Yucel E.K., Anderson C.M., Edelman R.R., Crist T.M., Baum R.A., Manning W.J. Magnetic resonance angiography. Circulation. 1999; 100 (22): 2284–2301. https://doi.org/10.1161/01.cir.100.22.2284; Koelemay M.J., Lijmer J.G., Stoker J., Legemate D.A., Bossuyt P.M.M. Magnetic resonance angiography for the evaluation of lower extremity arterial disease. A metaanalysis. JAMA. 2001; 285 (10): 1338–1345. https://doi.org/10.1001/jama.285.10.1338; Nelemans P.J., Leiner T., de Vet H.C., van Engelshoven J.M.A. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. J. Radiol. 2000; 217 (1): 105–114. https://doi.org/10.1148/radiology.217.1.r00oc11105; Ho V.B., Foo T.K.F., Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top Magn. Reson. Imaging. 2001; 12 (4): 283–299. https://doi.org/10.1097/00002142-200108000-00005; Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. App. Radiol. 2003; 32 (Suppl.): 3–31. https://doi.org/10.1201/b14328-16; Knopp M.V., von Tengg-Kobligk H., Floemer F.S., Schoenberg S.O. Contrast agents for MRA: future directions. JMRI. 1999; 10 (3): 314–316. https://doi.org/10.1002/(sici)1522-2586(199909); Reimer P., Bremer C., Allkemper T., Engelhardt M., Mahler M., Ebert W., Tombach B. Myocardial perfusion and MR angiography of chest with SHU555C: results of placebo-controlled clinical phase I study. Radiology. 2004; 231: 474–481. https://doi.org/10.1148/radiol.2312021251; Haacke E.M., Reichenbach L.R. Susceptibility Weighted Imaging in MRI. Basic Concepts and Clinical Applications. Wiley Blackwell. ISBN: 9780470905197. https://doi.org/10.1002/9780470905203; Gibby W.A., Gibby K.A., Gibby W.A. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Invest. Radiol. 2004; 39 (3): 138–142. https://doi.org/10.1097/01.rli.0000112789.57341.01; Goyan M., Ruehm S.G., Debatin J.F. MR Angiography: the role of contrast agents. Eur. J. Radiol. 2000; 34 (3): 247–256. https://doi.org/10.1016/s0720-048x(00)00203-5; Hany T.F., Schmidt M., Hilfiker P.R., Steiner P., bachman U., debatin J.F. Optimization of contrast dosage for gadolinium-enhanced 3D MRA of the pulmonary and renal arteries. Magn. Reson. Imaging. 1998; 16: 901–906. https://doi.org/10.1016/s0730-725x(98)00012-5; de Haën C., Cabrini M., Akhnana L., Ratti D., Calabi L., Gozzini L. Gadobenate dimeglumine 0.5M solution for injection (Multi-Hance): pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J. Comput. Assist. Tomogr. 1999; 23: 161–168. https://doi.org/10.1097/00004728-199911001-00021; Cavagna F., Maggioni F., Castelli P. Gadolinium chelates with weak binding to serum proteins. A new class of highefficiency, general purpose contrast agents for magnetic resonance imaging. Invest. Radiol. 1997; 32 (2): 780–796. https://doi.org/10.1097/00004424-199712000-00009; Knopp M., Schoenberg S., Rehm C., Floemer F., Von- Tengg-Kobligk H. Assessment of Gadobenate Dimeglumine (Gd-BOPTA) for MR Angiography: Phase I Studies. Invest. Radiol. 2002; 37 (12): 706–715. https://doi.org/10.1097/00004424-200212000-00011; Völk M., Strotzer M., Lenhart M., Seitz J., Manke C., Feuerbach S., Link J. Renal time-resolved MR angiography: quantitative comparison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. J. Radiol. 2001; 220 (2): 484–488. https://doi.org/10.1148/radiology.220.2.r01au38484; Wyttenbach R., Gianella S., Alerci M., Braghett., Cozzi L., Gallino A. Prospective Blinded Evaluation of Gd-DOTA – versus Gd-BOPTA–enhanced Peripheral MR Angiography, as Compared with Digital Subtraction Angiography. J. Radiol. 2003; 227 (1): 261–269. https://doi.org/10.1148/radiol.2271011989; Herborn C.U., Goyen M., Lauenstein T.C. Comprehensive time-resolved MRI of peripheral vascular malformations Am. J. Roentgenol. 2003; 181 (3): 729–735. https://doi.org/10.2214/ajr.181.3.1810729; Perreault P., Edelman M.A., Baum R.A., Yucel E.K., Weisskoff R.M. MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. J. Radiol. 2003; 229 (3): 811–820. https://doi.org/10.1148/radiol.2293021180; Caravan P., Cloutier N.J., Greenfield M.T. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 2002; 124 (12): 3152–3162. https://doi.org/10.1021/ja017168k; Stuber M., Botnar R.M., Danias P.G. Contrast agentenhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J. Magn. Reson. Imaging. 1999; 10: 790–799. https://doi.org/10.1002/(sici)1522-2586(199911); Kraitchman D.L., Chin B.B., Heldman A.W., Solaiyappen M., Bluemke D.A. MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J. Magn. Reson. Imaging. 2002; 15 (2): 149–158. https://doi.org/10.1002/jmri.10051; Paetsch I., Huber M., Bornstedt A. Improved 3D freebreathing coronary MRA using gadocoletic acid (B-22956) for intravascular contrast enhancement. J. Magn. Reson. Imaging. 2004; 20: 288–293. https://doi.org/10.1002/jmri.20099; La Noce A., Stoelben S., Scheffler K. B22956/1, a new intravascular contrast agent for MRI: first administration to humans–preliminary results. Acad. Radiol. 2002; 9 (Suppl.): 404–406. https://doi.org/10.1016/s1076-6332(03)80245-3 60. Reimer P., Bremer C., Allkemper T., Engelhardt M. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. J. Radiol. 2004; 231 (2): 474–481. https://doi.org/10.1148/radiol.2312021251; Weishaupt D., Ruhm S., Binkert C. Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am. J. Roentgenol. 2000; 175: 189–195. https://doi.org/10.2214/ajr.175.1.1750189; Taylor A., Panting J., Keegan J. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J. Magn. Reson. Imaging. 1999; 9: 220–227. https://doi.org/10.1002/(sici)1522-2586(199902; Bachmann R., Conrad R., Kreft B. Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J. Magn. Reson. Imaging. 2002; 16: 190–195. https://doi.org/10.1002/jmri.10149; Reimer P., Allkemper T., Matuszewski L. Contrast-enhanced 3D-MRA of the upper abdomen with a bolus-injectable SPIO (SH U 555 A). J. Magn. Reson. 1999; 10: 65–71. https://doi.org/10.1002/(sici)1522-2586(199907); Mayo-Smith W., Saini S., Slater G., Kaufman J.A., Sharma P., Hahn P.F. MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. Am. J. Roentgenol. 1996; 166: 73–77. https://doi.org/10.2214/ajr.166.1.8571910; Ho V.B., Foo T.K.F, Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top. Magn. Reson. Imaging. 2001; 12: 283–299. https://doi.org/10.1097/00002142-200108000-00005; Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. Appl. Radiol. 2003; 32: 3–31. https://doi.org/10.1201/b14328-16; Hohenschuh E., Watson A. Theory and mechanisms of contrast-enhancing agents. In: Higgins C., Hricak H., Helms C., eds. Magnetic Resonance Imaging of the Body. Philadelphia, Pa: Lippencott-Raven, 1997: 1439–1464. https://www.springer.com; Hany T.F., McKinnon G.C., Leung D.A., Pfammatter T., Debatin S.F. Optimization of contrast timing for breathhold three-dimensional MR angiography. J. Magn. Reson. Imaging. 1997; 7 (3): 551–556. https://doi.org/10.1002/jmri.1880070316; Marks B., Mitchell D.G., Simelaro J.P. Breath-holding in healthy and pulmonary-compromised populations: Effects of hyperventilation and oxygen inspiration. J. Magn. Reson. Imaging. 1997; 7 (3): 595–597. https://doi.org/10.1002/jmri.1880070323; Foo T.K., Saranathan M., Prince M.R. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. J. Radiol. 1997; 203 (1): 275–280. https://doi.org/10.1148/radiology.203.1.9122407; Lee V.S., Martin D.J., Krinsky G.A. Gadolinium-enhanced MR angiography: Artifacts and pitfalls. Am. J. Roentgenol. 2000; 175: 197–205. https://www.ncbi.nlm.nih.gov; Earls J.P., Rofsky N.M., DeCorato D.R., Krinsky G.A., Weinreb J.C. Breath-hold single dose Gd-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996; 201 (3): 705–710. https://doi.org/10.1148/radiology.201.3.8939219; Kim J.K., Farb R.I., Wright G A. Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. J. Radiol. 1998; 206 (1): 283–289. https://doi.org/10.1148/radiology.206.1.9423685; Ho V.B., Foo T.K. Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus detection algorithm (MR Smart-Prep). Original investigation. Invest. Radiol. 1998; 33 (9): 515–523. https://doi.org/10.1097/00004424-199809000-00006; Riederer S.J., Bernstein M.A., Breen J.F. Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and techni cal reliability in 330 patient studies. J. Radiol. 2000. 215: 584–593. https://doi.org/10.1148/radiology.215.2.r00ma21584; Prince M.R. Gadolinium-enhanced MR aortography. J. Radiol. 1994; 191 (1): 155–164. https://doi.org/10.1148/radiology.191.1.8134563; Prince M.R., Narasimham D.L., Stanley J.C., Chenevert T.L., Williams D.M., Marx M.V., Cho K.J. Breathhold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. J. Radiol. 1995; 197 (3): 785–671. https://doi.org/10.1148/radiology.197.3.7480757; Meaney James F.M. MR Angiography of Peripheral Arteries: Lower Extremities. Chapter in Book: Magnetic Resonance Angiography. Springer. 2005: 3–22. ISBN 88-470-0266-4. https://doi.org/10.1007/88-470-0352-0_16; Meaney F.M., Ridgway J.P., Chakraverty S. Stepping- Table Gadolinium-enhanced Digital Substraction MR Angiography of the Aorta and lower extremity Arteries: Preliminary Experience. J. Radiol. 1999; 211 (1): 59–67. https://doi.org/10.1148/radiology.211.1.r99ap1859; Ho K.Y., de Haan M.W., Kessels A.G., Kitslaar P.J., van Engelshoven J.M. Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography. J. Radiol. 1998; 206: 673–681. https://doi.org/10.1148/radiology.206.3.9494485; Ruehm Stefan G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com; Sannikov A.B., Emelianenko V.M., Rachcov M.A. The Specific Anatomical of the Structure of the Calf Intramuscular Veins in the Healthy Subjects and in the Patients Presenting with Chronic Venous Disease: the Data Obtained by Multi-Spiral Computed Phlebography. Flebologiya. 2018; 12 (4): 292–299. https://doi.org/10.17116/flebo201812041292 (In Russian); Calhoun P.S., Kuszyk B.S., Heath D.G., Carley J.C., Fishman E.K. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999; 19: 745–764. https://doi.org/10.1148/radiographics.19.3.g99ma14745; Hu X., Alperin N., Levin D.N. Visualization of MR angiographic data with segmentation and volumerendering techniques. J. Magn. Reson. Imaging. 1991; 1 (5): 539–546. https://doi.org/10.1002/jmri.1880010506; Hernández-Hoyos M., Anwander A., Orkisz M. A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA. In MICCAI 2000 Medical Image Computing & Computer-Assisted Intervention (Lecture Notes in Computer Sci-64 Magnetic Resonance Angiography ence). S.L. Delp, A.M. Digioia, B. Jaramaz, eds. Berlin, Germany: Springer-Verlag, 2000: 735–745. https://doi.org/10.1007/978-3-540-40899-4_76; Olga Kubassova. Automatic Segmentetion of the Blood Vessels from Dynamic MRI Datasets. Book Chapter in Medical Image Computing & Computer-Assisted Intervention. MICCAI 2007. Berlin, Germany: Springer-Verlag, 2007: 593–600. https://doi.org/10.1007/978-3-540-75757-3_72; Moeller T.B., Reif E. Pocket Atlas of Sectional Anatomy Computed Tomography and Magnetic Resonance Imaging. Vol, 1, Vol, 2. Stuttgart: Thieme, 2015. Eur. J. Nucl. Med. Molec. Imaging. 2015; 42 (6). ISBN 678-3-13-125504-4. https://www.linkSpringer.com. https://doi.org/10.1007/s00259-015-2998-5; https://medvis.vidar.ru/jour/article/view/973

  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20