Showing 1 - 20 results of 32 for search '"ХРОМОСОМНЫЕ ПЕРЕСТРОЙКИ"', query time: 0.75s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: The work was prepared with the financial support of the Russian Science Foundation grant No. 24-14-00047, https://rscf.ru/project/24-14-00047/.

    Source: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 230-237 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 230-237 ; 2500-3259 ; 10.18699/vjgb-25-20

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4541/1930; BAC Resource Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature. 2001;409:953- 958. doi 10.1038/35057192; Beliajeff N.K. Die Chromosomenkomplexe und ihre Beziehung zur Phylogenie bei den Lepidopteren. Z Vererbungsl. 1930;14:369-399. doi 10.1007/BF01848966; Berner D., Ruffener S., Blattner L.A. Chromosome-level assemblies of the Pieris mannii butterfly genome suggest Z-origin and rapid evolution of the W chromosome. Genome Biol Evol. 2023;15(6):evad111. doi 10.1093/gbe/evad111; Biello R., Singh A., Godfrey C.J., Fernández F.F., Mugford S.T., Powell G., Hogenhout S.A., Mathers T.C. Achromosome-level genome assembly of the woolly apple aphid, Eriosoma lanigerum Hausmann (Hemiptera: Aphididae). Mol Ecol Resour. 2021;21(1):316-326. doi 10.1111/1755-0998.13258; Biessmann H., Zurovcova M., Yao J.G., Lozovskaya E., Walter M.F. A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma. 2000;109:372-380. doi 10.1007/s004120000094; Boman J., Wiklund C., Vila R., Backström N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res. 2024; 32(2):7. doi 10.1007/s10577-024-09752-0; Casacuberta E., Pardue M.L. Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA. 2003;100:3363-3368. doi 10.1073/pnas.0230353100; Chen H., Qiao G., Liang A. Chromosome-level genome assembly of Callitettix versicolor (rice spittlebug). Genome Biol Evol. 2022; 14(9):evac130. doi 10.1093/gbe/evac130; Chen X., Wang Z., Zhang C., Hu J., Lu Y., Zhou H., Mei Y., Cong Y., Guo F., Wang Y., He K., Liu Y., Li F. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol. 2023;21:265. doi 10.1186/s12915-023-01762-4; Dalla Benetta E., Antoshechkin I., Yang T., Nguyen H.Q.M., Ferree P.M., Akbari O.S. Genome elimination mediated by gene expression from a selfish chromosome. Sci Adv. 2020;6:eaaz9808. doi 10.1126/sciadv.aaz9808; Dixon A., Macadam C.R., Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the spring stonefly, Protonemura montana (Kimmins, 1941) [version 1; peer review: awaiting peer review]. Wellcome Open Res. 2023;8:333. doi 10.12688/wellcomeopenres.19790.1; Driscoll T.P., Verhoeve V.I., Gillespie J.J., Johnston J.S., Guillotte M.L., Rennoll-Bankert K.E., Rahman M.S., Hagen D., Elsik C.G., Macaluso K.R., Azad A.F. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol. 2020;18(1):70. doi 10.1186/s12915-020-00802-7; Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P., Aiden E.L. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333): 92-95. doi 10.1126/science.aal3327; Fajkus P., Adámik M., Nelson A.D.L., Kilar A.M., Franek M., Bubeník M., Frydrychová R.Č., Votavová A., Sýkorová E., Fajkus J., Peška V. Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis. Nucleic Acids Res. 2023;51(1):420- 433. doi 10.1093/nar/gkac1202; Farr A., Macadam C.R., Natural History Museum Genome Acquisition Lab; Darwin Tree of Life Barcoding collective; Wellcome Sanger Institute Tree of Life programme; Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective; Tree of Life Core Informatics collective; Darwin Tree of Life Consortium. The genome sequence of the Northern Summer Mayfly, Siphlonurus alternatus (Say, 1824) [version 1; peer review: 2 approved, 3 approved with reservations]. Wellcome Open Res. 2023,8:488. doi 10.12688/wellcomeopenres.20172.1; Feng S., Opit G., Deng W., Stejskal V., Li Z. A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation. GigaScience. 2022;11:giac062. doi 10.1093/gigascience/giac062; Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat Rev Genet. 2007;8(12):950-962. doi 10.1038/nrg2199; Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48(6):1083-1092. doi 10.1139/g05-063; Gall J.G., Pardue M.L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA. 1969;63(2):378-383. doi 10.1073/pnas.63.2.378; Gauthier J., Meier J., Legeai F., McClure M., Whibley A., Bretaudeau A., Boulain H., Parrinello H., Mugford S.T., Durbin R., Zhou C., McCarthy S., Wheat C.W., Piron-Prunier F., Monsempes C., François M.C., Jay P., Noûs C., Persyn E., Jacquin-Joly E., Meslin C., Montagné N., Lemaitre C., Elias M. First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): comparative models for mimicry genetic studies. Mol Ecol Resour. 2023;23(4):872-885. doi 10.1111/1755-0998.13749; Ge X., Peng L., Deng Z., Du J., Sun C., Wang B. Chromosome-scale genome assemblies of Himalopsyche anomala and Eubasilissa splendida (Insecta: Trichoptera). Sci Data. 2024;11(1):267. doi 10.1038/s41597-024-03097-3; Graphodatsky A.S., Trifonov V.A., Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet. 2011;4:22. doi 10.1186/1755-8166-4-22; Heather J.M., Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1-8. doi 10.1016/j.ygeno.2015.11.003; Henking H. Untersuchung über die erster Entwicklungsvorgänge in den Eien der Insekten. I. Das Ei von Pieris brassicae L. nebst Bemerkungen über Samen und Samenbildung. Z Wiss Zool. 1890;49:503-564; Höök L., Näsvall K., Vila R., Wiklund C., Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res. 2023;31(1):2. doi 10.1007/s10577-023-09713-z; Höök L., Vila R., Wiklund C., Backström N. Temporal dynamics of faster Neo-Z evolution in butterflies. Evolution. 2024;78:1554-1567. doi 10.1093/evolut/qpae082; Huang Q., Sim S.B., Geib S.M., Childers A., Liu J., Wei X., Han W., Posada-Florez F., Xue A.Z., Li Z., Evans J.D. Identification of sex chromosomes and primary sex ratio in the small hive beetle, a worldwide parasite of honey bees. GigaScience. 2022;12:giad056. doi 10.1093/gigascience/giad056; Hundsdoerfer A.K., Schell T., Patzold F., Wright C.J., Yoshido A., Marec F., Daneck H., Winkler S., Greve C., Podsiadlowski L., Hiller M., Pippel M. High-quality haploid genomes corroborate 29 chromosomes and highly conserved synteny of genes in Hyles hawkmoths (Lepidoptera: Sphingidae). BMC Genomics. 2023;24(1):443. doi 10.1186/s12864-023-09506-y; Jin J., Zhao Y., Zhang G., Pan Z., Zhang F. The first chromosome-level genome assembly of Entomobrya proxima Folsom, 1924 (Collembola: Entomobryidae). Sci Data. 2023;10(1):541. doi 10.1038/s41597-023-02456-w; Kiknadze I.I., Shilova A.I., Kerkis I.E., Shobanov N.A., Zelentsov N.I., Grebenyuk L.P., Istomina A.G., Prasolov V.A. Karyotypes and Morphology of Larvae of the Tribe Chironomini. An Atlas. Novosibirsk: Nauka Publ., 1991 (in Russian) Kiknadze I., Istomina A., Golygina V., Gunderina L. Karyotypes of Palearctic and Holarctic Species of the Genus Chironomus. Novosibirsk: Academic Publishing House “Geo”, 2016; Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639-1645. doi 10.1101/gr.092759.109; Kuznetsova V., Grozeva S., Gokhman V. Telomere structure in insects: a review. J Zool Syst Evol Res. 2020;58:127-158. doi 10.1111/jzs.12332; Langer-Safer P.R., Levine M., Ward D.C. Immunological method for mapping genes on drosophila polytene chromosomes. Proc Natl Acad Sci USA. 1982;79(14):4381-4385. doi 10.1073/pnas.79.14.4381; Lavanchy G., Brandt A., Bastardot M., Dumas Z., Labédan M., Massy M., Toubiana W., Tran Van P., Luchetti A., Scali V., Mantovani B., Schwander T. Evolution of alternative reproductive systems in Bacillus stick insects. Evolution. 2024;78(6):1109-1120. doi 10.1093/evolut/qpae045; Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094-3100; Li R., Qin Y., Rong W., Deng W., Li X. Chromosome-level genome assembly of the pygmy grasshopper Eucriotettix oculatus (Orthoptera: Tetrigoidea). Sci Data. 2024;11:431. doi 10.1038/s41597-024-03276-2; Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L.A., Lander E.S., Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289-293. doi 10.1126/science.1181369; Lukhtanov V.A. Diversity and evolution of telomere and subtelomere DNA sequences in insects. bioRxiv. 2022. doi 10.1101/2022.04.08.487650; Lukhtanov V.A., Pazhenkova E.A. Diversity and evolution of telomeric motifs and telomere DNA organization in insects. Biol J Linn Soc. 2023;140:536-555. doi 10.1093/biolinnean/blad068; Mackintosh A., Laetsch D.R., Baril T., Ebdon S., Jay P., Vila R., Hayward A., Lohse K. The genome sequence of the scarce swallowtail, Iphiclides podalirius. G3 (Bethesda). 2022a;12(9):jkac193. doi 10.1093/g3journal/jkac193; Mackintosh A., Laetsch D.R., Baril T., Foster R.G., Dincă V., Vila R., Hayward A., Lohse K. The genome sequence of the lesser marbled fritillary, Brenthis ino, and evidence for a segregating neo-Z chromosome. G3 (Bethesda). 2022b;12(6):jkac069. doi 10.1093/g3journal/jkac069; Mandrioli M., Manicardi G.C. Holocentric chromosomes. PLoS Genet. 2020;16(7):e1008918. doi 10.1371/journal.pgen.1008918; Mathers T.C., Wouters R.H.M., Mugford S.T., Swarbreck D., van Oosterhout C., Hogenhout S.A. Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol Biol Evol. 2021;38(3):856- 875. doi 10.1093/molbev/msaa246; Miga K.H., Koren S., Rhie A., Vollger M.R., Gershman A., Bzikadze A., Brooks S., … Pevzner P.A., Gerton J.L., Sullivan B.A., Eichler E.E., Phillippy A.M. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585(7823):79-84. doi 10.1038/s41586-020-2547-7; Näsvall K., Boman J., Höök L., Vila R., Wiklund C., Backström N. Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements. PLoS Genet. 2023;19(8): e1010717. doi 10.1371/journal.pgen.1010717; Pardue M.L., Gall J.G. Chromosomal localization of mouse satellite DNA. Science. 1970;168(3937):1356-1358. doi 10.1126/science.168.3937.1356; Patterson C.W., Bonillas-Monge E., Brennan A., Grether G.F., Mendoza-Cuenca L., Tucker R., Vega-Sánchez Y.M., Drury J. A chromosome-level genome assembly for the smoky rubyspot damselfly (Hetaerina titia). J Hered. 2024;115(1):103-111. doi 10.1093/jhered/esad070; Pazhenkova E.A., Lukhtanov V.A. Сhromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res. 2023a;31:16. doi 10.1007/s10577-023-09725-9; Pazhenkova E.A., Lukhtanov V.A. Whole-genome analysis reveals the dynamic evolution of holocentric chromosomes in satyrine butterflies. Genes. 2023b;14(2):437. doi 10.3390/genes14020437; Peruzzi L., Eroğlu H.E. Karyotype asymmetry: again, how to measure and what to measure? Comp Cytogenet. 2013;7(1):1-9. doi 10.3897/CompCytogen.v7i1.4431; Reinhardt J.A., Baker R.H., Zimin A.V., Ladias C., Paczolt K.A., Werren J.H., Hayashi C.Y., Wilkinson G.S. Impacts of sex ratio meiotic drive on genome structure and function in a stalk-eyed fly. Genome Biol Evol. 2023;15(7):evad118. doi 10.1093/gbe/evad118; Robinson R. Lepidoptera Genetics. Oxford: Pergamon Press, 1971; Schrock E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M.A., Ning Y., Ledbetter D.H., Bar-Am I., Soenksen D., Garini Y., Ried T. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494-497. doi 10.1126/science.273.5274.494; Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;2(7731):971-972. doi 10.1016/s0140-6736(71)90287-x; Seixas F.A., Edelman N.B., Mallet J. Synteny-based genome assembly for 16 species of Heliconius butterflies, and an assessment of structural variation across the genus. Genome Biol Evol. 2021;13(7): evab069. doi 10.1093/gbe/evab069; Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., Marec F. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol. 2015;15:89. doi 10.1186/s12862-015-0375-4; Speicher M.R., Ballard S.G., Ward D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12:368- 375. doi 10.1038/ng0496-368; Stoianova D., Grozeva S., Golub N.V., Anokhin B.A., Kuznetsova V.G. The first FISH-confirmed non-canonical telomeric motif in Heteroptera: Cimex lectularius Linnaeus, 1758 and C. hemipterus (Fabricius, 1803) (Hemiptera, Cimicidae) have a 10 bp motif (TTAGGGATGG)n. Genes. 2024;15(8):1026. doi 10.3390/genes15081026; Sun C., Huang J., WangY., Zhao X., Su L., Thomas G.W.C., Zhao M., … Schaack S., Barribeau S.M., Williams P.H., Waterhouse R.M., Mueller R.L. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol Biol Evol. 2021;38(2):486-501. doi 10.1093/molbev/msaa240; The Darwin Tree of Life Project Consortium. Sequence locally, think globally: The Darwin Tree of Life Project. Proc Natl Acad Sci USA. 2022;119:e2115642118. doi 10.1073/pnas.2115642118; Van Dam M.H., Cabras A.A., Henderson J.B., Rominger A.J., Pérez Estrada C., Omer A.D., Dudchenko O., Lieberman Aiden E., LamA.W. The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genet. 2021;17(8):e1009745. doi 10.1371/journal.pgen.1009745; Wallberg A., Bunikis I., Pettersson O.V., Mosbech M.B., Childers A.K., Evans J.D., Mikheyev A.S., Robertson H.M., Robinson G.E., Webster M.T. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome length scaffolds. BMC Genomics. 2019;20:275. doi 10.1186/s12864-019-5642-0; Wang Y., Zhang R., Wang M., Zhang L., Shi C.M., Li J., Fan F., Geng S., Liu X., Yang D. The first chromosome-level genome assembly of a green lacewing Chrysopa pallens and its implication for biological control. Mol Ecol Resour. 2022;22(2):755-767. doi 10.1111/1755-0998.13503; Wang Y., Luo Y., Ge Y., Liu S., Liang W., Wu C., Wei S., Zhu J. Chromosome-level genome assembly of the predatory stink bug Arma custos. Sci Data. 2024;11:417. doi 10.1038/s41597-024-03270-8; White M.J.D. Animal Cytology and Evolution. Cambridge: Cambridge University Press, 1973 Wright C.J., Stevens L., Mackintosh A., Lawniczak M., Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol. 2024;8(4):777-790. doi 10.1038/s41559-024-02329-4; Yingning L., Shuhua W., Wenting D., Miao M., Ying W., Rong Z., Liping B. Chromosome-level genome assembly of Odontothrips loti Haliday (Thysanoptera: Thripidae). Sci Data. 2024;11(1):451. doi 10.1038/s41597-024-03289-x; Yoshido A., Bando H., Yasukochi Y., Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005; 170:675-685. doi 10.1534/genetics.104.040352; Zamyatin A., Avdeyev P., Liang J., Sharma A., Chen C., Lukyanchikova V., Alexeev N., Tu Z., Alekseyev M.A., Sharakhov I.V. Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis. GigaScience. 2021;10(3): giab017. doi 10.1093/gigascience/giab017; Zhang T., Xing W., Wang A., Zhang N., Jia L., Ma S., Xia Q. Comparison of long-read methods for sequencing and assembly of lepidopteran pest genomes. Int J Mol Sci. 2023;24(1):649. doi 10.3390/ijms24010649; Zhou Y., Wang Y., Xiong X., Appel A.G., Zhang C., Wang X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci Alliance. 2022;5:e202101163. doi 10.26508/lsa.202101163; https://vavilov.elpub.ru/jour/article/view/4541

  3. 3
    Academic Journal

    Contributors: The reported study was funded by Foundation for Scientific and Technological Development of Yugra according to the research project № 2023–569–05., Работа выполнена при финансовой поддержке Фонда научно-технологического развития Югры в рамках научного проекта № 2023–569–05.

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 1 (2025); 11-17 ; Российский вестник перинатологии и педиатрии; Том 70, № 1 (2025); 11-17 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2133/1561; Matsubara K., Kagami M., Fukami M. Uniparental disomy as a cause of pediatric endocrine disorders. Clinical pediatric endocrinology: case reports and clinical investigations. Official journal of the Japanese Society for Pediatric Endocrinology 2018; 27(3): 113–121. DOI:10.1297/cpe.27.113; Chien S.C., Chen C.P., Liou J.D. Prenatal diagnosis and genetic counseling of uniparental disomy. Taiwan J Obstet Gynecol 2022; 61(2): 210–215. DOI:10.1016/j.tjog.2022.02.006; Liehr T. Uniparental disomy is a chromosomic disorder in the first place. Mol Cytogenet 2022; 15(1): 5. DOI:10.1186/s13039–022–00585–2; Del Gaudio D., Shinawi M., Astbury C., Tayeh M.K., Deak K. L., Rac G. et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genetics in medicine: official journal of the American College of Medical Genetics 2020; 22(7): 1133–1141. DOI:10.1038/s41436–020–0782–9; 23andMe Inc. https://www.23andme.com/ Ссылка активна на 28.02.2024; UK Biobank https://www.ukbiobank.ac.uk/ Ссылка активна на 28.02.2024; Nakka P., Pattillo Smith S., O’Donnell-Luria A.H., Mc-Manus K.F.; 23andMe Research Team; Mountain J.L. et al. Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population. Am J Hum Genet 2019; 105(5): 921–932. DOI:10.1016/j.ajhg.2019.09.016; Liehr T. 2024. Cases with uniparental disomy. https://cs-tl.de/DB/CA/UPD/0-Start.html Ссылка активна на 06.02.2024; Benn P. Uniparental disomy: Origin, frequency, and clinical significance. Prenat Diagn 2021; 41(5): 564–572. DOI:10.1002/pd.5837; Баранов В.С., Кузнецова Т.В. Цитогенетика Эмбрионального развития человека: научно-практические аспекты. Однородительская дисомия. СПб: Издательство Н-Л, Учебник, 2007; 7.3: 234–266.; Chavli E.A., Klaasen S.J., Van Opstal D., Laven J.S., Kops G.J., Baart E.B. Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts. J Clin Invest 2024; 4:e174483. DOI:10.1172/JCI174483; Papenhausen P.R., Kelly C.A., Harris S., Caldwell S., Schwartz S., Penton A. Clinical significance and mechanisms associated with segmental UPD. Mol Cytogenet 2021; 14(1): 38. DOI:10.1186/s13039–021–00555–0; Poot M., Hochstenbach R. Prevalence and Phenotypic Impact of Robertsonian Translocations. Mol Syndromol 2021; 12(1): 1–11. DOI:10.1159/000512676; Баранов В.С., Коган И.Ю., Кузнецова Т.В. Прогресс генетики эмбрионального развития человека и вспомогательные репродуктивные технологии. Генетика 2019; 55(10): 1109–1121.; Демидова И.А., Ворсанова С.Г., Куринная О.С., Васин К.С., Воинова В.Ю., Зеленова М.А. и др. Молекулярное кариотипирование хромосомных аномалий и вариаций числа копий последовательностей ДНК (CNVs) при идиопатических формах умственной отсталости и эпилепсии. Научные результаты биомедицинских исследований 2020; 6(2): 172–197.; Liehr T. Uniparental disomy (UPD) in clinical genetics: A guide for clinicians and patients. Springer, 2014; 192.; Коровкина Е.А, Жилина С.С., Конюхова М.Б., Немцова М.В., Карманов М.Е., Мутовин Г.Р. Синдром Сильвера–Рассела: Клинико-генетический анализ. Педиатрия. Журнал им. Г.Н. Сперанского 2011; 90(6): 41–45.; Хафизова Н.Р., Мерзлякова Д.Р., Сафина Ю.Ф. Синдром Сильвера–Рассела у ребенка 7 месяцев: клиническое наблюдение. РМЖ. Мать и дитя 2021; 4(1): 103–105.; Горчханова З.К., Николаева Е.А., Боченков С.В., Белоусова Е.Д. Анализ клинических проявлений синдрома Ангельмана у детей. Российский вестник перинатологии и педиатрии 2021; 66(6): 63–70.; Абатуров А.Е., Петренко Л.Л., Кривуша Е.Л. Синдром Ангельмана. Часть 2 (клиника и диагностика). Здоровье ребенка 2015; 6(66): 119–125.; Сологиненко В.Г. Неонатология: национальное руководство. Врожденные дефекты и генетические синдромы. Под ред. Н.Н. Володина. Москва: ГЭОТАР-Медиа, 2019; 541–542.; Крищанович Д.Д., Артюшевская М.В., Качан С.Э., Демидович Т.В., Румянцева Н.В., Воропай Л.В. Синдром Беквита–Видемана: клинический случай, клинико-генетические маркеры. FORCIPE 2022; 5(2): 283–284.; Семенова Н.А., Анисимова И.В., Володин И.В., Ступина А.В., Абдраисова А.Т., Цокова И.Б. и др. Делеция импринтированного региона 14q32.2 у пациента с синдромом Кагами–Огата. Медицинская генетика 2018; 17(11): 43–47.; Хурс О.М., Политыко А.Д., Румянцева Н.В., Исакович Л.В., Кулак В.Д., Квасникова Н.В. и др. Синдром Прадера–Вилли в Беларуси: генетическая структура и фенотипическая характеристика. Весці Нацыянальнай акадэміі навук Беларусі. Серыя медыцынскіх навук 2010; 1: 5–10.; Вашукова Е.С., Тарасенко О.А., Козюлина П.Ю., Моршнева А.В., Мальцева А.Р., Глотов А.С. Оценка эффективности полногеномного неинвазивного пренатального тестирования для выявления редких хромосомных аномалий на основе опыта ФГБНУ «НИИ АГиР им. Д.О. Отта». Медицинская генетика 2022; 21(11): 19–22.; Zhang K., Liu S., Feng B., Yang Y., Zhang H., Dong R. et al.; Eggermann K., Bliek J., Brioude F., Algar E., Buiting K., Russo S., et al. EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome. Eur J Hum Genet 2016; 24: 1377–1387. DOI 10.1038/ejhg.2016.45; Su H., Sun T., Chen M., Liu J., Wang X., Chen Y., et al. Multiple methods used for type detection of uniparental disomy in paternity testing. Int J Legal Med 2020; 134(3): 885–893. DOI:10.1007/s00414–019–02215-w; Чернов А.Н., Глотов О.С., Донников М.Ю., Коваленко Л.В., Белоцерковцева Л.Д., Глотов А.С. Пренатальная генетическая диагностика: принципы, методы, применение и перспективы. Вестник СурГУ. Медицина 2020; 2(44): 54–65.; Hoppman N., Rumilla K., Lauer E., Kearney H., Thorland E. Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays. Genet Med 2018; 20(12): 1522–1527. DOI:10.1038/gim.2018.24; Sahoo T., Dzidic N., Strecker M.N., Commander S., Travis M.K., Doherty C. et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med 2017; 19(1): 83–89. DOI:10.1038/gim.2016.69; Xu C., Li M., Gu T., Xie F., Zhang Y., Wang D., et al. Chromosomal microarray analysis for prenatal diagnosis of uniparental disomy: a retrospective study. Mol Cytogenet 2024; 17(1): 3. DOI:10.1186/s13039–023–00668–8; Лебедев И.Н., Шилова Н.В., Юров И.Ю., Малышева О.В., Твеленева А.А., Миньженкова М.Е. и др. Рекомендации Российского общества медицинских генетиков по хромосомному микроматричному анализу. Медицинская генетика 2023; 22(10): 3–47.; Саженова Е.А., Лебедев И.Н. Стандарты молекулярно-генетической ДНК-диагностики болезней геномного импринтинга на примере синдромов Прадера–Вилли и Энгельмана. Медицинская генетика 2015; 14(9): 3–10.; Hong D.K., Park J.E., Kang K.M., Shim S.H., Shim S.H., Han Y.J. et al. Prenatal Diagnosis of Uniparental Disomy in Cases of Rare Autosomal Trisomies Detected Using Noninvasive Prenatal Test: A Case of Prader–Willi Syndrome. Diagnostics (Basel) 2023; 13(4): 580. DOI:10.3390/diagnostics13040580; Брызгунова О.Е., Лактионов П.П. Современные методы исследования метилирования внеклеточных ДНК. Молекулярная биология 2017; 51(2): 195–214.; Dos Santos J.F., Mota L.R., Rocha P.H., Ferreira de Lima R.L. A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol Biol Rep 2016; 43(11): 1221–1225. DOI:10.1007/s11033–016–4055–2; Kim B., Park Y., Cho S.I., Kim M.J., Chae J.H., Kim J.Y. et al. Clinical Utility of Methylation-Specific Multiplex Ligation-Dependent Probe Amplification for the Diagnosis of Prader–Willi Syndrome and Angelman Syndrome. Ann Lab Med 2022;42(1): 79–88. DOI:10.3343/alm.2022.42.1.79.; Ribeiro Ferreira I., Darleans Dos Santos Cunha W., Henrique Ferreira Gomes L., Azevedo Cintra H., Lopes Cabral Guimarães Fonseca L., Ferreira Bastos E. et al. A rapid and accurate methylation-sensitive high-resolution melting analysis assay for the diagnosis of Prader Willi and Angelman patients. Mol Genet Genomic Med 2019; 7(6): e637. DOI:10.1002/mgg3.637; Meyer R., Begemann M., Hübner C.T., Dey D., Kuechler A., Elgizouli M. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver–Russell syndrome. Orphanet J Rare Dis 2021; 16(1): 42. DOI:10.1186/s13023–021–01683-x; Xiao B., Wang L., Liu H., Fan Y., Xu Y., Sun Y. et al. Uniparental isodisomy caused autosomal recessive diseases: NGSbased analysis allows the concurrent detection of homogenous variants and copy-neutral loss of heterozygosity. Mol Genet Genomic Med 2019; 7(10): e00945. DOI:10.1002/mgg3.945; Scuffins J., Keller-Ramey J., Dyer L., Douglas G., Torene R., Gainullin V., et al. Uniparental disomy in a population of 32,067 clinical exome trios. Genet Med 2021; 23(6): 1101–1107. DOI:10.1038/s41436–020–01092–8; Bis D.M., Schüle R., Reichbauer J., Synofzik M., Rattay T.W., Soehn A. et al. Uniparental disomy determined by whole-exome sequencing in a spectrum of rare motoneuron diseases and ataxias. Mol Genet Genomic Med 2017; 5: 280–286. DOI:10.1002/mgg3.285; Wang L., Liu P., Bi W., Sim T., Wang X., Walkiewicz M. et al. Contribution of uniparental disomy in a clinical trio exome cohort of 2675 patients. Mol Genet Genomic Med 2021; 9(11): e1792. DOI:10.1002/mgg3.1792; Song J., Shao H. SNP Array in Hematopoietic Neoplasms: A Review. Microarrays (Basel) 2015; 5(1): 1. DOI:10.3390/microarrays5010001; Eggermann T., Mackay D.J.G., Tömer Z. Uniparental Disomy and Imprinting Disorders. OBM Genetics 2018; 2(3): 031. DOI:10.21926/obm.genet.1803031; Yauy K., de Leeuw N., Yntema H.G., Pfundt R., Gilissen C. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet Med 2020; 22(4): 803–808. DOI:10.1038/s41436–019–0704-x; Radtke M., Moch J., Hentschel J., Schumann I. altAFplotter: a web app for reliable UPD detection in NGS diagnostics. bioRxiv 2023.08.08.546838. DOI:10.1101/2023.08.08.546838; Gouil Q., Keniry A. Latest techniques to study DNA methylation. Essays Biochem 2019; 63(6): 639–648. DOI:10.1042/EBC20190027; Ishida M. New developments in Silver–Russell syndrome and implications for clinical practice. Epigenomics 2016; 8(4): 563–580. DOI:10.2217/epi-2015–0010; Yong W.S., Hsu F.M., Chen P.Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016; 9: 26. DOI:10.1186/s13072–016–0075–3; Yamada M., Okuno H., Okamoto N., Suzuki H., Miya F., Takenouchi T. et al. Diagnosis of Prader–Willi syndrome and Angelman syndrome by targeted nanopore long-read sequencing. Eur J Med Genet 2023; 66(2): 104690. DOI:10.1016/j.ejmg.2022.104690; Aberg K.A., Chan R.F., van den Oord E.J.C.G. MBD-seq — realities of a misunderstood method for high-quality methylome-wide association studies. Epigenetics 2020; 15(4): 431–438. DOI:10.1080/15592294.2019.1695339; Xing X., Zhang B., Li D., Wang T. Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq. Methods Mol Biol 2018; 1708: 209–246. DOI:10.1007/978–1–4939–7481–8_12; Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Kuznetsov V.V., Degtyarev S.K. Mapping of R(5mC)GY Sites in the Genome of Human Malignant Cell Line Raji. Biol Med (Aligarh) 2015; 7(4): BM-135–15, 6 pages.; Boers R., Boers J., de Hoon B., Kockx C., Ozgur Z., Molijn A. et al. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res 2018; 28(1): 88–99. DOI:10.1101/gr.222885.117; Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Snezhkina A.V., Krasnov G.S., Kudryavtseva A.V. et al. Comparative Analysis Of RCGY Sites Methylation In Three Human Cell Lines. Epigenetic DNA diagnostics 2019; 1. DOI: 26213/SE.2019.76.40116

  4. 4
  5. 5
    Academic Journal

    Source: Siberian journal of oncology; Том 23, № 5 (2024); 146-156 ; Сибирский онкологический журнал; Том 23, № 5 (2024); 146-156 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3282/1280; Zhang C.Z., Spector A., Cornils H., Francis J.M., Jackson E.K., Liu S., Meyerson M. Chromothripsis from DNA damage in micronuclei. Nature. 2015; 522(7555): 179–84. doi:10.1038/nature14493.; Stephens P.J., Greenman C.D., Fu B., Yang F., Bignell G.R., Mudie L.J., Pleasance E.D., Lau K.W., Beare D., Stebbings L.A., McLaren S., Lin M.L., McBride D.J., Varela I., Nik-Zainal S., Leroy C., Jia M., Menzies A., Butler A.P., Teague J.W., Quail M.A., Burton J., Swerdlow H., Carter N.P., Morsberger L.A., Iacobuzio-Donahue C., Follows G.A., Green A.R., Flanagan A.M., Stratton M.R., Futreal P.A., Campbell P.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011; 144(1): 27–40. doi:10.1016/j.cell.2010.11.055.; Marcozzi A., Pellestor F., Kloosterman W.P. The Genomic Characteristics and Origin of Chromothripsis. Methods Mol Biol. 2018; 1769: 3–19. doi:10.1007/978-1-4939-7780-2_1.; Nazaryan-Petersen L., Bjerregaard V.A., Nielsen F.C., Tommerup N., Tümer Z. Chromothripsis and DNA Repair Disorders. J Clin Med. 2020; 9(3). doi:10.3390/jcm9030613.; Holland A.J., Cleveland D.W. Chromanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med. 2012; 18(11): 1630–8. doi:10.1038/nm.2988.; Hastings P.J., Ira G., Lupski J.R. A microhomology-mediated breakinduced replication model for the origin of human copy number variation. PLoS Genet. 2009; 5(1). doi:10.1371/journal.pgen.1000327.; Ly P., Cleveland D.W. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol. 2017; 27(12): 917–30. doi:10.1016/j.tcb.2017.08.005.; Slamova Z., Nazaryan-Petersen L., Mehrjouy M.M., Drabova J., Hancarova M., Marikova T., Novotna D., Vlckova M., Vlckova Z., Bak M., Zemanova Z., Tommerup N., Sedlacek Z. Very short DNA segment can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. Hum Mutat. 2018; 39(5): 709–16. doi:10.1002/humu.23408.; Nazaryan L., Stefanou E.G., Hansen C., Kosyakova N., Bak M., Sharkey F.H., Mantziou T., Papanastasiou A.D., Velissariou V., Liehr T., Syrrou M., Tommerup N. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet. 2014; 22(3): 338–43. doi:10.1038/ejhg.2013.147.; Nazaryan-Petersen L., Bertelsen B., Bak M., Jønson L., Tommerup N., Hancks D.C., Tümer Z. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination. Hum Mutat. 2016; 37(4): 385–95. doi:10.1002/humu.22953.; Kloosterman W.P., Hoogstraat M., Paling O., Tavakoli-Yaraki M., Renkens I., Vermaat J.S., van Roosmalen M.J., van Lieshout S., Nijman I.J., Roessingh W., van ‘t Slot R., van de Belt J., Guryev V., Koudijs M., Voest E., Cuppen E. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 2011; 12(10). doi:10.1186/gb-2011-12-10-r103.; Cortés-Ciriano I., Lee J.J., Xi R., Jain D., Jung Y.L., Yang L., Gordenin D., Klimczak L.J., Zhang C.Z., Pellman D.S.; PCAWG Structural Variation Working Group; Park PJ; PCAWG Consortium. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020; 52(3): 331–41. doi:10.1038/s41588-019-0576-7. Erratum in: Nat Genet. 2023; 55(5): 893. doi:10.1038/s41588- 020-0634-1. Erratum in: Nat Genet. 2023; 55(6): 1076. doi:10.1038/s41588-023-01315-z.; Shen M.M. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell. 2013; 23(5): 567–9. doi:10.1016/j.ccr.2013.04.025.; Baca S.C., Prandi D., Lawrence M.S., Mosquera J.M., Romanel A., Drier Y., Park K., Kitabayashi N., MacDonald T.Y., Ghandi M., van Allen E., Kryukov G.V., Sboner A., Theurillat J.P., Soong T.D., Nickerson E., Auclair D., Tewari A., Beltran H., Onofrio R.C., Boysen G., Guiducci C., Barbieri C.E., Cibulskis K., Sivachenko A., Carter S.L., Saksena G., Voet D., Ramos A.H., Winckler W., Cipicchio M., Ardlie K., Kantoff P.W., Ber ger M.F., Gabriel S.B., Golub T.R., Meyerson M., Lander E.S., Elemento O., Getz G., Demichelis F., Rubin M.A., Garraway L.A. Punctuated evolution of prostate cancer genomes. Cell. 2013; 153(3): 666–77. doi:10.1016/j. cell.2013.03.021.; Rausch T., Jones D.T., Zapatka M., Stütz A.M., Zichner T., Weischenfeldt J., Jäger N., Remke M., Shih D., Northcott P.A., Pfaff E., Tica J., Wang Q., Massimi L., Witt H., Bender S., Pleier S., Cin H., Hawkins C., Beck C., von Deimling A., Hans V., Brors B., Eils R., Scheurlen W., Blake J., Benes V., Kulozik A.E., Witt O., Martin D., Zhang C., Porat R., Merino D.M., Wasserman J., Jabado N., Fontebasso A., Bullinger L., Rücker F.G., Döhner K., Döhner H., Koster J., Molenaar J.J., Versteeg R., Kool M., Tabori U., Malkin D., Korshunov A., Taylor M.D., Lichter P., Pfster S.M., Korbel J.O. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012; 148(1–2): 59–71. doi:10.1016/j.cell.2011.12.013.; Wang K., Wang Y., Collins C.C. Chromoplexy: a new paradigm in genome remodeling and evolution. Asian J Androl. 2013; 15(6): 711–2. doi:10.1038/aja.2013.109.; Poot M. Genes, Proteins, and Biological Pathways Preventing Chromothripsis. Methods Mol Biol. 2018; 1769: 231–51. doi:10.1007/978-1-4939-7780-2_15.; Pagter M.S., Roostmalen M.J., Baas A.F., Renkens I., Duran K.J., van Binsbergen E., Yaraki M.T., Hochstenbach R., Veken L.T., Cuppen E., Kloosterman W.P. Chromothripsis in healthy individuals afects multiple protein-coding genes and can result in severe congential abnormalities in ofspring. Am J Hum Genet. 2015; 96(4): 651–6. doi:10.1016/j.ajhg.2015.02.005.; Bertelsen B., Nazaryan-Petersen L., Sun W., Mehrjouy M.M., Xie G., Chen W., Hjermind L.E., Taschner P.E.M., Tumer Z. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med. 2016; 18(5): 454–500. doi:10.1038/gim.2015.112.; Mustafn R.N., Khusnutdionova E.K. The role of transposable elements in the ecological morphogenesis under the infuence of stress. Vavilov Journal of Genetics and Breeding. 2019; 23(4): 380–89. doi:10.18699/VJ19.506.; Erwin J.A., Paquola A.C., Singer T., Gallina I., Novotny M., Quayle C., Bedrosian T.A., Alves F.I., Butcher C.R., Herdy J.R., Sarkar A., Lasken R.S., Muotri A.R., Gage F.H. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci. 2016; 19(12): 1583–91. doi:10.1038/nn.4388. Erratum in: Nat Neurosci. 2017; 20(10): 1427. doi:10.1038/nn1017-1427a. Erratum in: Nat Neurosci. 2018; 21(7): 1016. doi:10.1038/s41593-018-0131-3.; Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A., Zamora J., Supek F., Demeulemeester J., Santamarina M., Ju Y.S., Temes J., GarciaSouto D., Detering H., Li Y., Rodriguez-Castro J., Dueso-Barroso A., Bruzos A.L., Dentro S.C., Blanco M.G., Contino G., Ardeljan D., Tojo M., Roberts N.D., Zumalave S., Edwards P.A., Weischenfeldt J., Puiggròs M., Chong Z., Chen K., Lee E.A., Wala J.A., Raine K.M., Butler A., Waszak S.M., Navarro F.C.P., Schumacher S.E., Monlong J., Maura F., Bolli N., Bourque G., Gerstein M., Park P.J., Wedge D.C., Beroukhim R., Torrents D., Korbel J.O., Martincorena I., Fitzgerald R.C., Van Loo P., Kazazian H.H., Burns K.H.; PCAWG Structural Variation Working Group; Campbell P.J., Tubio J.M.C.; PCAWG Consortium. Pan-cancer analysis of whole genomes identifes driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020; 52(3): 306–19. doi:10.1038/s41588-019-0562-0. Erratum in: Nat Genet. 2023; 55(6): 1080. doi:10.1038/s41588-023-01319-9.; Jang H.S., Shah N.M., Du A.Y., Dailey Z.Z., Pehrsson E.C., Godoy P.M., Zhang D., Li D., Xing X., Kim S., O’Donnell D., Gordon J.I., Wang T. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet. 2019; 51(4): 611–7. doi:10.1038/s41588- 019-0373-3. Erratum in: Nat Genet. 2019; 51(5): 920. doi:10.1038/s41588-019-0416-9.; Chen T., Meng Z., Gan Y., Wang X., Xu F., Gu Y., Xu X., Tang J., Zhou H., Zhang X., Gan X., Van Ness C., Xu G., Huang L., Zhang X., Fang Y., Wu J., Zheng S., Jin J., Huang W., Xu R. The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 2013; 27(7): 1469–78. doi:10.1038/leu.2013.8.; Babaian A., Romanish M.T., Gagnier L., Kuo L.Y., Karimi M.M., Steidl C., Mager D.L. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene. 2016; 35(19): 2542–46. doi:10.1038/onc.2015.308.; Hur K., Cejas P., Feliu J., Moreno-Rubio J., Burgos E., Boland C.R., Goel A. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014; 63(4): 635–46. doi:10.1136/gutjnl-2012-304219.; Lamprecht B., Walter K., Kreher S., Kumar R., Hummel M., Lenze D., Köchert K., Bouhlel M.A., Richter J., Soler E., Stadhouders R., Jöhrens K., Wurster K.D., Callen D.F., Harte M.F., Giefng M., Barlow R., Stein H., Anagnostopoulos I., Janz M., Cockerill P.N., Siebert R., Dörken B., Bonifer C., Mathas S. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010; 16(5): 571–9. doi:10.1038/nm.2129.; Cervantes-Ayalc A., Esparza-Garrido R.R., Velazquez-Floes M.A. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet. 2020; 241: 1–11. doi:10.1016/j.cancergen.2019.11.004.; Lock F.E., Rebollo R., Miceli-Royer K., Gagnier L., Kuah S., Babaian A., Sistiaga-Poveda M., Lai C.B., Nemirovsky O., Serrano I., Steidl C., Karimi M.M., Mager D.L. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in difuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2014; 111(34): 3534–43. doi:10.1073/pnas.1405507111. Erratum in: Proc Natl Acad Sci USA. 2015; 112(33): 4630. doi:10.1073/pnas.1512789112.; Scarfò I., Pellegrino E., Mereu E., Kwee I., Agnelli L., Bergaggio E., Garaffo G., Vitale N., Caputo M., Machiorlatti R., Circosta P., Abate F., Barreca A., Novero D., Mathew S., Rinaldi A., Tiacci E., Serra S., Deaglio S., Neri A., Falini B., Rabadan R., Bertoni F., Inghirami G., Piva R.; European T-Cell Lymphoma Study Group. Identifcation of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016; 127(2): 221–32. doi:10.1182/blood-2014-12-614503.; Wiesner T., Lee W., Obenauf A.C., Ran L., Murali R., Zhang Q.F., Wong E.W., Hu W., Scott S.N., Shah R.H., Landa I., Button J., Lailler N., Sboner A., Gao D., Murphy D.A., Cao Z., Shukla S., Hollmann T.J., Wang L., Borsu L., Merghoub T., Schwartz G.K., Postow M.A., Ariyan C.E., Fagin J.A., Zheng D., Ladanyi M., Busam K.J., Berger M.F., Chen Y., Chi P. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature. 2015; 526(7573): 453–7. doi:10.1038/nature15258.; Fairbanks D.J., Fairbanks A.D., Ogden T.H., Parker G.J., Maughan P.J. NANOGP8: evolution of a human-specifc retro-oncogene. G3 (Bethesda). 2012; 2(11): 1447–57. doi:10.1534/g3.112.004366.; Haffner M.C., Aryee M.J., Toubaji A., Esopi D.M., Albadine R., Gurel B., Isaacs W.B., Bova G.S., Liu W., Xu J., Meeker A.K., Netto G., De Marzo A.M., Nelson W.G., Yegnasubramanian S. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010; 42(8): 668–75. doi:10.1038/ng.613.; Symer D.E., Connelly C., Szak S.T., Caputo E.M., Cost G.J., Parmigiani G., Boeke J.D. Human l1 retrotransposition is associated with genetic instability in vivo. Cell. 2002; 110(3): 327–38. doi:10.1016/s0092-8674(02)00839-5.; Vogt J., Bengesser K., Claes K.B., Wimmer K., Mautner V.F., van Minkelen R., Legius E., Brems H., Upadhyaya M., Högel J., Lazaro C., Rosenbaum T., Bammert S., Messiaen L., Cooper D.N., Kehrer-Sawatzki H. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 2014; 15(6). doi:10.1186/gb-2014-15-6-r80.; Choi B.O., Kim N.K., Park S.W., Hyun Y.S., Jeon H.J., Hwang J.H., Chung K.W. Inheritance of Charcot-Marie-Tooth disease 1A with rare nonrecurrent genomic rearrangement. Neurogenetics. 2011; 12(1): 51–8. doi:10.1007/s10048-010-0272-3.; Ji X., Zhao S. DA and Xiao-two giant and composite LTRretrotransposon-like elements identifed in the human genome. Genomics. 2008; 91(3): 249–58. doi:10.1016/j.ygeno.2007.10.014.; Jin H., Selfe J., Whitehouse C., Morris J.R., Solomon E., Roberts R.G. Structural evolution of the BRCA1 genomic region in primates. Genomics. 2004; 84(6): 1071–82. doi:10.1016/j.ygeno.2004.08.019.; Ribeiro I.P., Carreira I.M., Esteves L., Caramelo F., Liehr T., Melo J.B. Chromosomal breakpoints in a cohort of head and neck squamous cell carcinoma patients. Genomics. 2020; 112(1): 297–303. doi:10.1016/j.ygeno.2019.02.009.; Wang H., Li Y., Truong L.N., Shi L.Z., Hwang P.Y., He J., Do J., Cho M.J., Li H., Negrete A., Shiloach J., Berns M.W., Shen B., Chen L., Wu X. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell. 2014; 54(6): 1012–21. doi:10.1016/j.molcel.2014.04.012.; Suzuki J., Yamaguchi K., Kajikawa M., Ichiyanagi K., Adachi N., Koyama H., Takeda S., Okada N. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 2009; 5(4). doi:10.1371/journal.pgen.1000461.; Lee G., Sherer N.A., Kim N.H., Rajic E., Kaur D., Urriola N., Martini K.M., Xue C., Goldenfeld N., Kuhlman T.E. Testing the retroelement invasion hypothesis for the emergence of the ancestral eukaryotic cell. Proc Natl Acad Sci U S A. 2018; 115(49): 12465–70. doi:10.1073/pnas.1807709115.; Мустафин Р.Н., Хуснутдинова Э.К. Роль ретроэлементов в развитии наследственных опухолевых синдромов. Успехи молекулярной онкологии. 2021; 8(4): 42–52. doi:10.17650/2313-805X-2021-8-4-42-52.; Hancks D.C. A Role for Retrotransposons in Chromothripsis. Methods Mol Biol. 2018; 1769: 169–81. doi:10.1007/978-1-4939-7780-2_11.; Mustafn R.N. The role of transposable elements in the diferentiation of stem cells. Mol. Genet. Microbiol. Virol. 2019; 34: 67–74. doi:10.17116/molgen20193702151.; Baba Y., Huttenhower C., Nosho K., Tanaka N., Shima K., Hazra A., Schernhammer E.S., Hunter D.J., Giovannucci E.L., Fuchs C.S., Ogino S. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010; 9: 125. doi:10.1186/1476-4598-9-125.; Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One. 2014; 9(10). doi:10.1371/journal.pone.0109478.; Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79: 181–211. doi:10.1146/annurev.biochem.052308.093131.; Gu S., Yuan B., Campbell I.M., Beck C.R., Carvalho C.M., Nagamani S.C.S., Erez A., Patel A., Bacino C.A., Shaw C.A., Stankiewicz P., Cheung S.W., Bi W., Lupski J.R. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015; 24(14): 4061–77. doi:10.1093/hmg/ddv146.; Borun P., de Rosa M., Nedoszytko B., Walkowiak J., Plawski A. Specifc Alu elements involved in a signifcant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam Cancer. 2015; 14(3): 455–61. doi:10.1007/s10689-015-9800-5.; Crivelli L., Bubien V., Jones N., Chiron J., Bonnet F., BaroukSimonet E., Couzigou P., Sevenet N., Caux F., Longy M. Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur J Hum Genet. 2017; 25(9): 1087–91. doi:10.1038/ejhg.2017.81.; Dabora S.L., Nieto A.A., Franz D., Jozwiak S., Ouweland A.V.D., Kwiatkowski D.J. Characterisation of six large deletions in TSC2 identifed using long range PCR suggests diverse mechanisms including Alu mediated recombination. J Med Genet. 2000; 37(11): 877–83. doi:10.1136/jmg.37.11.877.; Franke G., Bausch B., Hoffmann M.M., Cybulla M., Wilhelm C., Kohlhase J., Scherer G., Neumann H.P.H. Alu-Alu recombination underlies the vast majority of large VHL germline deletions: Molecular characterization and genotype-phenotype correlation in VHL patients. Hum Mutat. 2009; 30(5): 776–86. doi:10.1002/humu.20948.; Hitchins M.P., Burn J. Alu in Lynch syndrome: a danger SINE. Cancer Prev Res (Phila). 2011; 4(10): 1527–30. doi:10.1158/1940-6207. CAPR-11-0417.; Coufal N.G., Garcia-Perez J.L., Peng G.E., Marchetto M.C.N., Muotri A.R., Mu Y., Carson C.T., Macia A., Moran J.V., Gage F.H. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci USA. 2011; 108(51): 20382–87. doi:10.1073/pnas.1100273108.; Mita P., Sun X., Fenyo D., Kahler D.J., Li D., Agmon N., Wudzinska A., Keegan S., Bader J.S., Yun C., Boeke J.D. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol. 2020; 27(2): 179–91. doi:10.1038/s41594-020-0374-z.; Montoya-Durango D.E., Ramos K.A., Bojang P., Ruiz L., Ramos I.N., Ramos K.S. LINE-1 silencing by retinoblastoma proteins is efected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer. 2016; 16: 38. doi:10.1186/s12885-016-2068-9.; Tiwari B., Jones A.E., Caillet C.J., Das S., Royer S.K., Abrams J.M. P53 directly repress human LINE1 transposons. Genes Dev. 2020; 34(21–22): 1439–51. doi:10.1101/gad.343186.120.; Ramos K.S., Montoya-Durango D.E., Teneng I., Nanez A., Stribinskis V. Epigenetic control of embryonic renal cell diferentiation by L1 retrotransposon. Birth Defects Res A Clin Mol Teratol. 2011; 91(8): 693–702. doi:10.1002/bdra.20786.; Мустафин Р.Н. Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе. Современная онкология. 2021; 23(4): 666–73. [Mustafn R.N. Infuence of retroelements on oncogenes and tumor suppressors in carcinogenesis: A review. Journal of Modern Oncology. 2021; 23(4): 666–73. (in Russian)]. doi:10.26442/18151434.2021.4.201199.; Gorbunova V., Seluanov A., Mita P., McKerrow W., Fenyö D., Boeke J.D., Linker S.B., Gage F.H., Kreiling J.A., Petrashen A.P., Woodham T.A., Taylor J.R., Helfand S.L., Sedivy J.M. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021; 596(7870): 43–53. doi:10.1038/s41586-021-03542-y.; https://www.siboncoj.ru/jour/article/view/3282

  6. 6
    Academic Journal

    Contributors: The work was funded by the Moscow budget subsidy No. 01-04-593 dated November 10, 2021., Работа выполнена за счет субсидии из бюджета г. Москвы № 01-04-593 от 10.11.2021 в рамках приказа Департамента здравоохранения города Москвы № 1181 от 30.11.2021 «Об организации проведения современных молекулярно-генетических исследований в городе Москве беременным женщинам и супружеским парам с отягощенным анамнезом». Авторы благодарят сотрудников лаборатории ООО «Эвоген» за проведение лабораторной работы: Леонову В.С., Золотопуп А.А., Голованову М.А., Панферову А.А., Айдарову В.И., Криницыну А.А, а также сотрудников Цитогенетической лаборатории ГБУЗ ЦПСиР ДЗМ и заведующую лабораторией Дубровину Е.В.

    Source: Medical Genetics; Том 22, № 3 (2023); 24-34 ; Медицинская генетика; Том 22, № 3 (2023); 24-34 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2276/1701; Капланова М.Т., Галактионова А.М., Баранова Е.Е. и др. Оценка медико-экономической эффективности внедрения неинвазивного пренатального теста: международный опыт. Вестник РАМН 2022; 77(4). doi:10.15690/vramn2006; Оленев А.С., Баранова Е.Е., Сагайдак О.В. и др. Международный опыт организации проведения неинвазивного пренатального теста. Вопросы гинекологии, акушерства и перинатологии 2021; 20(1): 129-137. doi:10.20953/1726-1678-2021-1-129-137; Оленев А.С., Баранова Е.Е., Сагайдак О.В. и др. Случайные находки при использовании полногеномного неинвазивного пренатального теста: клинические и этические аспекты. Проблемы репродукции 2021; 27(1): 78-87. doi:10.17116/repro20212701178; Bedei I., Wolter A., Weber A., et al. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes (Basel) 2021; 12(4): 501. doi:10.3390/genes12040501; Zaninović L., Bašković M., Ježek D. et al. Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. Journal of Clinical Medicine 2022; 11(12): 3350. doi:10.3390/jcm11123350; Van den Veyver I.B. Recent advances in prenatal genetic screening and testing. F1000Res. 2016; 5: 2591. doi:10.12688/f1000research.9215.1.; Liu X., Liu S., Wang H., Hu T. Potentials and challenges of chromosomal microarray analysis in prenatal diagnosis. Front Genet. 2022 Jul 26; 13: 938183. doi:10.3389/fgene.2022.938183; Shaffer L.G., Rosenfeld J.A., Dabell M.P., et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenatal Diagnosis 2012; 32(10): 986-95. doi:10.1002/pd.3943; Srebniak M.I., Diderich K.E., Joosten M., et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. European Journal of Human Genetics 2015; 24(5): 645-51. doi:10.1038/ejhg.2015.193; Wapner R.J., Martin C.L., Levy B., et al. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis. New England Journal of Medicine 2012; 367(23): 2175-84. doi:10.1056/nejmoa1203382; Grande M., Jansen F.A.R., Blumenfeld Y.J., et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology 2015; 46(6): 650-8. doi:10.1002/uog.14880; Levy B., Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertility and sterility 2018; 109(2): 201-212. doi:10.1016/j.fertnstert.2018.01.005; Dugoff L., Norton M.E., Kuller J.A. The use of chromosomal microarray for prenatal diagnosis. American Journal of Obstetrics and Gynecology 2016; 215(4): B2-9. doi:10.1016/j.ajog.2016.07.016; American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013; 122(6): 1374-7. doi:10.1097/01.AOG.0000438962.16108.d1.; Riggs E.R., Andersen E.F., Cherry A.M., et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020; 22(2): 245-257. doi:10.1038/s41436-019-0686-8.; Антоненко В.Г., Светличная Д.В., Журкова Н.В. и др. Случай синдрома Эмануэль у новорожденной девочки с врожденным пороком сердца. Медицинская генетика 2019; 18(9): 34-39. doi:10.25557/2073-7998.2019.09.34-39; Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека: Научно-практические аспекты. СПб: Издательство Н-Л, 2006. 640 с.; Шилова Н.В. Аутосомные реципрокные транслокации: пренатальная селекция, сегрегация и оценка эмпирического риска рождения жизнеспособного ребенка с хромосомным дисбалансом при семейном носительстве. Медицинская генетика 2018; 17(1): 41-49. doi:10.25557/2073-7998.2018.01.41-49

  7. 7
    Academic Journal

    Contributors: The work was supported by the state task № 122032300370-1 “Study of structure-functional features and mechanisms of formation of the chromosomal abnormalities and genomic imbalance”., Исследование проведено в рамках темы государственного задания № 122032300370-1 «Изучение структурно-функциональных особенностей и механизмов формирования хромосомных аномалий и геномного дисбаланса».

    Source: Medical Genetics; Том 22, № 4 (2023); 11-16 ; Медицинская генетика; Том 22, № 4 (2023); 11-16 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2281/1706; Denver Conference (1960): A proposed standard system of nomenclature of human mitotic chromosomes. Lancet 1960;I:1063–1065.; ISCN 1978 – An International System for Human Cytogenetic Nomenclature. Birth Defects: Original Article Series. 1978;14:8.; ISCN 2016 – An International System for Human Cytogenomic Nomenclature. McGowan-Jordan J, Simons A., Schmid M. (eds). Karger, 2016.; Liehr T. International System for Human Cytogenetic or Cytogenomic Nomenclature (ISCN): Some Thoughts. Cytogenet Genome Res 2021;161:223–224.; ISCN 2020 – An International System for Human Cytogenomic Nomenclature (2020) Ed. McGovan-Jordan J., Hastings R.J., Moore S. Karger. 2020.; Miller K., Madan K. ISCN 2020 compared to ISCN 2016. ECANewsletter. 2021;47:2–11.; Erratum. Cytogenet Genome Res 2021;161:476–477. DOI:10.1159/000520838

  8. 8
    Academic Journal

    Contributors: Технологический анализ зерна выполнен при поддержке проекта РНФ № 16-16-00011-П. Выращивание в поле проведено в условиях ЦКП «Селекционно-генетическая лаборатория» при поддержке бюджетного проекта № 0324-2019-0039-C-01.

    Source: Vavilov Journal of Genetics and Breeding; Том 24, № 7 (2020); 738-746 ; Вавиловский журнал генетики и селекции; Том 24, № 7 (2020); 738-746 ; 2500-3259 ; 10.18699/VJ20.662

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2816/1440; Адонина И.Г., Петраш Н.В., Тимонова Е.М., Христов Ю.А., Салина Е.А. Создание и изучение устойчивых к листовой ржавчине линий мягкой пшеницы с транслокациями от Aegilops speltoides Tausch. Генетика. 2012;48(4):488-494.; Вавилов Н.И. Иммунитет растений к инфекционным заболевани- ям. М., 1986.; Воронов С.И., Лапочкина И.Ф., Марченкова Л.А., Павлова О.В., Чавдарь Р.Ф., Орлова Т.Г. Пребридинговые исследования пшеницы мягкой по повышению устойчивости к биотическим и абиотическим стрессам в Нечерноземной зоне РФ. Бюл. Гос. Никитского ботанического сада. 2019;132:102-108. DOI 10.25684/NBG.boolt.132.2019.13.; Гайнуллин Н.Р., Лапочкина И.Ф., Жемчужина А.И., Киселева М.И., Коломиец Т.М., Коваленко Е.Д. Использование фитопатологического и молекулярно-генетических методов для идентификации генов устойчивости к бурой ржавчине у образцов мягкой пшеницы с чужеродным генетическим материалом коллекции «Арсенал». Генетика. 2007;43(8):1058-1064.; Ганенко И., Белая А. Что посеем. Общая посевная площадь в 2020 году составит около 80,3 млн гектаров. Агроинвестор. 2020. № 3. Доступно на сайте: https://www.agroinvestor.ru/analytics/article/33319-chto-poseem-obshchaya-posevnaya-ploshchad-v-2020-godu-sostavit-okolo-80-3-mln-gektarov/. Доступ: 29.07.20.; ГОСТ 10987-76. Зерно. Методы определения стекловидности (с изменениями № 1, 2). Дата введения: 1977-06-01. Переиздание с Изменениями № 1, 2, утвержденными в декабре 1988 г., декабре 1991 г. (ИУС 4-89, 4-92).; ГОСТ Р 54478-2011. Зерно. Методы определения количества и качества клейковины в пшенице. Дата введения: 2013-01-01.; ГОСТ Р 51415-99 (ИСО 5530-4-91) Мука пшеничная. Физические характеристики теста. Определение реологических свойств с применением альвеографа. Дата введения: 2001-03-01.; ГОСТ ISO 5530-1-2013. Мука пшеничная. Физические характеристики теста. Часть 1. Определение водопоглощения и реологических свойств с применением фаринографа (Переиздание). Дата введения: 2014-01-01.; Дорофеев В.Ф., Удачин Р.А., Семенова Л.В., Новикова М.В., Градчанинова О.Д., Шитова И.П., Мережко Ф.Ф., Филатенко Ф.Ф. Пшеницы мира. Л., 1987.; Егоров Г.А. Управление технологическими свойствами зерна. Воронеж, 2000.; Козьмина Н.П. Зерно. М., 1969.; Крупнова О.В. Качество зерна яровой мягкой пшеницы с транслокациями от сородичей: Дис. … д-ра биол. наук. Саратов, 2010.; Крупнова О.И. О сопоставлении качества зерна яровой и озимой пшеницы в связи с делением на рыночные классы. С.-х. биология. 2013;1:15-25. https://doi.org/10.15389/agrobiology.2013.1.15rus.; Лапочкина И.Ф. Реконструкция генома мягкой пшеницы (Triticum aestivum L.) при отдаленной гибридизации (с использованием Aegilops L. и других видов): Дис. … д-ра биол. наук. Немчиновка, 1999.; Лапочкина И.Ф., Ячевская Г.Л., Иорданская И.В., Кызласов В.Г., Руденко М.И., Макарова И.Ю., Серова А.С., Гайнуллин Н.Р., Коваленко Е.Д., Жемчужина A.И., Коломиец T.M., Соломатин Д.А., Кисилева М.И. Линии яровой мягкой пшеницы с идентифицированным генотипом устойчивости к бурой ржавчине и мучнистой росе из коллекции Арсенал. В: Доклады Второго Всероссийского Съезда по защите растений. СПб., 5–10 декабря 2005. СПб., 2005;493-495.; Mетодика государственного сортоиспытания сельскохозяйственных культур. М., 1988.; Митрофанова О.П. Генетические ресурсы пшеницы в России: состояние и предселекционное изучение. Вавиловский журнал генетики и селекции. 2012;16(1):10-20.; Симонов А.В., Чистякова А.К., Морозова Е.В., Щукина Л.В., Бёрнер А., Пшеничникова Т.А. Создание нового для мягкой пшеницы генотипа – носителя двух локусов мягкозерности эндосперма. Вавиловский журнал генетики и селекции. 2017;21(3): 341-346. DOI 10.18699/VJ17.251.; Цицин Н.В. Отдаленная гибридизация в семействе злаковых. М., 1958.; Шибаев П.Н., Гусев И.С., Самсонов М.М. Стекловидность и структурно-механические свойства зерна пшеницы. Селекция и семеноводство. 1974;3:22-26.; Adonina I.G., Salina E.A., Efremova T.T., Pshenichnikova T.T. The study of introgressive lines of Triticum aestivum × Aegilops speltoides by in situ and SSR analyses. Plant Breed. 2004;123:220-224. https://doi.org/10.1111/j.1439-0523.2004.00932.x.; Alvarez J.B., Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor. Appl. Genet. 2018;131:225-251. DOI 10.1007/s00122-017-3042-x.; Gonzalez-Hernandez J.L., Elias E.M., Kianian S.F. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica. 2004;139:217-225.; Lapochkina I.F., Iordanskaya I.V., Yatchevskaya G.L., Zhemchuzhina A.I., Kovalenko E.D., Solomatin D.A., Kolomiets T.M. Identification of alien genetic material and genes of resistance to leaf rust in wheat (Triticum aestivum L.) stocks. In: Proc. Tenth Int. Wheat Genetics Symp. 2003;3:1190-1192.; Leonova I.N., Budashkina E.B. The study of agronomical traits determining productivity of Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Russ. J. Genet. Appl. Res. 2017;7:299-307. https://doi.org/10.1134/S2079059717030091.; Li Y., Song Y., Zhou R., Branlard G., Jia J. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica. 2012;183(2):207-226. DOI 10.1007/s10681-011-0448-4.; Martin D.J., Stewart B.G. Dough stickiness in rye-derived wheat cultivars. Euphytica. 1990;51:77-86. https://doi.org/10.1007/BF00022895.; McIntosh R.A., Yamazaki Y., Dubcovsky J., Roger J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat. In: Proc. 12th Int. Wheat Genet. Symp. Yokohama, Japan, 2013. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdf.; Peña R.J. Wheat for bread and other foods. In: Curtis B.C., Rajaram S., Macpherson H.G. (Eds.). Bread Wheat – Improvement and Production. Rome: FAO, 2002.; Pshenichnikova T.A., Maystrenko O.I. Inheritance of genes coding for gliadin proteins and glume colour introgressed into Triticum aestivum from a synthetic wheat. Plant Breed. 1995;114(6):501-504. https://doi.org/10.1111/j.1439-0523.1995.tb00844.x.; Pshenichnikova T.A., Shchukina L.V., Simonov A.V., Chistyakova A.K., Morozova E.V. The use of monosomic lines of bread wheat for verification of quantitative trait loci (QTL). In: Proc. 15th Int. EWAC Conf. Novi Sad, Serbia, 7–11 November 2011. EWAC Newslett. 2012;180-181.; Pshenichnikova T.A., Simonov A.V., Ermakova M.F., Chistyakova A.K., Shchukina L.V., Morozova E.V. The effects on grain endosperm structure of an introgression from Aegilops speltoides Tausch. into chromosome 5A of bread wheat. Euphytica. 2010;175(3):315-322. DOI 10.1007/s10681-010-0168-1.; Salina E.A., Adonina I.G., Efremova T.T., Lapochkina I.F., Pshenichnikova T.A. The genome‐specific subtelomeric repeats for study of introgressive lines T. aestivum × Ae. speltoides. In: Proc. 11th EWAC Conf. Novosibirsk, 24–28 July 2000. EWAC Newslett. 2001; 161-164.; Shchukina L.V., Pshenichnikova T.A., Chistyakova A.K., Khlestkina E.K., Börner A. Properties of grain, flour and dough in bread wheat lines with Aegilops markgrafii introgressions. Cereal Res. Commun. 2017;45(2):296-306. https://doi.org/10.1556/0806.45.2017.012.; Vikram P., Franco J., Burgueño-Ferreira J., Li H., Sehgal D., Saint Pierre C., Ortiz C., Sneller C., Tattaris M., Guzman C., Paola Sansaloni C., Ellis M., Fuentes-Davila G., Reynolds M., Sonder K., Singh P., Payne T., Wenzl P., Sharma A., Bains N.S., Singh G.P., Crossa J., Singh S. Unlocking the genetic diversity of Creole wheats. Sci. Rep. 2016;6:1-13. https://doi.org/10.1038/srep23092.; https://vavilov.elpub.ru/jour/article/view/2816

  9. 9
    Academic Journal

    Contributors: State Budgeted Project 03242016-0003, Russian Foundation for Basic Research, A.Yu. Zotov, E.A. Kizilova, M.I. Rodionova, the staff of the Shared Access Center for Microscopy of Biologic Objects, Novosibirsk

    Source: Vavilov Journal of Genetics and Breeding; Том 21, № 2 (2017); 259-268 ; Вавиловский журнал генетики и селекции; Том 21, № 2 (2017); 259-268 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/938/903; Anderson L.K., Reeves A., Webb L.M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151:15691579.; Barton N.H., Otto S.P. Evolution of recombination due to random drift. Genetics. 2005;169(4):2353-2370.; Borodin P.M., Basheva E.A., Torgasheva A.A., Dashkevich O.A., Golenishchev F.N., Kartavtseva I.V., Mekada K., Dumont B.L. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res. 2012;20:259-268.; Bridge E.S., Jones A.W., Baker A.J. A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol. Phylogenet. Evol. 2005; 35(2):459-469.; Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96(1-4):97-112.; Calderon P.L., Pigozzi M.I. MLH1-focus mapping in birds shows equal recombination between sexes and diversity of crossover patterns. Chromosome Res. 2006;14(6):605-612.; del Priore L., Pigozzi M.I. Meiotic recombination analysis in female ducks (Anas platyrhynchos). Genetica. 2016;144(3):307-312.; Dumont B.L. Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics. 2017;205(1):155-168.; Ellegren H. Genomic evidence for a large-Z effect. Proc. Biol. Sci. 2009;276(1655):361-366.; Ellegren H. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol. Evol. 2010;25(5):283-291.; Eyre-Walker A., Hurst L.D. The evolution of isochores. Nat. Rev. Genet. 2001;2(7):549-555.; Gilbert A.T., Servello F.A. Insectivory versus piscivory in Black Terns: implications for food provisioning and growth of chicks. Waterbirds. 2005;28(4):436-444.; Gorlov I.P., Ladygina T.Y., Serov O.L., Borodin P.M. Positional control of chiasma distribution in the house mouse. Chiasma distribution in mice homozygous and heterozygous for an inversion in chromosome 1. Heredity. 1991;66:453-458.; Graves J.A.M. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 2014;22(1):45-57.; Gregory T.R. Animal Genome Size Database. http://www.genomesize.com [2 декабря 2016].; Griffin D.K., Burt D.W. All chromosomes great and small: 10 years on. Chromosome Res. 2014;22(1):1-6.; Griffin D.K., Robertson L.B.W., Tempest H.G., Skinner B.M. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet. Genome Res. 2007;117(1-4):64-77.; Hammar B.O. The karyotypes of thirty-one birds. Hereditas. 1970; 65(1):29-58.; Kleckner N., Zickler D., Jones G.H., Dekker J., Padmore R., Henle J., Hutchinson J. A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. USA. 2004;101(34):12592-12597.; Kolomiets O.L., Vorontsov N.N., Lyapunova E.A., Mazurova T.F. Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica. 1991;84(3):179-189.; Lynn A., Koehler K.E., Judis L., Chan E.R., Cherry J.P., Schwartz S., Seftel A., Hunt P.A., Hassold T.J. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science. 2002; 296(5576):2222-2225.; Mary N., Barasc H., Ferchaud S., Billon Y., Meslier F., Robelin D., Calgaro A., Loustau-Dudez A.-M., Bonnet N., Yerle M., Acloque H., Ducos A., Pinton A. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PloS ONE. 2014;9(6):e99123.; Matveevsky S., Bakloushinskaya I., Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016;6:29949.; McKee B.D., Handel M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma. 1993;102(2):71-80.; Nanda I., Schlegelmilch K., Haaf T., Schartl M., Schmid M. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 2008;122(2):150-156.; Nanda I., Shan Z., Schartl M., Burt D.W., Koehler M., Nothwang H.G., Grützner F., Paton I.R., Windsor D., Dunn I., Engel W., Staeheli P., Mizuno S., Haaf T., Schmid M. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat. Genet. 1999;21(3):258-259.; Nie W., O’Brien P.C., Fu B., Wang J., Su W., He K., Bed’Hom B., Volobuev V., Feguson-Smith M.A., Dobigny G., Yang F. Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes. BMC Evol. Biol. 2015;15(1):205.; Olsen K.M., Larsson H. Terns of Europe and North America. L.: Christopher Helm Publishers, 1995.; Otto S.P., Michalakis Y. The evolution of recombination in changing environments. Trends Ecol. Evol. 1998;13(4):145-151.; Pala I., Naurin S., Stervander M., Hasselquist D., Bensch S., Hansson B. Evidence of a neo-sex chromosome in birds. Heredity. 2012; 108(I. 3):264-272.; Pardo-Manuel de Villena F., Sapienza C. Recombination is proportional to the number of chromosome arms in mammals. Mamm. Genome. 2001;12(4):318-322.; Peters A.H., Plug A.W., van Vugt M.J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66-71.; Peterson D.G., Stack S.M., Healy J.L., Donohoe B.S., Anderson L.K. The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res. 1994;2(2):153-162.; Pigozzi M.I. Distribution of MLH1 foci on the synaptonemal complexes of chicken oocytes. Cytogenet. Genome Res. 2001;95(3-4): 129-133.; Pigozzi M.I. Diverse stages of sex-chromosome differentiation in tinamid birds: evidence from crossover analysis in Eudromia elegans and Crypturellus tataupa. Genetica. 2011;139(6):771-777.; Pigozzi M.I., Solari A.J. Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res. 1997;5(6):421-428.; Pigozzi M.I., Solari A.J. The ZW pairs of two paleognath birds from two orders show transitional stages of sex chromosome differentiation. Chromosome Res. 1999;7(7):541-551.; Pigozzi M.I., Solari A.J. Meiotic recombination in the ZW pair of a tinamid bird shows a differential pattern compared with neognaths. Genome. 2005;48(2):286-290.; Reeves A. MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44(3):439-443.; Romanov M.N., Farré M., Lithgow P.E., Fowler K.E., Skinner B.M., O’Connor R., Fonseka G., Backström N., Matsuda Y., Nishida C., Houde P., Jarvis E.D., Ellegren H., Burt D.W., Larkin D.M., GriffinD.K. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics. 2014;15(1):1060.; Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., Oliver-Bonet M., Fernández-Bellón H., Garcia F., Garcia-Caldés M., Robinson T.J., Ruiz-Herrera A. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 2013; 280(1771):20131945.; Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7(4):289-295.; Solari A.J. Equalization of Z and W axes in chicken and quail oocytes. Cytogenet. Genome Res. 1992;599(1):52-56.; Solari A.J., Pigozzi M.I. Recombination nodules and axial equalization in the ZW pairs of the Peking duck and the Guinea fowl. Cytogenet. Genome Res. 1993;64(3-4):268-272.; Szczys P., Lamothe K.A., Druzyaka A., Poot M.J., Siokhin V., van der Winden J. Range-wide patterns of population differentiation of Eurasian Black Terns (Chlidonias niger niger) related to use of discrete post-nuptial staging sites. J. Ornithol. 2016;1-14.; Szczys P., Nisbet I.C.T., Wingate D.B. Conservation genetics of the Common Tern (Sterna hirundo) in the North Atlantic region; implications for the critically endangered population at Bermuda. Conserv. Genet. 2012;13(4):1039-1043.; Torgasheva A.A., Borodin P.M. Immunocytological analysis of meiotic recombination in the gray goose (Anser anser). Cytogenet. Genome Res. 2017. DOI 10.1159/000458741.; Turner J.M.A. Meiotic sex chromosome inactivation. Development. 2007;134:1823-1831.; Youds J.L., Boulton S.J. The choice in meiosis – defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 2011;124(4):501-513.; Zhou Q., Wang J., Huang L., Nie W., Wang J., Liu Y., Zhao X., Yang F., Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 2008;9:R98.; Zhou Q., Zhang J., Bachtrog D., An N., Huang Q., Jarvis E.D., Gilbert M.T.P., Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346(6215):1246338.; Zickler D., Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspect. Biol. 2015; 7(6):a016626.; https://vavilov.elpub.ru/jour/article/view/938

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20