Εμφανίζονται 1 - 20 Αποτελέσματα από 69 για την αναζήτηση '"ХИМИОРЕЗИСТЕНТНОСТЬ"', χρόνος αναζήτησης: 1,12δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2442/1332; Аверченко Р.Р. Медико-социальные риск-факторы возникновения онкогинекологической патологии. Современные проблемы здравоохранения и медицинской статистики. 2024;(1):561–77. https://doi.org/10.24412/2312-2935-2024-1-561-577.; Сабанцев М.А., Шрамко С.В., Жилина Н.М. и др. Рак эндометрия: динамика заболеваемости и распространенности за период 2004-2021 гг. в России и Новокузнецке. Бюллетень медицинской науки. 2023;1(29):16–23.; Саевец В.В., Важенин А.В., Ульрих Е.А. и др. Диагностика и лечение распространенных форм рака яичников III–IV стадии. Злокачественные опухоли. 2020;10(3s1):15–20. https://doi.org/10.18027/2224-5057-2019-10-3s1-15-20.; Кулиева Г.З., Мкртчян Л.С., Крикунова Л.И. и др. Эпидемиологические аспекты заболеваемости раком шейки матки и смертности от него (обзор литературы). Опухоли женской репродуктивной системы. 2023;19(3):77–84. https://doi.org/10.17650/1994-4098-2023-19-3-77-84.; Сафронова К.В., Артемьева А.С., Нюганен А.О. и др. Саркомы нижнего женского полового тракта (вульвы, влагалища и шейки матки): обзор литературы и собственные наблюдения. Опухоли женской репродуктивной системы. 2019;15(3):54–63. https://doi.org/10.17650/1994-4098-2019-15-3-54-63.; Клюкина Л.А., Соснова Е.А., Ищенко А.А., Давыдов М.М. Возможности прогнозирования индивидуального риска развития рака шейки матки у женщин репродуктивного возраста с помощью математического моделирования. Опухоли женской репродуктивной системы. 2024;20(2):90–8. https://doi.org/10.17650/1994-4098-2024-16-2-90-98.; Садовая Н.Д., Безменко А.А. Стратегии скрининга и профилактики рака шейки матки. Известия Российской военно-медицинской академии. 2024;43(1):77–85. https://doi.org/10.17816/rmmar623153.; Семенкин А.А., Сапроненко В.С., Логинова Е.Н., Надей Е.В. Таргетная терапия в онкологии. Экспериментальная и клиническая гастроэнтерология. 2022;9(205):222–8. https://doi.org/10.31146/1682-8658-ecg-205-9-222-228.; Боденко В.В., Ларькина М.С., Прач А.А. и др. Молекулярные мишени таргетной терапии злокачественных новообразований. Бюллетень сибирской медицины. 2024;23(2):101–13. https://doi.org/10.20538/1682-0363-2024-2-101-113.; Pavlova N.N., Pallasch C., Elia A.E. et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife. 2013;2:e00358. https://doi.org/10.7554/eLife.00358.; Шевлюк Н.Н., Халикова Л.В., Халиков А.А. и др. Участие молекул адгезии в изменении взаимодействий клеток при развитии метастазирования. Гены и Клетки. 2020;15(4):27–32. https://doi.org/10.23868/202012004.; Samanta D., Almo S.C. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2015;72(4):645–58. https://doi.org/10.1007/s00018-014-1763-4.; Miyoshi J., Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol. 2007;27(6):590–604. https://doi.org/10.1159/000108103.; Derycke M.S., Pambuccian S.E., Gilks C.B. et al. Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol. 2010;134(5):835–45. https://doi.org/10.1309/AJCPGXK0FR4MHIHB.; Takai Y., Ikeda W., Ogita H., Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol. 2008;24:309–42. https://doi.org/10.1146/annurev.cellbio.24.110707.175339.; Liu Y., Han X., Li L. et al. Wang G. Role of Nectin-4 protein in cancer (Review). Int J Oncol. 2021;59(5):93. https://doi.org/10.3892/ijo.2021.5273.; Chatterjee S., Sinha S., Kundu C.N. Nectin cell adhesion molecule-4 (NECTIN-4): A potential target for cancer therapy. Eur J Pharmacol. 2021;911:174516. https://doi.org/10.1016/j.ejphar.2021.174516.; Fabre-Lafay S., Monville F., Garrido-Urbani S. et al. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer. 2007;7:73. https://doi.org/10.1186/1471-2407-7-73.; Liu Y., Li G., Zhang Y. et al. Nectin-4 promotes osteosarcoma progression and metastasis through activating PI3K/AKT/NF-κB signaling by down-regulation of miR-520c-3p. Cancer Cell Int. 2022;22(1):252. https://doi.org/10.1186/s12935-022-02669-w.; Deng H., Shi H., Chen L. et al. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 2019;19:106. https://doi.org/10.1186/s12935-019-0824-z.; Takano A., Ishikawa N., Nishino R. et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009;69(16):6694–703. https://doi.org/10.1158/0008-5472.CAN-09-0016.; Nishiwada S., Sho M., Yasuda S. et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015;34(1):30. https://doi.org/10.1186/s13046-015-0144-7.; Challita-Eid P.M., Satpayev D., Yang P. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76(10):3003–13. https://doi.org/10.1158/0008-5472.CAN-15-1313.; Boylan K.L.M., Manion R.D., Shah H. et al. Inhibition of ovarian cancer cell spheroid formation by synthetic peptides derived from nectin-4. Int J Mol Sci. 2020;21(13):4637. https://doi.org/10.3390/ijms21134637.; Chatterjee S., Kundu C.N. Nanoformulated quinacrine regulates NECTIN-4 domain specific functions in cervical cancer stem cells. Eur J Pharmacol. 2020;883:173308. https://doi.org/10.1016/j.ejphar.2020.173308.; Hoffman-Censits J., Maldonado L. Targeted treatment of locally advanced and metastatic urothelial cancer: enfortumab vedotin in context. Onco Targets Ther. 2022;15:1519–29. https://doi.org/10.2147/OTT.S370900.; Wu Y., Zhu M., Sun B. et al. A humanized trivalent Nectin-4-targeting nanobody drug conjugate displays potent antitumor activity in gastric cancer. J Nanobiotechnology. 2024;22(1):256. https://doi.org/10.1186/s12951-024-02521-5.; Пожарисский К.М., Раскин Г.А., Винокуров В.Л. и др. Иммуногистохимические особенности клеток серозной аденокарциномы яичников, определяющие клиническое течение заболевания и выживаемость больных. Архив патологии. 2015;77(1):38–40. https://doi.org/10.17116/patol201577138.; Bekos C., Muqaku B., Dekan S. et al. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high grade serous ovarian cancer – an integrative multi-omics approach. Cancers (Basel). 2019;11(5):698. https://doi.org/10.3390/cancers11050698.; Klymenko Y., Nephew K.P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers (Basel). 2018;10(9):295. https://doi.org/10.3390/cancers10090295.; Gong W., Liu Y., Diamandis E.P. et al. Prognostic value of kallikrein-related peptidase 7 (KLK7) mRNA expression in advanced high-grade serous ovarian cancer. J Ovarian Res. 2020;13(1):125. https://doi.org/10.1186/s13048-020-00725-5.; Dong Y., Loessner D., Irving-Rodgers H. et al. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis. 2014;31(1):135–47. https://doi.org/10.1007/s10585-013-9615-4.; Boylan K.L., Buchanan P.C., Manion R.D. et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8(6):9717–38. https://doi.org/10.18632/oncotarget.14206.; Nabih E.S., Motaleb F.I.A., Salama F.A. The diagnostic efficacy of nectin 4 expression in ovarian cancer patients. Biomarkers. 2014;19(6):498–504. https://doi.org/10.3109/1354750X.2014.940503.; Klinkebiel D., Zhang W., Akers S.N. et al. DNA methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 2016;14(9):787–94. https://doi.org/10.1158/1541-7786.MCR-16-0097.; Giancontieri P., Turetta C., Barchiesi G. et al. High-grade serous carcinoma of unknown primary origin associated with STIC clinically presented as isolated inguinal lymphadenopathy: a case report. Front Oncol. 2024;13:1307573. https://doi.org/10.3389/fonc.2023.1307573.; Rogmans C., Feuerborn J., Treeck L. et al. Nectin-4 as blood-based biomarker enables detection of early ovarian cancer stages. Cancers (Basel). 2022;14(23):5867. https://doi.org/10.3390/cancers14235867.; Nayak A., Das S., Nayak D. et al. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol (Dordr). 2019;42(2):157–71. https://doi.org/10.1007/s13402-018-0417-1.; Satapathy S.R., Siddharth S., Das D. et al. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: implication of base excision repair cascade. Mol Pharm. 2015;12(11):4011–25. https://doi.org/10.1021/acs.molpharmaceut.5b00461.; Das D., Satapathy S.R., Siddharth S. et al. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother Pharmacol. 2015;76(3):471–9. https://doi.org/10.1007/s00280-015-2794-8.; Nayak A., Satapathy S.R., Das D. et al. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci Rep. 2016;6:20600. https://doi.org/10.1038/srep20600.; Fang P., You M., Cao Y. et al. Development and validation of bioanalytical assays for the quantification of 9MW2821, a nectin-4-targeting antibody-drug conjugate. J Pharm Biomed Anal. 2024;248:116318. https://doi.org/10.1016/j.jpba.2024.116318.; Zhou W., Fang P., Yu D. et al. Preclinical evaluation of 9MW2821, a site-specific monomethyl auristatin E-based antibody-drug conjugate for treatment of Nectin-4-expressing cancers. Mol Cancer Ther. 2023;22(8):913–25. https://doi.org/10.1158/1535-7163.MCT-22-0743.; A phase 1a/b study ADRX-0706 in subjects with select advanced solid tumors. 2024. Режим доступа: https://clinicaltrials.gov/study/NCT06036121. [Дата доступа: 23.02.2025].; Cancer Genome Atlas Research Network; Kandoth C., Schultz N., Cherniack A.D. et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.; Mahdy H., Vadakekut E.S., Crotzer D. Endometrial cancer. 2024 Apr 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 Apr 20.; Brianso-Llort L., Saéz-Lopez C., Alvarez-Guaita A. et al. Recent advances on sex hormone-binding globulin regulation by nutritional factors: clinical implications. Mol Nutr Food Res. 2024;68(14):e2400020. https://doi.org/10.1002/mnfr.202400020.; Huang-Doran I., Kinzer A.B., Jimenez-Linan M. et al. Ovarian hyperandrogenism and response to gonadotropin-releasing hormone analogues in primary severe insulin resistance. J Clin Endocrinol Metab. 2021;106(8):2367–83. https://doi.org/10.1210/clinem/dgab275.; Wang L., Yang M., Guo X. et al. Estrogen-related receptor-α promotes gallbladder cancer development by enhancing the transcription of Nectin-4. Cancer Sci. 2020;111(5):1514–27. https://doi.org/10.1111/cas.14344.; Chen L., Mao X., Huang M. et al. PGC-1α and ERRα in patients with endometrial cancer: a translational study for predicting myometrial invasion. Aging (Albany NY). 2020;12(17):16963–80. https://doi.org/10.18632/aging.103611.; Chang H.K., Park Y.H., Choi J.A. et al. Nectin-4 as a predictive marker for poor prognosis of endometrial cancer with mismatch repair impairment. Cancers (Basel). 2023;15(10):2865. https://doi.org/10.3390/cancers15102865.; Bell D.W., Ellenson L.H. Molecular genetics of endometrial carcinoma. Annu Rev Pathol. 2019;14:339–67. https://doi.org/10.1146/annurev-pathol-020117-043609.; Calandrella M.L., Francesconi S., Caprera C. et al. Nectin-4 and DNA mismatch repair proteins expression in upper urinary tract urothelial carcinoma (UTUC) as a model for tumor targeting approaches: an ImGO pilot study. BMC Cancer. 2022;22(1):168. https://doi.org/10.1186/s12885-022-09259-z.; Dixit G., Gonzalez-Bosquet J., Skurski J. et al. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med. 2023;13(5):e1223. https://doi.org/10.1002/ctm2.1223.; Левченко Н.Е., Муштенко С.В., Савостикова М.В., Захарова Т.И. Проблемы диагностики и лечения рака маточной трубы (клинический случай). Опухоли женской репродуктивной системы. 2016;12(3):80–6. https://doi.org/10.17650/1994-4098-2016-12-3-80-86.; Лушникова П.А., Сухих Е.С., Старцева Ж.А. Рак вульвы. Вклад лучевой терапии в лечение заболевания. Сибирский онкологический журнал. 2024;23(3):150–8. https://doi.org/10.21294/1814-4861-2024-23-3-150-158.; Kaltenecker B., Dunton C.J., Tikaria R. Vaginal Cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2023 Mar 1.; Gandhi T., Zubair M., Bhatt H. Cancer Antigen 125. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 May 2.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154.; Bedir R., Sehitoglu I., Balik G. et al. The role of the adhesion molecule Nectin-4 in the pathogenesis of endometriosis. Clin Exp Obstet Gynecol. 2016;43(3):463–6.; Ballester M., Gonin J., Rodenas A. et al. Eutopic endometrium and peritoneal, ovarian and colorectal endometriotic tissues express a different profile of nectin-1, -3, -4 and nectin-like molecule 2. Hum Reprod. 2012;27(11):3179–86. https://doi.org/10.1093/humrep/des304.; Ito M., Nishizawa H., Tsutsumi M. et al. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC Med Genet. 2018;19(1):166. https://doi.org/10.1186/s12881-018-0681-y.; Yoshizawa H., Nishizawa H., Ito M. et al. Increased levels of nectin-4 as a serological marker for pre-eclampsia. Fujita Med J. 2023;9(3):200–5. https://doi.org/10.20407/fmj.2022-027.; Грекова Ю.Н., Зильберберг Н.В., Кузнецова Е.И. Экстрамаммарная болезнь Педжета. Акушерство и гинекология. 2022;(6):176–9. https://doi.org/10.18565/aig.2022.6.176-179.; Murata M., Ito T., Tanaka Y. et al. NECTIN4 expression in extramammary Paget's disease: implication of a new therapeutic target. Int J Mol Sci. 2020;21(16):5891. https://doi.org/10.3390/ijms21165891.; https://www.gynecology.su/jour/article/view/2442

  2. 2
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 450-463 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 450-463 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2167/1242; https://www.gynecology.su/jour/article/view/2167/1243; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. https://doi.org/10.1126/science.1092385.; Бицадзе В.О., Слуханчук Е.В., Солопова А.Г. и др. Роль микроокружения в росте и распространении опухоли. Акушерство, Гинекология и Репродукция. 2024;18(1):96-111. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.489.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Тромбовоспаление у онкологических больных. Акушерство, Гинекология и Репродукция. 2022;16(5):611-22. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.355.; Leal A.C., Mizurini D.M., Gomes T. et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep. 2017;7(1):1-12. https://doi.org/10.1038/s41598-017-06893-7.; Moorlag S.J., Rodriguez-Rosales Y.A., Gillard J. et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 2020;33(7):108387. https://doi.org/10.1016/j.celrep.2020.108387.; Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19. Акушерство, Гинекология и Репродукция. 2021;15(5):499-514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Вклад внеклеточных ловушек нейтрофилов в протромботическое состояние и прогрессию опухоли у онкогинекологических пациенток. Акушерство, Гинекология и Репродукция. 2023;17(1):53-64. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.385.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Внеклеточные ловушки нейтрофилов как маркеры тромбовоспаления в патогенезе злокачественных новообразований женских половых органов и молочной железы. Акушерство, Гинекология и Репродукция. 2022;16(4):426-37. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.335.; Слуханчук Е.В. NETs и онкологический процесс. Акушерство, Гинеко-логия и Репродукция. 2021;15(1):107—16. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.204.; Sunaga N., Imai H., Shimizu K. et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer. 2012;130(8):1733-44. https://doi.org/10.1002/ijc.26164.; Alfaro C., Teijeira A., Onate C. et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 2016;22(15):3924— 36. https://doi.org/10.1158/1078-0432.CCR-15-2463.; Magna M., Pisetsky D.S. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016;38(5):1029-41. https://doi.org/10.1016/j.clinthera.2016.02.029.; Meher A.K., Spinosa M., Davis J.P. et al. Novel role of IL (interleukin)-1 p in neutrophil extracellular trap formation and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2018;38(4):843-53. https://doi.org/10.1161/ATVBAHA.117.309897.; Zarogoulidis P., Katsikogianni F., Tsiouda T. et al. Interleukin-8 and interleukin-17 for cancer. Cancer Invest. 2014;32(5):197-205. https://doi.org/10.3109/07357907.2014.898156.; Kohidai L., Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, Rantes and TNF-alpha) in the unicellular Tetrahymena pyriformis. Cytokine. 1998;10(7):481-6. https://doi.org/10.1006/cyto.1997.0328.; Nie M., Yang L., Bi X. et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling NETs promote DLBCL progression. Clin Cancer Res. 2019;25(6):1867-79. https://doi.org/10.1158/1078-0432.CCR-18-1226.; Baggiolini M., Walz A., Kunkel S. Neutrophil-activating peptide-1/ interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989;84(4):1045-9. https://doi.org/10.1172/JCI114265.; Xu H., Zeng Y., Liu L. et al. PRL-3 improves colorectal cancer cell proliferation and invasion through IL-8 mediated glycolysis metabolism. Int J Oncol. 2017;51(4):1271-9. https://doi.org/10.3892/ijo.2017.4090.; Sanmamed M.F., Carranza-Rua O., Alfaro C. et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins serum IL8 and tumor burden. Clin Cancer Res. 2014;20(22):5697-707. https://doi.org/10.1158/1078-0432.CCR-13-3203.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Иммунотромбоз у онкологических больных: вклад внеклеточных ловушек нейтрофилов, ADAMTS-13 и фактора фон Виллебранда. Акушерство, Гинекология и Репродукция. 2022;16(6):648-63. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.364.; Юпатов Е.Ю., Мустафин И.Г., Курманбаев Т.Е. и др. Роль нарушений локального гемостаза в генезе патологии эндометрия. Акушерство, Гинекология и Репродукция. 2021;15(4):430-40. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.214.; Malte A.L., H0jbjerg J.A., Larsen J.B. Platelet parameters as biomarkers for thrombosis risk in cancer: A systematic review and meta-analysis. Semin Thromb Hemost. 2024;50(3):360-83. https://doi.org/10.1055/s-0043-1764381.; Jiménez-Alcázar M., Napirei M., Panda R. et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost. 2015;13(5):732-42. https://doi.org/10.1111/jth.12796.; Gould T., Lysov Z., Liaw P. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015;13:S82-S91. https://doi.org/10.1111/jth.12977.; Vu T.T., Leslie B.A., Stafford A.R. et al. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. J Thromb Haemost. 2016;115(01):89-98. https://doi.org/10.1160/TH15-04-0336.; Naudin C., Burillo E., Blankenberg S. et al. Factor XII contact activation. Semin Thromb Hemost. 2017;43(8):814-26. https://doi.org/10.1055/s-0036-1598003.; Noubouossie D.F., Whelihan M.F., Yu Y.-B. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021-9. https://doi.org/10.1182/blood-2016-06-722298.; Longstaff C., Varju I., Sotonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288(10):6946-56. https://doi.org/10.1074/jbc.M112.404301.; Komissarov A.A., Florova G., Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem. 2011;286(49):41949-62. https://doi.org/10.1074/jbc.M111.301218.; Varjú I., Longstaff C., Szabó L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost. 2015;113(06):1289-98. https://doi.org/10.1160/TH14-08-0669.; Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. https://doi.org/10.1002/art.39247.; Obermeier H.L., Riedl J., Ay C. et al. The role of ADAMTS-13 and von Willebrand factor in cancer patients: results from the Vienna cancer and thrombosis study. Res Pract Thromb Haemost. 2019;3(3):e12197. https://doi.org/10.1002/rth2.12197.; Mazetto B.M., Orsi F.L., Barnabé A. et al. Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb Res. 2012;130(6):889-93. https://doi.org/10.1016/j.thromres.2012.09.009.; Liu Y., Starr M.D., Bulusu A. et al. Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer Med. 2013;2(2):234-42. https://doi.org/10.1002/cam4.71.; Sweeney J.D., Killion K.M., Pruet C.F., Spaulding M.B. von Willebrand factor in head and neck cancer. Cancer. 1990;66(11):2387-9. https://doi.org/10.1002/1097-0142(19901201)66:113.0.co;2-u.; Guo R., Yang J., Liu X. et al. Increased von Willebrand factor over decreased ADAMTS-13 activity is associated with poor prognosis in patients with advanced non-small-cell lung cancer. J Clin Lab Anal. 2018;32(1):e22219. https://doi.org/10.1002/jcla.22219.; Hivert B., Caron C., Petit S. et al. Clinical and prognostic implications of low or high level of von Willebrand factor in patients with Waldenstrom macroglobulinemia. Blood. 2012;120(16):3214-21. https://doi.org/10.1182/blood-2011-11-388256.; Bauer A.T., Suckau J., Frank K. et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood. 2015;125(20):3153-63. https://doi.org/10.1182/blood-2014-08-595686.; Goertz L., Schneider S.W., Desch A. et al. Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget. 2016;7(42):68527. https://doi.org/10.18632/oncotarget.11832.; Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Внеклеточные ловушки нейтрофилов: участие в процессах воспаления и дизрегуляции гемостаза, в том числе у пациентов с COVID-19 и тяжелой акушерской патологией. Акушерство, Гинекология и Репродукция. 2021;15(4):335-50. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.238.; Huang R.H., Fremont D.H., Diener J.L. et al. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure. 2009;17(11):1476-84. https://doi.org/10.1016/j.str.2009.09.011.; Grassle S., Huck V., Pappelbaum K.I. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2014;34(7):1382-9. https://doi.org/10.1161/ATVBAHA.113.303016.; Carestia A., Kaufman T., Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leucoc Biol. 2016;99(1):153-62. https://doi.org/10.1189/jlb.3A0415-161R.; Honda M., Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenter Hepatol. 2018;15(4):206-21. https://doi.org/10.1038/nrgastro.2017.183.; Farkas P., Csuka D., Mikes B. et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119—27. https://doi.org/10.1016/j.imbio.2016.10.014.; Vossenaar E.R., Zendman A.J., van Venrooij W.J., Pruijn G.J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 2003;25(11):1106—18. https://doi.org/10.1002/bies.10357.; Hensen S.M., Pruijn G.J. Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol Cell Proteomics. 2014;13(2):388-96. https://doi.org/10.1074/mcp.R113.033746.; van Beers J.J., Zendman A.J., Raijmakers R. et al. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie. 2013;95(2):299-308. https://doi.org/10.1016/j.biochi.2012.09.029.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и р. Маркеры внеклеточ-ных ловушек нейтрофилов у женщин со злокачественными ново-образованиями репродуктивной системы, получавших хирургическое лечение и адъювантную химиотерапию. Акушерство, Гинекология и Репродукция. 2023;17(4):420—32. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.432.; Lewis H.D., Liddle J., Coote J.E. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189—91. https://doi.org/10.1038/nchembio.1735.; Martinod K., Demers M., Fuchs T.A. et al. Neutrophil histone modification by peptidyl arginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674—9. https://doi.org/10.1073/pnas.1301059110.; Hisada Y., Sachetto A.T.A., Mackman N. Circulating tissue factor-positive extracellular vesicles and their association with thrombosis in different diseases. Immunol Rev. 2022;312(1):61—75. https://doi.org/10.1111/imr.13106.; Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res. 2019;125(5):507—19. https://doi.org/10.1161/CIRCRESAHA.118.314571.; Quinn K., Henriques M., Parker T. et al. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2008;295(5):H1817—24. https://doi.org/10.1152/ajpheart.00472.2008.; Higazi A.A., Ganz T., Kariko K., Cines D.B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J Biol Chem. 1996;271(30):17650-5. https://doi.org/10.1074/jbc.271.30.17650.; Pillai V.G., Bao J., Zander C.B. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110-9. https://doi.org/10.1182/blood-2015-12-688747.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085-93. https://doi.org/10.1182/blood-2004-03-1101.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706-12. https://doi.org/10.1182/blood-2009-03-213967.; Nishimura K., Sano M., Ohtaka M. et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286(6):4760-71. https://doi.org/10.1074/jbc.M110.183780.; Zheng L., Abdelgawwad M.S., Zhang D. et al. Histone-induced thrombotic thrombocytopenic purpura in adamts13-/-zebrafish depends on von Willebrand factor. Haematologica. 2020;105(4):1107-19. https://doi.org/10.3324/haematol.2019.237396.; Richardson P.G., Chanan-Khan A., Schlossman R.L. et al. Phase II trial of Single Agent Bortezomib (VELCADE®) in patients with previously untreated multiple myeloma (MM). Blood. 2004;106(11):336. https://doi.org/10.1182/blood.V104.11.336.336.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor - cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528-34. https://doi.org/10.1182/blood-2005-03-1087.; Lysov Z., Dwivedi D.J., Gould T.J., Liaw P.C. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA. Blood Coagul Fibrinolysis. 2017;28(1):72-82. https://doi.org/10.1097/MBC.0000000000000546.; Swystun L.L., Mukherjee S., Liaw P.C. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost. 2011;9(11):2313-21. https://doi.org/10.1111/j.1538-7836.2011.04465.x.; Lysov Z., Swystun L.L., Kuruvilla S. et al. Lung cancer chemotherapy agents increase procoagulant activity via protein disulfide isomerasedependent tissue factor decryption. Blood Coagul Fibrinolysis. 2015;26(1):36-45. https://doi.org/10.1097/MBC.0000000000000145.; Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076-81. https://doi.org/10.1073/pnas.1200419109.; Zhang Y., Guoqiang L., Sun M., Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med. 2020;17(1):32-43. https://doi.org/10.20892/j.issn.2095-3941.2019.0372.; Zhang Y., Chandra V., Riquelme Sanchez E. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020;217(12):e20190354. https://doi.org/10.1084/jem.20190354.; Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647-56. https://doi.org/10.4049/jimmunol.1300436.; Teijeira A., Garasa S., Gato M. et al. Cxcr1 and cxcr2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity.19;52(5):856-71.e8. https://doi.org/10.1016/j.immuni.2020.03.001.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880-5. https://doi.org/10.1073/pnas.1005743107.; Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71:4179-94. https://doi.org/10.1007/s00018-014-1683-3.; Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.; Gao H., Lan X., Li S., Xue Y. Relationships of MMP-9, E-cadherin, and VEGF expression with clinicopathological features and response to chemosensitivity in gastric cancer. Tumor Biol. 2017;39(5):1010428317698368. https://doi.org/10.1177/1010428317698368.; Viallard C., Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409-26. https://doi.org/10.1007/s10456-017-9562-9.; Zhu T., Zou X., Yang C. et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Mol Med. 2021;48(1):1-13. https://doi.org/10.3892/ijmm.2021.4960.; Ribatti D., Tamma R., Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6):100773. https://doi.org/10.1016/j.tranon.2020.100773.; Rayes R.F., Vourtzoumis P., Rjeily M.B. et al. Neutrophil extracellular trap-associated CEACAM1 as a putative therapeutic target to prevent metastatic progression of colon carcinoma. J Immunol. 2020;204(8):2285-94. https://doi.org/10.4049/jimmunol.1900240.; Wherry E.J. T cell exhaustion. Nat Immunol. 2011;12(6):492-9. https://doi.org/10.1038/ni.2035.; Jiang W., He Y., He W. et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2021;11:622509. https://doi.org/10.3389/fimmu.2020.622509.; Kaltenmeier C., Yazdani H.O., Morder K. et al. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 2021;12:785222. https://doi.org/10.3389/fimmu.2021.785222.; https://www.gynecology.su/jour/article/view/2167

  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 2 (2023); 57-64 ; Опухоли головы и шеи; Том 13, № 2 (2023); 57-64 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/889/586; Brotchi J., Bonnal J., Gerebtzoff M.A. Astroblaste tumoral et astrocyte réactionnel: distinction histochimique par l’activité de la déshydrogénase du glutamate. Neurochirurgie 1972;18(2):150–4.; Brotchi J. Astrocytes réactionnels et épilepsie. Acta Neurol Belg 1972;72(3):137–45.; Van Meir E.G., Hadjipanayis C.G., Norden A.D. et al. Exciting new advances in neuro-oncology. CA Cancer J Clin 2010;60(3):166–93. DOI:10.3322/caac.20069; Тягунова Е.Е., Захаров А.С., Глухов А.И. и др. Особенности эпилептиформной активности у пациентов с диагностированной глиобластомой: от генетических и биохимических механизмов к клиническим аспектам. Опухоли головы и шеи 2022;12(3):102–13. DOI:10.17650/2222-1468-2022-12-3-102-113; Darmanis S., Sloan S.A., Croote D. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 2017;21(5):1399–410. DOI:10.1016/j.celrep.2017.10.030; Zhang L., Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 2015;31(3):371–8. DOI:10.1007/s12264-014-1522-4; Umare M.D., Wankhede N.L., Bajaj K.K. et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Fr 2022;80(4):409–25. DOI:10.1016/j.pharma.2021.11.004; Liddelow S.A., Barres B.A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 2017;46(6):957–67. DOI:10.1016/j.immuni.2017.06.006; Heiland H.D., Ravi V.M., Behringer S.P. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019;10(1):2541. DOI:10.1038/s41467-019-10493-6; Shlapakova T.I., Kostin R.K., Tyagunova E.E. Reactive oxygen species: participation in cellular processes and progression of pathology. Russian Journal of Bioorganic Chemistry 2020;46(5):657–74. DOI:10.1134/s1068162020050222; Zhang Y., Chen K., Sloan S.A. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci 2014;34(36):11929–47. DOI:10.1523/JNEUROSCI.1860-14.2014; Zhang Y., Sloan S.A., Clarke L.E. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016;89(1):37–53. DOI:10.1016/j.neuron.2015.11.013; Liddelow S.A., Guttenplan K.A., Clarke L.E. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481–7. DOI:10.1038/nature21029; Zamanian J.L., Xu L., Foo L.C. et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012;32(18):6391–410. DOI:10.1523/JNEUROSCI.6221-11.2012; Guan X., Hasan M.N., Maniar S. et al. Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 2018;55(8):6927–38. DOI:10.1007/s12035-018-0880-8; Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 2014;62(9):1377–91. DOI:10.1002/glia.22683; Butt A.M., Fern R.F., Matute C. Neurotransmitter signaling in white matter. Glia 2014;62(11):1762–79. DOI:10.1002/glia.22674; Haroutunian V., Katsel P., Roussos P. et al. Myelination, oligodendrocytes, and serious mental illness. Glia 2014;62(11):1856–77. DOI:10.1002/glia.22716; Banker G.A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 1980;209(4458):809–10. DOI:10.1126/science.7403847; Ullian E.M., Sapperstein S.K., Christopherson K.S. et al. Control of synapse number by glia. Science 2001;291(5504):657–61. DOI:10.1126/science.291.5504.657; Christopherson K.S., Ullian E.M., Stokes C.C. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005;120(3):421–33. DOI:10.1016/j.cell.2004.12.020; Kucukdereli H., Allen N.J., Lee A.T. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci USA 2011;108(32):E440–9. DOI:10.1073/pnas.1104977108; Allen N.J., Bennett M.L., Foo L.C. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012;486(7403):410–4. DOI:10.1038/nature11059; Singh S.K., Stogsdill J.A., Pulimood N.S. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell 2016;164(1–2):183–96. DOI:10.1016/j.cell.2015.11.034; Farhy-Tselnicker I., van Casteren A.C., Lee A. et al. Astrocytesecreted glypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation. Neuron 2017;96(2):428–45.e413. DOI:10.1016/j.neuron.2017.09.053; Krencik R., Seo K., van Asperen J.V. et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep 2017;9(6):1745–53. DOI:10.1016/j.stemcr.2017.10.026; Stogsdill J.A., Ramirez J., Liu D. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017;551(7679):192–7. DOI:10.1038/nature24638; Blanco-Suarez E., Liu T.F., Kopelevich A. et al. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 2018;100(5):1116–32.e1113. DOI:10.1016/j.neuron.2018.09.043; Chung W.S., Clarke L.E., Wang G.X. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013;504(7480):394–400. DOI:10.1038/nature12776; Tasdemir-Yilmaz O.E., Freeman M.R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 2014;28(1):20–33. DOI:10.1101/gad.229518.113; Vainchtein I.D., Chin G., Cho F.S. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018;359(6381):1269–73. DOI:10.1126/science.aal3589; Lee J.H., Kim J.Y., Noh S. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021;590(7847):612–7. DOI:10.1038/s41586-020-03060-3; Kuffler S.W., Nicholls J.G., Orkand R.K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 1966;29(4):768–87. DOI:10.1152/jn.1966.29.4.768; Olsen M.L., Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008;107(3):589–601. DOI:10.1111/j.1471-4159.2008.05615.x; Kelley K.W., Ben Haim L., Schirmer L. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 2018;98(2):306–19.e307. DOI:10.1016/j.neuron.2018.03.010; Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016;19(2):182–9. DOI:10.1038/nn.4201; Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. Активные формы кислорода: участие в клеточных процессах и развитии патологии. Биоорганическая химия 2020;46(5):466–85. DOI:10.31857/S013234232005022X; Yu X., Nagai J., Marti-Solano M. et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron 2020;108(6):1146–62.e1110. DOI:10.1016/j.neuron.2020.09.021; Placone A.L., Quinones-Hinojosa A., Searson P.C. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 2016;37(1):61–9. DOI:10.1007/s13277-015-4242-0; Burda J.E., Bernstein A.M., Sofroniew M.V. Astrocyte roles in traumatic brain injury. Exp Neurol 2016;275(3):305–15. DOI:10.1016/j.expneurol.2015.03.020; Heneka M.T., Carson M.J., El Khoury J. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14(4):388–405. DOI:10.1016/s1474-4422(15)70016-5; Krawczyk M.C., Haney J.R., Pan L. et al. Human astrocytes exhibit tumor microenvironment-, age-, and sex-related transcriptomic signatures. J Neurosci 2022;42(8):1587–603. DOI:10.1523/JNEUROSCI.0407-21.2021; Diaz-Castro B., Bernstein A.M., Coppola G. et al. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021;36(6):109508. DOI:10.1016/j.celrep.2021.109508; Pinter A., Hevesi Z., Zahola P. et al. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal 2020;74:109710. DOI:10.1016/j.cellsig.2020.109710; Chen W., Wang D., Du X. et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 2015;32(3):43. DOI:10.1007/s12032-015-0487-0; Biasoli D., Sobrinho M.F., da Fonseca A.C. et al. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogene 2014;3(10):e123. DOI:10.1038/oncsis.2014.36; Shlapakova T.I., Tyagunova E.E., Kostin R.K. et al. Targeted antitumor drug delivery to glioblastoma multiforme cells. Russ J Bioorg Chem 2021;47(2):376–9. DOI:10.1134/S1068162021020254; Шлапакова Т.И., Тягунова Е.Е., Костин Р.К. и др. Адресная доставка противоопухолевых препаратов к клеткам мультиформной глиобластомы. Биоорганическая химия 2021;47(3):299–303. DOI:10.31857/S0132342321020251; Bogoyavlenskaya T.A., Tyagunova E.E., Kostin R.K. et al. Glioblastoma break-in; try something new. Int J Cancer Manag 2021;14(1):e109054. DOI:10.5812/ijcm.109054; Esteban F.J., Horcajadas A., El-Rubaidi O. et al. El monóxido de nitrógeno en los astrocitomas malignos. Rev Neurol 2005;40(7):437–40.; Campos J.C., Campos P.T., Bona N.P. et al. Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma. Med Chem 2022;18(4):452–62. DOI:10.2174/1573406417666210806094543; Grant R., Ironside J.W. Glutathione S-transferases and cytochrome P450 detoxifying enzyme distribution in human cerebral glioma. J Neurooncol 1995;25(1):1–7. DOI:10.1007/BF01054717; Han X., Yoon S.H., Ding Y. et al. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncol Rep 2010;23(4):1053–62. DOI:10.3892/or_00000732; Fletcher-Sananikone E., Kanji S., Tomimatsu N. et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res 2021;81(23):5935–47. DOI:10.1158/0008-5472.CAN-21-0752; Nikolenko V.N., Gridin L.A., Oganesyan M.V. The posterior perforated substance: a brain mystery wrapped in an enigma. Curr Top Med Chem 2019;19(32):2991–8. DOI:10.2174/1568026619666191127122452; https://ogsh.abvpress.ru/jour/article/view/889

  6. 6
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 22, № 2 (2023); 122-133 ; Бюллетень сибирской медицины; Том 22, № 2 (2023); 122-133 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.ssmu.ru/jour/article/view/5229/3401; https://bulletin.ssmu.ru/jour/article/view/5229/3424; Motohara T., Masuda K., Morotti M., Zheng Y., El-Sahhar S., Chong K.Y. et al. An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene. 2019;38(16):2885–2898. DOI:10.1038/s41388-018-0637-x.; Ahmed N., Abubaker K., Findlay J.K. Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets. Mol. Asp. Med. 2014;39:110–125. DOI:10.1016/j.mam.2013.06.002.; Horst D., Kriegl L., Engel J., Kirchner T., Jung A. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investigation. 2009;27(8):844–850. DOI:10.1080/07357900902744502.; Yan Y., Zuo X., Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Translational Medicine. 2015;4(9):1033–1043. DOI:10.5966/sctm.2015-0048.; Lee Y.J., Wu C.C., Li J.W., Ou C.C., Hsu S.C., Tseng H.H. et al. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers. Oncotarget. 2016;7(48):78499–78515. DOI:10.18632/oncotarget.12100.; Gao M.Q., Choi Y.P., Kang S., Youn J.H., Cho N.H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672–2680. DOI:10.1038/onc.2010.35.; Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320. DOI:10.1158/0008-5472.CAN08-0364.; Li Z., Block M.S., Vierkant R.A., Fogarty Z.C., Winham S.J., Visscher D.W. et al. The inflammatory microenvironment in epithelial ovarian cancer: a role for TLR4 and MyD88 and related proteins. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(10):13279–13286. DOI:10.1007/s13277-016-5163-2.; Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biology. 2000;2(6):346–351. DOI:10.1038/35014038.; López J., Valdez-Morales F.J., Benítez-Bribiesca L., Cerbón M., Carrancá A.G. Normal and cancer stem cells of the human female reproductive system. Reproductive Biology and Endocrinology. 2013;11:53. DOI:10.1186/1477-7827-11-53.; Spizzo G., Went P., Dirnhofer S., Obrist P., Moch H., Baeuerle P.A. et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecologic Oncology. 2006;103(2):483–488. DOI:10.1016/j.ygyno.2006.03.035.; Chang B., Liu G., Xue F., Rosen D.G., Xiao L., Wang X. et al. ALDH1 expression correlates with favorable prognosis in ovarian cancers. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology. 2009;22(6):817–823. DOI:10.1038/modpathol.2009.35.; Deng S., Yang X., Lassus H., Liang S., Kaur S., Ye Q. et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One. 2010;5(4):e10277. DOI:10.1371/journal.pone.0010277.; Cioffi M., D’Alterio C., Camerlingo R., Tirino V., Consales C., Riccio A. et al. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci. Report. 2015;5:10357. DOI:10.1038/srep10357.; Kajiyama H., Shibata K., Terauchi M., Ino K., Nawa A., Kikkawa F. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. International Journal of Cancer. 2008;122(1):91–99. DOI:10.1002/ijc.23083.; Krohn A., Song Y.H., Muehlberg F., Droll L., Beckmann C., Alt E. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer Letters. 2009;280(1):65–71. DOI:10.1016/j.canlet.2009.02.005.; Rodda D.J., Chew J.L., Lim L.H., Loh Y.H., Wang B., Ng H.H. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 2005;280(26):247317. DOI:10.1074/jbc.M502573200.; Alemohammad H., Asadzadeh Z., Motafakker Azad R., Hemmat N., Najafzadeh B., Vasefifar P. et al. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci. 2020;260:118337. DOI:10.1016/j.lfs.2020.118337.; Lin F.K., Chui Y.L. Generation of induced pluripotent stem cells from mouse cancer cells. Cancer Biother. Radiopharm. 2012;27(10):694–700. DOI:10.1089/cbr.2012.1227.; Kaufhold S., Garbán H., Bonavida B. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J. Exp. Clin. Cancer Res. 2016;35:84. DOI:10.1186/s13046-016-0359-2.; Stevanovic M., Zuffardi O., Collignon J., Lovell-Badge R., Goodfellow P. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm. Genome. 1994;5(10):640– 642. DOI:10.1007/BF00411460.; Peng S., Maihle N.J., Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 2010;29(14):2153–2159. DOI:10.1038/onc.2009.500.; Baba T., Convery P.A., Matsumura N., Whitaker R.S., Kondoh E., Perry T. et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28(2):209–218. DOI:10.1038/onc.2008.374.; Curley M.D., Therrien V.A., Cummings C.L., Sergent P.A., Koulouris C.R., Friel A.M. et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–2883. DOI:10.1002/stem.236.; Silva I.A., Bai S., McLean K., Yang K., Griffith K., Thomas D. et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71(11):3991–4001. DOI:10.1158/0008-5472.CAN-10-3175.; Wei X., Dombkowski D., Meirelles K., Pieretti-Vanmarcke R., Szotek P.P., Chang H.L. et al. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc. Natl. Acad. Sci. U S A. 2010;107(44):18874–18879. DOI:10.1073/pnas.1012667107.; Jiang H., Lin X., Liu Y., Gong W., Ma X., Yu Y. et al. Transformation of epithelial ovarian cancer stemlike cells into mesenchymal lineage via EMT results in cellular heterogeneity and supports tumor engraftment. Mol. Med. 2012;18(1):1197– 1208. DOI:10.2119/molmed.2012.00075.; Motohara T., Masuko S., Ishimoto T., Yae T., Onishi N., Muraguchi T. et al. Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis. 2011;32(11):1597–1606. DOI:10.1093/carcin/bgr183.; Gao M.Q., Choi Y.P., Kang S., Youn J.H., Cho N.H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672– 2680. DOI:10.1038/onc.2010.35.; Кайгородова Е.В., Федулова Н.В., Очиров М.О., Дьяков Д.А., Молчанов С.В., Часовских Н.Ю. Различные популяции опухолевых клеток в асцитической жидкости больных раком яичников. Бюллетень сибирской медицины. 2020;19(1):50–58. DOI:10.20538/1682-0363-2020-1-50-58.; Кайгородова Е.В., Очиров М.О., Молчанов С.В., Рогачев Р.Р., Дьяков Д.Д., Чернышова А.Л. и др. Различные популяции EpСam-положительных клеток в асцитической жидкости у больных раком яичников: связь со степенью канцероматоза. Бюллетень сибирской медицины. 2021;20(2):44–53. DOI:10.20538/1682-0363-2021-2-44-53.; Wang Z., Yang L., Huang Z., Li X., Xiao J., Qu Y. et al. Identification of prognosis biomarkers for high-grade serous ovarian cancer based on stemness. Front. Genet. 2022;13:861954. DOI:10.3389/fgene.2022.861954.; Bai S., Ingram P., Chen Y.C., Deng N., Pearson A., Niknafs Y.S. et al. EGFL6 regulates the asymmetric division, maintenance, and metastasis of ALDH+ ovarian cancer cells. Cancer Res. 2016;76(21):6396–6409. DOI:10.1158/0008-5472.CAN-16-0225.; Wang K., Wang Y., Wang Y., Liu S., Wang C., Zhang S. et al. EIF5A2 enhances stemness of epithelial ovarian cancer cells via a E2F1/KLF4 axis. Stem Cell Res. Ther. 2021;12(1):186. DOI:10.1186/s13287-021-02256-2.; Giordano M., Decio A., Battistini C., Baronio M., Bianchi F., Villa A. et al. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling. J. Exp. Clin. Cancer Res. 2021;40(1):319. DOI:10.1186/s13046-021-02117-z.; Zhang Y., Wang Y., Zhao G., Tanner E.J., Adli M., Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J. Clin. Invest. 2022;132(10):151591. DOI:10.1172/JCI151591.; Schwitalla S., Fingerle A.A., Cammareri P., Nebelsiek T., Göktuna S.I., Ziegler P.K. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-celllike properties. Cell. 2013;152(1-2):25–38. DOI:10.1016/j.cell.2012.12.012.; Raghavan S., Mehta P., Xie Y., Lei Y.L., Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J. Immunother. Cancer. 2019;7(1):190. DOI:10.1186/s40425-019-0666-1.; Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320. DOI:10.1158/0008-5472.CAN-08-0364.; Lau W., Peng W.C., Gros P., Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28(4):305–316. DOI:10.1101/gad.235473.113.; Генинг С.О., Абакумова Т.В., Антонеева И.И., Ризванов А.А., Генинг Т.П., Гуфурбаева Д.У. Стволово-подобные опухолевые клетки и провоспалительные цитокины в асцитической жидкости пациенток с раком яичников. Клиническая лабораторная диагностика. 2021;66(5):297– 303. DOI:10.51620/0869-2084-2021-66-5-297-303.; Meirelles K., Benedict L.A., Dombkowski D., Pepin D., Preffer F.I., Teixeira J. et al. Human ovarian cancer stem/ progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(7):2358–2363. DOI:10.1073/pnas.1120733109.; Bourguignon L.Y., Peyrollier K., Xia W., Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat- 3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. The Journal of Biological Chemistry. 2008;283(25):17635–17651. DOI:10.1074/jbc.M800109200.; Xia M., Overman M.J., Rashid A., Chatterjee D., Wang H., Katz M.H. et al. Expression and clinical significance of epidermal growth factor receptor and insulin-like growth factor receptor 1 in patients with ampullary adenocarcinoma. Human Pathology. 2015;46(9):1315–1322. DOI:10.1016/j.humpath.2015.05.012.; Garson K., Vanderhyden B.C. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction. 2015;149(2):59–70. DOI:10.1530/REP-14-0234.; Jäger M., Schoberth A., Ruf P., Hess J., Hennig M., Schmalfeldt B. et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res. 2012;72(1):24–32. DOI:10.1158/0008-5472.CAN-11-2235.; Akhter M.Z., Sharawat S.K., Kumar V., Kochat V., Equbal Z., Ramakrishnan M. et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype. Oncogene. 2018;37(16):2089–2103. DOI:10.1038/s41388-017-0106-y.; Wicha M.S., Liu S., Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res. 2006;66(4):1883–1890. DOI:10.1158/0008-5472.CAN-05-3153.; Кайгородова Е.В., Ковалев О.В., Чернышова А.Л., Вторушин С.В., Шпилёва О.В. Гетерогенность EpCAM-положительных клеток в асцитической жидкости low-grade серозной карциномы яичников: клинический случай. Опухоли женской репродуктивной системы. 2021;17(4):90– 95. DOI:10.17650/1994 4098 2021 17 4 90 95.; Козик А.В., Кайгородова Е.В., Грищенко М.Ю., Вторушин С.В., Чернышова А.Л. EPCAM+CD45+ клетки в асцитической жидкости больных новообразованиями яичников: связь с уровнями онкомаркеров и степенью злокачественности. Сибирский онкологический журнал. 2022;21(5):44– 51. DOI:10.21294/1814-4861-2022-21-5-44-51.; Kaigorodova E.V., Kozik A.V., Zavaruev I.S. Grishchenko M.Y. Hybrid/atypical forms of circulating tumor cells: current state of the art. Biochemistry Moscow. 2022;87(4):380– 390. DOI:10.1134/S0006297922040071.; Izar B., Tirosh I., Stover E.H., Wakiro I., Cuoco M.S., Alter I. et al. A single-cell landscape of high-grade serous ovarian cancer. Nature Medicine. 2020;26(8):1271–1279. DOI:10.1038/s41591-020-0926-0.; Wu X., Liu X., Koul S., Lee C.Y., Zhang Z., Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5(20):9546–9563. DOI:10.18632/oncotarget.2542.; Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecologic Oncology. 2009;113(1):143–148. DOI:10.1016/j.ygyno.2008.11.032.; Bapat S.A., Mali A.M., Koppikar C.B., Kurrey N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025– 3029. DOI:10.1158/0008-5472.CAN-04-3931.; Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol. Oncol. 2009;113(1):143–148. DOI:10.1016/j.ygyno.2008.11.032.; Liu X., Taftaf R., Kawaguchi M., Chang Y.F., Chen W., Entenberg D. et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9(1):96–113. DOI:10.1158/2159-8290.CD-18-0065.; Xu S., Yang Y., Dong L., Qiu W., Yang L., Wang X. et al. Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer. Scientific Reports. 2014;4:5646. DOI:10.1038/srep05646.; Sodek K.L., Ringuette M.J., Brown T.J. Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. International Journal of Cancer. 2009;124(9):2060–2070. DOI:10.1002/ijc.24188.; Kenny H.A., Chiang C.Y., White E.A., Schryver E.M., Habis M., Romero I.L. et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. The Journal of Clinical Investigation. 2014;124(10):4614–4628. DOI:10.1172/JCI74778.; Iwanicki M.P., Chen H.Y., Iavarone C., Zervantonakis I.K., Muranen T., Novak M. et al. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight. 2016;1(10):e86829. DOI:10.1172/jci.insight.86829.; Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010;177(3):1053–1064. DOI:10.2353/ajpath.2010.100105.; Elloul S., Elstrand M.B., Nesland J.M., Tropé C.G., Kvalheim G., Goldberg I. et al. Snail, slug, and smad-interacting protein 1 as novel parameters of disease aggressive ness in metastatic ovarian and breast carcinoma. Cancer. 2005;103(8):1631–1643. DOI:10.1002/cncr.20946.; Veatch A.L., Carson L.F., Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. International Journal of Cancer. 1994;58(3):393–399. DOI:10.1002/ijc.2910580315.; Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PloS One. 2012;7(10):e46858. DOI:10.1371/journal.pone.0046858.; Fritz J.L., Collins O., Saxena P., Buensuceso A., Ramos Valdes Y., Francis K.E. et al. A novel role for NUAK1 in promoting ovarian cancer metastasis through regulation of fibronectin production in spheroids. Cancers. 2020;12(5):1250. DOI:10.3390/cancers12051250.; Ojasalu K., Brehm C., Hartung K., Nischak M., Finkernagel F., Rexin P. et al. Upregulation of mesothelial genes in ovarian carcinoma cells is associated with an unfavorable clinical outcome and the promotion of cancer cell adhesion. Molecular Oncology. 2020;14(9):2142–2162. DOI:10.1002/1878-0261.12749.; Reinartz S., Lieber S., Pesek J., Brandt D.T., Asafova A., Finkernagel F. et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Molecular Oncology. 2019;13(2):185–201. DOI:10.1002/1878-0261.12396.; Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nature reviews. Cancer. 2013;13(4):273–282. DOI:10.1038/nrc3432.; Rakina M., Kazakova A., Villert A., Kolomiets L., Larionova I. Spheroid formation and peritoneal metastasis in ovarian cancer: the role of stromal and immune components. International Journal of Molecular Sciences. 2022;23(11):6215. DOI:10.3390/ijms23116215.; Dick J.E., Bhatia M., Gan O., Kapp U., Wang J.C. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997;15Suppl.1:199–203;discussion 204–197. DOI:10.1002/stem.5530150826.; Wang L., Mezencev R., Bowen N.J., Matyunina L.V., McDonald J.F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and Cellular Biochemistry. 2012;363(1-2):257–268. DOI:10.1007/s11010-011-1178-6.; De Thé H. Differentiation therapy revisited. Nat. Rev. Cancer. 2018;18(2):117–127 DOI:10.1038/nrc.2017.103.; Nayak S., Mahenthiran A., Yang Y., McClendon M., Mania-Farnell B., James C.D. et al. Bone morphogenetic protein 4 targeting glioma stem-like cells for malignant glioma treatment: latest advances and implications for clinical application. Cancers (Basel). 2020;12(2):516. DOI:10.3390/cancers12020516.; Arima Y., Nobusue H., Saya H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci. 2020;111(8):2689– 2695. DOI:10.1111/cas.14504.; Correa R.J., Peart T., Valdes Y.R., DiMattia G.E., Shepherd T.G. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 2012;33(1):49–58. DOI:10.1093/carcin/bgr241.; Hua H., Zhang H., Chen J., Wang J., Liu J., Jiang Y. Targeting Akt in cancer for precision therapy. Journal of Hematology & Oncology. 2021;4(1):128. DOI:10.1186/s13045-021-01137-8.; Emami K.H., Nguyen C., Ma H., Kim D.H., Jeong K.W., Eguchi M. et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(34):12682–12687. DOI:10.1073/pnas.0404875101.; Rafehi S., Ramos Valdes Y., Bertrand M., McGee J., Préfontaine M., Sugimoto A. et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocrine-Related Cancer. 2016;23(3):147–159. DOI:10.1530/ERC-15-0383.; Jäger M., Schoberth A., Ruf P., Hess J., Hennig M., Schmalfeldt B. et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research. 2012;72(1):24–32. DOI:10.1158/0008-5472.CAN11-2235.; https://bulletin.ssmu.ru/jour/article/view/5229

  7. 7
    Academic Journal

    Συγγραφείς: R. N. Mustafin, Р. Н. Мустафин

    Πηγή: Advances in Molecular Oncology; Том 8, № 3 (2021); 25-33 ; Успехи молекулярной онкологии; Том 8, № 3 (2021); 25-33 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/377/237; Haferlach C., Grossmann V., Kohlmann A. et al. Deletion of the tumor-suppressor gene NF1 occur in 5 % of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia 2012;26(4):834–9. DOI:10.1038/leu.2011.296.; Gutmann D.H., Ferner R.E., Listernick R.H. et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017;3:17004. DOI:10.1038/nrdp.2017.4.; Bai R.Y., Esposito D., Tam A.J. et al. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019;26(6): 277–86. DOI:10.1038/s41434-019-0080-9.; Tsuji G., Takai-Yumine A., Kato T., Furue M. Metalloproteinase 1 downregulation in neurofibromatosis 1: therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 2021;12(6):513. DOI:10.1038/s41419-021-03802-9.; Stewart D.R., Korf B.R., Nathanson K.L. et al. Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018;20(7):671–82. DOI:10.1038/gim.2018.28.; Ly K.L., Blakeley J.O. The diagnosis and management of neurofibromatosis type 1. Med Clin North Am 2019;103:1035–54. DOI:10.1016/j.mcna.2019.07.004.; Sung H., Hyland P.L., Pemov A. et al. Genome-wide association study of café-au-lait macule number in neurofibromatosis type 1. Mol Genet Genomic Med 2020;8(10):e1400. DOI:10.1002/mgg3.1400.; Anderson J.L., Gutmann D.H. Neurofibromatosis type 1. Handb Clin Neurol 2015;132:75–86. DOI:10.1016/B978-0-444-627025.00004-4.; Costa A.D.A., Gutmann D.H. Brain tumors in neurofibromatosis type 1. Neurooncol Adv 2019;1(1):vdz040. DOI:10.1093/noajnl/vdz040.; Wei C.J., Gu S.C., Ren J.Y. et al. The impact of host immune cells on the development of neurofibromatosis type 1: the abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2019;1(1):vdz037. DOI:10.1093/noajnl/vdz037.; Yang F.C., Ingram D.A., Chen S. et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/– mast cells. J Clin Invest 2003;112(12):1851–61. DOI:10.1172/JCI19195.; Chen S., Burgin S., McDaniel A. et al. Nf1–/– Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phpsphatidylinositol 3-kinase. Am J Pathol 2010;177(6):3125–32. DOI:10.2353/ajpath.2010.100369.; Karmakar S., Reilly K.M. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2017;6(1):45–60. DOI:10.2217/cns-2016-0024.; Seminog O.O., Goldacre M.J. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 2013;108(1):193–8. DOI:10.1038/bjc.2012.535.; Holzel M., Huang S., Kostel J. et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010;142(2): 218–29. DOI:10.1016/j.cell.2010.06.004.; Beauchamp E.M., Woods B.A., Dulak A.M. et al. Acquired resistance to dasatinib in lung cancer cell lines conferred by DDR2 gatekeeper mutation and NF1 loss. Mol Cancer Ther 2014;13(2):475–82. DOI:10.1158/1535-7163.MCT-13-0817.; Patch A.M., Christie E.L., Etemadmoghadam D. et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature 2015;521(7553): 489–94. DOI:10.1038/nature14410.; Sokol E.S., Feng Y.X., Jin D.X. et al. Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer. Ann Oncol 2019;30(1):115–23. DOI:10.1093/annonc/mdy497.; Georgiou A., Stewart A., Cunningham D. et al. Inactivation of NF1 promotes resistance to EGFR Inhibition in KRAS/ NRAS/BRAFV600-wild-type colorectal cancer. Mol Cancer Res 2020;18(6):835–46. DOI:10.1158/1541-7786.MCR-19-1201.; Zheng Z.Y., Anurag M., Lei J.T. et al. Neurofibromin is an estrogen receptor-α transcriptional co-repressor in breast cancer. Cancer Cell 2020;37(3):387– 402.e.7. DOI:10.1016/j.ccell.2020.02.003.; Shain A.H., Garrido M., Botton T. et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 2015;47(10):1194–9. DOI:10.1038/ng.3382.; Wiesner T., Kiuru M., Scott S.N. et al. NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol 2015;39(10):1357–62. DOI:10.1097/PAS.0000000000000451.; Krauthammer M., Kong Y., Bacchiocchi A. et al. Exome sequencing identifies recrurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015;47(9):996–1002. DOI:10.1038/ng.3361.; Kandoth C., McLellan M.D., Vandin F. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502(7471):333–9. DOI:10.1038/nature12634.; Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511(7511): 543–50. DOI:10.1038/nature13385.; Alves Junior S.F., Zanetti G., de Melo A.S. et al. Neurofibromatosis type 1: state-of-the-art review with emphasis on pulmonary involvement. Respir Med 2019;149:9–15. DOI:10.1016/j.rmed.2019.01.002.; Stiller C.A., Chessells J.M., Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994;70(5): 969–72. DOI:10.1038/bjc.1994.431.; Boudry-Labis E., Roche-Lestienne C., Nibourel O. et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol 2013;88(4):306–11. DOI:10.1002/ajh.23403.; Suarez-Kelly L.P., Yu L., Kline D. et al. Increased breast cancer risk in women with neurofibromatosis type 1: a metaanalysis and systematic review of the literature. Hered Cancer Clin Pract 2019;17:12. DOI:10.1186/s13053-019-0110-z.; The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012;490:61–70. DOI:10.1038/nature11412.; Kanchi K.L., Johnson K.J., Lu C. et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun 2014;5:3156. DOI:10.1038/ncomms4156.; Sangha N., Wu R., Kuick R. et al. Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 2008;10(12):1362–72. DOI:10.1593/neo.08784.; Qiao G., Jia X., Zhang Y., Chen B. Neurofibromin 1 expression is negatively correlated with malignancy and prognosis of epithelial ovarian cancer. Int J Clin Exp Pathol 2019;12(5):1702–12.; Welander J., Larsson C., Backdahl M. et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromacytomas. Hum Mol Genet 2012;21:5406–16. DOI:10.1093/hmg/dds402.; Dombi E., Baldwin A., Marcus L. et al. Activity of selumetinib in neurofibromatosis type1-related plexiform neurofibromas. N Engl J Med 2016;375(26):2550–60. DOI:10.1056/NEJMoa1605943.; Baldo F., Grasso A.G., Wiel L.C. et al. Selumetinib in the treatment of symptomatic intractable plexiform neurofibromas in neurofibromatosis type 1: a prospective case series with emphasis on side effects. Paediatr Drugs 2020;22(4):417–23. DOI:10.1007/s40272-020-00399-y.; Gross A.M., Wolters P.L., Dombi E. et al. Selubetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020;382(15):1430–42. DOI:10.1056/NEJMoa1912735.; Santo V.E., Passos J., Nzwalo H. et al. Selumetinib for plexiform neurofibromas in neurofibromatosis type 1: a single-institution experience. J Neurooncol 2020;147(2):459–63. DOI:10.1007/s11060-020-03443-6.; Maertens O., Johnson B., Hollstein P. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discrov 2013;3(3):338–49. DOI:10.1158/2159-8290.CD-12-0313.; Whittaker S.R., Theurillat J.P., Allen E.V. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013;3(3):350–62. DOI:10.1158/2159-8290.CD-12-0470.; Pearson A., Proszek P., Pascual J. et al. Inactivating NF1 Mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 2020;26(3):608–22. DOI:10.1158/1078-0432.CCR-18-4044.; De Bruin E.C., Cowell C., Warne P.H. et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov 2014;4(5):606–19. DOI:10.1158/2159-8290.CD-13-0741.; Paschou M., Doxakis E. Neurofibromin 1 is a miRNA target in neurons. PLoS One 2012;7(10):346773. DOI:10.1371/journal.pone.0046773.; Stark M.S., Bonazzi V.F., Boyle G.M. et al. MiR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 2015;6(19):17753–63. DOI:10.18632/oncotarget.3924.; Wang S., Ma G., Zhu H. et al. MiR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep 2016;6:36531. DOI:10.1038/srep36531.; Guo L., Li B., Yang J. et al. Fibroblastderived exosomal microRNA-369 potentiates migration and invasion of lung squamous cell carcinoma cells via NF1-mediated MAPK signaling pathway. Int J Mol Med 2020;46(2):595–608. DOI:10.3892/ijmm.2020.4614.; Chen J., Cui J., Guo X. et al. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF1. Cancer Med 2018;7(4):1394–1403. DOI:10.1002/cam4.1326.; Zhu H., Yang J., Yang S. MicroRNA103a-3p potentiates chemoresistance to cisplatin in non-small cell lung carcinoma by targeting neurofibromatosis 1. Exp Ther Med 2020;19(3):1797–805. DOI:10.3892/etm.2020.8418.; Li S., Li W., Chen G. et al. MiRNA-27a-3p induces temozolomide resistance in gliomas by inhibiting NF1 level. Am J Transl Res 2020;12(8):4749–56.; Garcia-Orti L., Crostobal I., Cirauqui C. et al. Integration of SNP and mRNA arrays with microRNA profiling reveals that MiR-370 is upregulated and targets NF1 in acute myeloid leukemia. PLoS One 2012;7(10):e47717. DOI:10.1371/journal.pone.0047717.; Su J., Ruan S., Dai S. et al. NF1 regulates apoptosis in ovarian cancer cells by targeting MCL1 via miR-142-5p. Pharmacogenomics 2019;20(3):155–65. DOI:10.2217/pgs-2018-0161.; Chai G., Liu N., Ma J. et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci 2010;101(9):1997–2004. DOI:10.1111/j.1349-7006.2010.01616.x.; Lu H., Liu P., Pang Q. MiR-27a-3p/miR27b-3p promotes neurofibromatosis type 1 via targeting of NF1. Available at: https:// link.springer.com/article/10.1007%2 Fs12031-020-01779-2. DOI:10.1007/s12031-020-01779-2.; Wang M., Wang Z., Zhu X. et al. NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim 2019;55(7):491–500. DOI:10.1007/s11626-019-00370-3.; Na Y., Hall A., Choi K. et al. MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene 2021;40:951–63. DOI:10.1038/s41388-020-01581-9.; Hong A., Piva M., Liu S. et al. Durable suppression of acquired MEK inhibitor resistance in cancer by sequestering MEK from ERK and promoting antitumor T-cell immunity. Cancer Discov 2021;11(3):714–35. DOI:10.1158/2159-8290.CD-20-0873.; Wang S., Liechty B., Patel S. et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 2018;138(1):183–90. DOI:10.1007/s11060-018-2788-6.; Kawachi Y., Maruyama H., Kshitsuka Y. et al. NF1 gene silencing induces upregulation of vascular endothelial growth factor expression in both Schwann and non-Schwann cells. Exp Dermatol 2013;22(4):262–5. DOI:10.1111/exd.12115.; Theeler B.J., Ellezam B., Yust-Katz S. et al. Prolonged survival in adult neurofibromatosis type I patients with recurrent high-grade gliomas treated with bevacizumab. J Neurol 2014;261(8):1559–64. DOI:10.1007/s00415-014-7292-0.; Walker J.A., Upadhyaya M. Emerging therapeutic targeting for neurofibromatosis. Expert Opin Ther Targets 2018;22(5):419–37. DOI:10.1080/14728222.2018.1465931.; Cui X.W, Ren J.Y., Gu Y.H. et al. NF1, neurofibromin and gene therapy: Prospects of next-generation therapy. Curr Gene Ther 2020;20(2):100–8. DOI:10.2174/1566523220666200806111451.; Keeling K.M., Xue X., Gunn G., Bedwell D.M. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 2014;15:371–94. DOI:10.1146/annurev-genom-091212-153527.; Lee M.J., Hung S.H., Huang M.C. et al. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One 2017;12(5):e0178493. DOI:10.1371/journal.pone.0178493.; Pros E., Fernandez-Rodriguez J., Canet B. et al. Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 2009;30(3):454–62. DOI:10.1002/humu.20933.; Choi G., Huang B., Pinarbasi E. et al. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res 2012;72(24): 6425–34. DOI:10.1158/0008-5472.; https://umo.abvpress.ru/jour/article/view/377

  8. 8
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта Президента Российской Федерации (№ МК-3196.2018.7).

    Πηγή: Bulletin of Siberian Medicine; Том 19, № 4 (2020); 67-72 ; Бюллетень сибирской медицины; Том 19, № 4 (2020); 67-72 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4151/2871; https://bulletin.tomsk.ru/jour/article/view/4151/2903; Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003; 22 (47): 7265–7279. DOI:10.1038/sj.onc.1206933.; Zou M., Hu X., Xu B., Tong T., Jing Y., Xi L., Zhou W., Lu J., Wang X., Yang X., Liao F. Glutathione S-transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer. Oncol. Rep. 2019; 41 (2): 989–998. DOI:10.3892/or.2018.6861.; Boss E.A., Peters W.H., Roelofs H.M., Boonstra H., Steegers E.A., Massuger L.F. Glutathione-S-transferases P1-1 and A1-1 in ovarian cystfluids. Eur. J. Gynaecol. Oncol. 2001; 22 (6): 427–432.; Калинина Е.В., Чернов Н.Н., Саприн А.Н., Котова Я.М., Ремизов В.И., Щербак Н.П. Экспрессия генов редоксзависимых изоформ глутатион-S- трансферазы GSTPL-1 и STA4-4 при развитии резистентности опухолевых клеток к доксорубицину. Бюллетень экспериментальной биологии и медицины. 2007; 143 (3): 298–301.; Kalinina E., Chernov N., Novichkova M., Nurmuradov N. Thioredoxins, glutaredoxins and peroxiredoxins in redox-dependent formation of cancer cell resistance. Free Radical Biology and Medicine. 2017; 108 (S1): 34–35.; Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974; 249 (22): 7130–7139.; Мальцев Г.Ю., Тышко Н.В. Методы определения содержания глутатиона и активности глутатионредуктазы эритроцитов. Гигиена и санитария. 2002; 2: 67–69.; Виллерт А.Б., Коломиец Л.А., Юнусова Н.В., Иванова А.А. Асцит как предмет исследований при раке яичников. Сибирский онкологический журнал. 2019; 18 (1): 116–123. DOI:10.21294/1814-4861-2019-18-1-116-123.; Pontikakis S., Papadaki C., Tzardi M., Trypaki M., Sfakianaki M., Koinis F., Lagoudaki E., Giannikaki L., Kalykaki A., Kontopodis E., Saridaki Z., Malamos N., Georgoulias V., Souglakos J. Predictive value of ATP7b, BRCA1, BRCA2, PARP1, UIMC1 (RAP80), HOXA9, DAXX, TXN (TRX1), THBS1 (TSP1) and PRR13 (TXR1) genes in patients with epithelial ovarian cancer who received platinum-taxane first-line therapy. Pharmacogenomics J. 2017; 17 (6): 506–514. DOI:10.1038/tpj.2016.63.; Woolston C.M., Deen S., Al-Attar A., Shehata M., Chan S.Y., Martin S.G. Redox protein expression predicts progressionfree and overall survival in ovarian cancer patients treated with platinum-based chemotherapy. Free Radic. Biol. Med. 2010; 49 (8): 1263–1272. DOI:10.1016/j.freeradbiomed.2010.07.008.; Nunes S.C., Serpa J. Glutathione in ovarian cancer: a double-edged sword. Int. J. Mol. Sci. 2018; 19 (7): 1882. DOI:10.3390/ijms19071882.; Абакумова Т.В., Долгова Д.Р., Генинг С.О., Генинг Т.П., Антонеева И.И. Прогностическая роль параметров редокс-системы асцитической жидкости у больных распространенным раком яичников. Ульяновский медико-биологический журнал. 2018; (3): 80–86. DOI:10.23648/UMBJ.2018.31.17218.; Greenwood H.E., McCormick P.N., Gendron T., Glaser M., Pereira R., Maddocks O.D.K., Sander K., Zhang T., Koglin N., Lythgoe M.F., Årstad E., Hochhauser D., Witney T.H. Measurement of tumor antioxidant capacity and prediction of chemotherapy esistance in preclinical models of ovarian cancer by positron emission tomography. Clin. Cancer Res. 2019; 25(8): 2471–2482. DOI:10.1158/1078-0432.CCR-18-3423.; Моисеев А.А., Хрунин А.В., Павлюшина Е.М., Пирогова Н.А., Горбунова В.А., Лимборская С.А. Полиморфизм генов глутатион-S-трансфераз и результаты химиотерапии рака яичников. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2008; 19 (1): 59–63.; https://bulletin.tomsk.ru/jour/article/view/4151

  9. 9
    Academic Journal

    Συγγραφείς: Бойко, А.

    Πηγή: Bukovinian Medical Herald; Vol. 15 No. 3(59) (2011); 111-113 ; Буковинский медицинский вестник; Том 15 № 3(59) (2011); 111-113 ; Буковинський медичний вісник; Том 15 № 3(59) (2011); 111-113 ; 2413-0737 ; 1684-7903

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://e-bmv.bsmu.edu.ua/article/view/232385

  10. 10
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 15 No. 2(58) (2011); 173-178 ; Буковинский медицинский вестник; Том 15 № 2(58) (2011); 173-178 ; Буковинський медичний вісник; Том 15 № 2(58) (2011); 173-178 ; 2413-0737 ; 1684-7903

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://e-bmv.bsmu.edu.ua/article/view/233942

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Συνεισφορές: This research is conducted under the auspices of the experimental governmental assignment of the Ministry of Health of the Russia and coordinated by the Centre for Strategic Planning and Management of Biomedical Health Risks of the Ministry of Health of the Russia, Данное исследование выполняется в рамках экспериментального государственного задания Минздрава России при координации ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Минздрава России

    Πηγή: Advances in Molecular Oncology; Vol 6, No 4 (2019); 8-25 ; Успехи молекулярной онкологии; Vol 6, No 4 (2019); 8-25 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
  18. 18
    Academic Journal

    Συνεισφορές: The study was supported by the grant from the Russian Science Foundation (project №14-15-00074), Финансирование Исследование выполнено при поддержке Российского научного фонда (проект № 14-15-00074П)

    Πηγή: Siberian journal of oncology; Том 18, № 3 (2019); 45-53 ; Сибирский онкологический журнал; Том 18, № 3 (2019); 45-53 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1095/636; Maverakis E., Cornelius L.A., Bowen G.M., Phan T., Patel F.B., Fitzmaurice S., He Y., Burrall B., Duong C., Kloxin A.M., Sultani H., Wilken R., Martinez S.R., Patel F. Metastatic Melanoma – a review of current and future treatment options. Acta Derm Venereol. 2015 May; 95(5): 516–24. doi:10.2340/00015555-2035.; Xin Y., Huang Q., Zhang P., Yang M., Hou X.Y., Tang J.Q., Zhang L.Z., Jiang G. Meta-Analysis of the Safety and Efficacy of Interferon Combined With Dacarbazine Versus Dacarbazine Alone in Cutaneous Malignant Melanoma. Medicine (Baltimore). 2016 Apr; 95(16): e3406. doi:10.1097/MD.0000000000003406.; Hafeez A., Kazmi I. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep. 2017 Nov 28; 7(1): 16517. doi:10.1038/s41598-017-16878-1.; Zwergel1 C., Giulia, S., Valente S., Mai A. Histone Deacetylase Inhibitors: Updated Studies in Various Epigenetic-Related Diseases. J Clin Epigenet. 2016 Mar; 2(1/7): 1–15. doi:10.21767/2472-1158.100015.; Lujambio A., Lowe S.W. The microcosmos of cancer. Nature. 2012 Feb 15; 482(7385): 347–55. doi:10.1038/nature10888.; Palkina N., Komina A., Aksenenko M., Ruksha T. MicroRNA 2045p decreases proliferation/viability and the ability to form colonies in melanoma cells. J Clin Investig Dermatol. 2017 Oct; 137(10/2): 29. doi:10.1016/j.jid.2017.07.777.; Yin Y., Zhang B., Wang W., Fei B., Quan C., Zhang J., Song M., Bian Z., Wang Q., Ni S., Hu Y., Mao Y., Zhou L., Wang Y., Yu J., Du X., Hua D., Huang Z. MiR-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A. Clin. Cancer Res. 2014 Oct 7; 20: 6187–99. doi:10.1158/1078-0432.CCR-14-1030.; Díaz-Martínez M., Benito-Jardón L., Alonso L., Koetz-Ploch L., Hernando E., Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res. 2018 Feb 15; 78(4): 1017–30. doi:10.1158/0008-5472.CAN-17-1318.; Gao W., Wu Y., He X., Zhang C., Zhu M., Chen B., Liu Q., Qu X., Li W., Wen S., Wang B. MicroRNA-204-5p inhibits invasion and metastasis of laryngeal squamous cell carcinoma by suppressing forkhead box C1. J Cancer. 2017 Jul 21; 8(12): 2356–68. doi:10.7150/jca.19470.; Xia B., Yang S., Liu T., Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 2015 Mar 11; 14: 57. doi:10.1186/s12943015-0322-4.; Galasso M., Morrison C., Minotti L., Corrà F., Zerbinati C., Agnoletto C., Baldassari F., Fassan M., Bartolazzi A., Vecchione A., Nuovo G.J., Di Leva G., D’Atri S., Alvino E., Previati M., Nickoloff B.J., Croce C.M., Volinia S. Loss of miR-204 expression is a key event in melanoma. Mol Cancer. 2018 Mar 9; 17(1): 71. doi:10.1186/s12943018-0819-8.; Liu L., Wang J., Li X., Ma J., Shi C., Zhu H., Xi Q., Zhang J., Zhao X., Gu M. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 2015 Nov 3; 457: 621–6. doi:10.1016/j.bbrc.2015.01.037.; Lou S., Zhao Z., Dezort M., Lohneis T., Zhang C. Multifunctional Nanosystem for Targeted and Controlled Delivery of Multiple ChemotherapeuticAgents for the Treatment of Drug-Resistant Breast Cancer. ACS Omega. 2018 Aug 31; 3(8): 9210–19. doi:10.1021/acsomega.8b00949.; Tian F., Dahmani F.Z., Qiao J., Ni J., Xiong H., Liu T., Zhou J., Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool toreverse multidrug resistance in breast cancer. Acta Biomater. 2018 Jul 15; 75: 398–412. doi:10.1016/j.actbio.2018.05.050.; Drusco A., Croce C.M. MicroRNAs and Cancer: A Long Story for Short RNAs. Adv Cancer Res. 2017; 135: 1–24. doi:10.1016/ bs.acr.2017.06.005.; Happold C., Roth P., Silginer M., Florea A.M., Lamszus K., Frei K., Deenen R., Reifenberger G., Weller M. Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastomastem cells. Mol Cancer Ther. 2014 Apr; 13(4): 948–61. doi:10.1158/1535-7163.MCT-13-0772.; Marusyka A., Polak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010 Jan; 1805(1): 105. doi:10.1016/j.bbcan.2009.11.002.; Tisty T., Coussens L. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 2006. 1: 119–50. doi:10.1146/annurev.pathol.1.110304.100224.; Pistollato F., Abbadi S., Rampazzo E., Persano L., Puppa D., Frasson C., Sarto E., Scienza R., D’avella D., Basso G. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells. 2010 May; 28(5): 851–62. doi:10.1002/stem.415.; Attaoua C., Vincent L., Jaoued A., Hadj-Kaddour K., Baï Q., De V., Vian L., Cuq P. Differential involvement of glutathione S-transferase mu 1 and multidrug resistance protein 1 in melanoma acquired resistance to vinca alkaloids. Fundam Clin Pharmacol. 2014 Oct; 29 (1): 62–71. doi:10.1111/fcp.12093.; Cabrini G., Fabbri E., Nigro L., Dechecchi M., Gambari R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int J Oncol. 2015 May; 47 (2): 417–428. doi:10.3892/ijo.2015.3026.; https://www.siboncoj.ru/jour/article/view/1095

  19. 19
    Academic Journal

    Συνεισφορές: The work is sponsored by the Belarusian Republican Foundation for Fundamental Research (grant No. М16Р-022) and by the Russian Foundation for Basic Research (grant no. 16-54-00050)., Работа выполнена при поддержке БРФФИ (грант № М16Р-022) и РФФИ (грант № 16-54-00050).

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 62, № 1 (2018); 93-100 ; Доклады Национальной академии наук Беларуси; Том 62, № 1 (2018); 93-100 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/494/496; Du, J. Ascorbic acid: Chemistry, biology and the treatment of cancer / J. Du, J. J. Cullen, G. R. Buettner // Biochim. Biophys. Acta. – 2012. – Vol. 1826, N 2. – P. 443–457. doi.org/10.1016/j.bbcan.2012.06.003; Cameron, E. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer / E. Cameron, L. Pauling // Proc. Natl. Acad. Sci. USA. – 1976. – Vol. 73, N 10. – P. 3685–3689. doi.org/10.1073/ pnas.73.10.3685; High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy A randomized double-blind comparison / C. G. Moertel [et al.] // N. Engl. J. Med. – 1985. – Vol. 312, N 3. – P. 137–141. doi.org/10.1056/nejm198501173120301; Vitamin C pharmacokinetics: implications for oral and intravenous use / S. J. Padayatty [et al.] // Ann. Intern. Med. – 2004. – Vol. 140, N 7. – P. 533–537. doi.org/10.7326/0003-4819-140-7-200404060-00010; Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice / Q. Chen [et al.] // Proc. Natl. Acad. Sci. USA. – 2008. – Vol. 105, N 32. – P. 11105–11109. doi.org/10.1073/pnas.0804226105; Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer / H. B. Pollard [et al.] // In Vivo. – 2010. – Vol. 24. – P. 249–255.; Suh, J. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide / J. Suh, B. Zhu, B. Frei // Free Radic. Biol. Med. – 2003. – Vol. 34, N 10. – P. 1306–1314. doi.org/10.1016/s0891-5849(03)00147-3; Редокс-регуляция клеточной активности: концепции и механизмы / С. Н. Черенкевич [и др.] // Весці НАН Беларусі. Сер. біял. навук. – 2013. – № 1. – C. 92–108.; Martinovich, G. G. Effects of ascorbic acid on calcium signaling in tumor cells / G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich // Bull. Exp. Biol. Med. – 2009. – Vol. 147, N 4. – P. 469–472. doi.org/10.1007/s10517-009-0555-6; Redox regulation of calcium signaling in cancer cells by ascorbic acid involving the mitochondrial electron transport chain / G. G. Martinovich [et al.] // Journal of Biophysics. – 2012. – Vol. 2012. – Art. 921653. doi.org/10.1155/2012/921653; Martinovich, G. G. Redox regulation of cellular processes: a biophysical model and experiment / G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich // Biophysics. – 2011. – Vol. 56, N 3. – P. 444–451. doi.org/10.1134/s0006350911030171; Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway / G. G. Martinovich [et al.] // Biophysics. – 2015. – Vol. 60, N 1. – P. 94–100. doi.org/10.1134/s0006350915010194; Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells / G. G. Martinovich [et al.] // Biophysics. – 2016. – Vol. 61, N 6. – P. 963–970. doi.org/10.1134/s0006350916060154; Mazes of Nrf2 Regulation / N. K. Zenkov [et al.] // Biochemistry (Mosc). – 2017. – Vol. 82, N 5. – Р. 556–564. doi. org/10.1134/s0006297917050030; Dinkova-Kostova, A. T. Chemical structures of inducers of nicotinamide quinine oxidoreductase 1 (NQO1) / A. T. Dinkova-Kostova, J. W. Fahey, P. Talalay // Meth. Enzymol. – 2004. – Vol. 382. – P. 423–448. doi.org/10.1016/s0076-6879(04)82023-8; Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals / S. R. Kim [et al.] // Biochemical Pharmacology. – 2015. – Vol. 95, N 4. – P. 279–289. doi.org/10.1016/j.bcp.2015.04.007; NADPH oxidase activity is required for endothelial cell proliferation and migration / M. Abid [et al.] // FEBS Letters. – 2000. – Vol. 486, N 3. – P. 252–256. doi.org/10.1016/s0014-5793(00)02305-x; https://doklady.belnauka.by/jour/article/view/494

  20. 20
    Academic Journal

    Συγγραφείς: Nikolov, N. A.

    Πηγή: Electronics and Communications; Том 18, № 1 (2013); 38-44
    Электроника и Связь; Том 18, № 1 (2013); 38-44
    Електроніка та Зв'язок; Том 18, № 1 (2013); 38-44

    Περιγραφή αρχείου: application/pdf