Εμφανίζονται 1 - 20 Αποτελέσματα από 421 για την αναζήτηση '"ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА"', χρόνος αναζήτησης: 0,88δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Συνεισφορές: The research was carried out within the framework of assignment FGGM‑2022–00006 VNIIK — a branch of the Federal State Budgetary Institution "Financial Research Center for Potatoes named after A. G. Lorkha" "To develop scientific and practical foundations for the production technology of new carbohydrate and protein components of their starch-containing raw materials based on a systematic analysis of their composition and properties for deep processing of potatoes, grain and leguminous raw materials"., Исследования выполнены в рамках задания FGGM‑2022-00006 ВНИИК — филиал ФГБНУ «ФИЦ картофеля имени А. Г. Лорха» «Разработать научно-практические основы технологии производства новых углеводных и белковых компонентов их крахмалосодержащего сырья на основе системного анализа их состава и свойств для глубокой переработки картофеля, зернового и зернобобового сырья».

    Πηγή: Food systems; Vol 7, No 3 (2024); 324-335 ; Пищевые системы; Vol 7, No 3 (2024); 324-335 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/558/326; Мартинчик, А. Н., Маев, И. В., Янушевич, О. О. (2005). Общая нутрициология. М.: МЕДпресс-информ, 2005.; Нечаев, А. П., Кочеткова, А. А., Колпакова, В. В., Траубенберг, С. Е., Витол, И. С., Кобелева, И. Б. и др. (2024). Пищевая химия. Санкт-Петербург: ГИОРД, 2024.; Толстогузов, В. Б. (1987). Новые формы белковой пищи. М.: Агропромиздат, 1987.; Kolpakova, V. V., Chumikina, L. V., Arabova, L. I., Lukin, D. N, Topunov, А. F, Тitov, Е. I. (2016). Functional technological properties and electrophoretic composition of modified wheat gluten. Foods and Raw Materials, 4(2), 48–57. https://doi.org/10.21179/2308-4057-2016-2-48-57; Moll, P., Grossmann, L., Kutzli, I., Weiss, J. (2019). Influence of energy density and viscosity on foam stability — A study with pea protein (Pisum Sativum L.). Journal of Dispersion Science and Technology, 41(12), 1789–1796. https://doi.org/10.1080/01932691.2019.1635028; Jakobson, K., Kaleda, A., Adra, K., Tammik, M. L., Vaikma, H., Kriščiunaite, T. et al. (2023). Techno-functional and sensory characterization of commercial plant protein powders. Foods, 12(14), Article 2895. https://doi.org/10.3390/foods12142805; Onder, S., Karaca, A. C., Ozcelik, B., Alamri, A. S., Ibrahim, S. A., Galanakis, C. M. (2023). Exploring the amino-acid composition, secondary structure, and physicochemical and functional properties of chickpea protein isolates. ACS Omega, 8(1), 1486–1495. https://doi.org/10.1021/acsomega.2c06912; Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y., Wang, H. (2018). Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. International Journal of Analitical Chemistry, 1–11. https://doi.org/10.1155/2018/9182508; Martinez-Velasco, A., Lobato-Calleros, C., Hernandez-Rodriguez, B. E., Roman-Guerrero, A., Alvarez-Ramirez, J., Vernon-Carter, E. J. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics — Sonochemistry, 44, 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007; Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., Topuz, A. (2017). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259. https://doi.org/10.1016/j.ijbiomac.2017.11.135; Kolpakova, V., Gaivoronskaya I., Gulakova V., Sarjveladze А. (July 2–8, 2018). Composition on the basis of plantbased proteins with the use of transgutaminase. 18 International Multidisciplinary Scientific GeoConference SGEM. Albena, Bulgaria, 2018. https://doi.org/10.5593/sgem2018/6.2; Yan, J., Zhao, S., Xu, X., Liu, F. (2023). Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Current Research in Nutrition and Food Science, 8, Article 100653. https://doi.org/10.1016/j.crfs.2023.1006512; Shevkani, K., Singh, N., Chen, Y., Kaur, A., Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8; Shevkani, K., Singh, N., Kaur, A., Rana, J. C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, 43, 679–689. https://doi.org/10.1016/j.foodhyd.2014.07.024; Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44(9), 2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012; Колпакова, В. В., Фан, Ч. К., Гайворонская, И. С., Чумикина, Л. В. (2023). Свойства и структурные особенности белков нативных и модифицированных концентратов из белого и коричневого риса. Пищевые системы, 6(3), 317–328. https://doi.org/10.21323/2618-9771-2023-6-3-317-328; Flory, J., Alavi, S. (2024). Use of hydration properties of proteins to understand their functionality and tailor texture of extruded plant-based meat analogues. Journal of Food Science, 89(1), 245–258. https://doi.org/10.1111/1750-3841.16804; Колпакова, В. В., Студенникова, О. Ю. (2009). Гидратационная способность и физико-химические свойства белков пшеничной клейковины. Известия высших учебных заведений. Пищевая технология, 2–3(308–309), 5–8.; Ванин, С. В., Колпакова, В. В. (2007). Функциональные свойства сухой пшеничной клейковины разного качества. Известия высших учебных заведений. Пищевая технология, 1(296), 21–24.; Колпакова, В. В., Зайцева, Л. В., Мартынова, И. В., Осипов Е. А. (2007). Белок из пшеничных отрубей: повышение выхода и функциональные свойства. Хранение и переработка сельхозсырья, 2, 23–25.; Колпакова, В. В., Чумикина, Л. В., Арабова, Л. И. (2019). Модификация функциональных свойств белковых концентратов из белого и коричневого риса. Вестник Воронежского государственного университета инженерных технологий, 81(1), 181–189. https://doi.org/10.20914/2310-1202-2019-1-181-189; Колпакова, В. В., Куликов, Д. С., Гулакова, В. А., Уланова, Р. В. (2023). Комплексная модификация картофельного сока с получением белковых препаратов. Пищевая промышленность, 9, 74–79. https://doi.org/10.52653/PPI.2023.9.9.013; O′Flynn, T. D., Hogan, S. A., Daly, D. F. M., O′Mahony, J. A., McCarthy, N. A. (2021). Rheological and solubility properties of soy protein isolate. Molecules, 26(10), Article 3015. https://doi.org/10.3390/molecules26103015; Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15, Article 100426. https://doi.org/10.1016/j.fochx.2022.100426; Kolpakova, V. V., Lukin, N. D., Gaivoronskaya, I. S. (2018). Interrelation of functional properties of protein products from wheat with the composition and physicochemical characteristics of their proteins. Chapter in a book: Global Wheat Production. London: IntechOpen, 2018. http://doi.org/10.5772/intechopen.75803; Колпакова, В. В., Уланова, Р. В., Куликов, Д. С., Гулакова, В. А., Семёнов, Г. В., Шевякова, Л. В. (2022). Показатели качества гороховых и нутовых белковых концентратов. Техника и технология пищевых производств, 52(4), 650–664. http://doi.org/10.21603/2074-9414-2022-4-2394; Rashwan, A. K., Osman, A. I., Abdelshafy, A. M., Mo, J., Chen, W. (2023). Plantbased proteins: Advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Critical Reviews in Food Science and Nutrition, 1–28. http://doi.org/10.1080/10408398.2023.2279696; Huang, L., Ding, X., Dai, C., Ma, H. (2017). Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chemistry, 232, 727–732. https://doi.org/10.1016/j.foodchem.2017.04.077; Lu, Z. X., He, J. F., Zhang, Y. C., Bing, D. J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593–2605. https://doi.org/10.1080/10408398.2019.1651248; Singhal, A., Karaca. A. C., Tyler, R., Nickerson, M. (2016). Pulse Proteins: From processing to structure-function relationships. Chapter in a book: Grain Legumes. London: IntechOpen, 2016. https://doi.org/10.5772/64020; Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38. https://doi.org/10.1016/j.foodres.2014.11.017; Gültekin Subaşı, B., Vahapoğlu, B., Capanoglu, E., Mohammadifar, M. A. (2022). A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Critical Reviews in Food Science and Nutrition, 62(24), 6682–6697. https://doi.org/10.1080/10408398.2021.1904821; Le Priol, L., Dagmey, A., Morandat, S., Saleh, K., El Kirat, K., Nesterenko, A. (2019). Comparative study of plant protein extracts aswall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 95(2), 105–115. https://doi.org/10.1016/j.foodhyd.2019.04.026; Albe Slabi, S., Mathe, C., Basselin, M., Framboisier, X., Ndiaye, M., Galet, O. et al. (2020). Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chemistry, 317, Article 126423. https://doi.org/10.1016/j.foodchem.2020.126423; Malik, M. A., Saini, C. S. (2017). Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocolloids, 63, 705–715. https://doi.org/10.1016/j.foodhyd.2016.10.026; Alexandrino, T. D., Ferrari, R. A., de Oliveira, L. M., de Cássia, S. C. Ormenese, R., Pacheco, M. T. B. (2017). Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426–432. https://doi.org/10.1016/j.lwt.2017.05.062; Shen, Y., Tang, X., Li, Y. (2021). Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry, 339, Article 127823. https://doi.org/10.1016/j.foodchem.2020.127823; Osen, R., Toelstede, S., Wild, F., Eisner, P., Schweiggert-Weisz, U. (2014). High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023; Pietrysiak, E., Smith, D. M., Smith, B. M., Ganjyal, G. M. (2018). Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chemistry, 243, 338–344. https://doi.org/10.1016/j.foodchem.2017.09.132; Ma, K. К., Greis, M., Lu, J., Nolden, A. A., McClements, D. I., Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), Article 594. https://doi.org/10.3390/foods11040594; Lafarga, T., Álvarez, C., Villaró, S., Bobo, G., Aguiló-Aguayo, I. (2019). Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. International Journal of Food Science and Technology, 55(2), 475–481. https://doi.org/10.1111/ijfs.14286; Gundogan, R., Can Karaca, A. (2020). Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT, 130, Article 109609. https://doi.org/10.1016/j.lwt.2020.109609; Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M., Uebersax, M. A. (2021). Physico-chemical and functional properties of legume protein, starch, and dietary fiber–A review. Legume Science, 4(1), Article e117. https://doi.org/10.1002/leg3.117; Pasupuleti, V. K., Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Chapter in a book: Protein Hydrolysates in Biotechnology. Springer Dordrecht, 2010. https://doi.org/10.1007/978-1-4020-6674-0_2; Jeong, M.-S., Cho, S.-J. (2024). Effect of pH-shifting on the water holding capacity and gelation properties of mung bean protein isolate. Food Research International, 177, Article, 113912. https://doi.org/10.1016/j.foodres.2023.113912; Ramani, A., Kushwaha, R., Malaviya, R., Kumar, R., Yadav, N. (2021). Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. Journal of Food Measurement and Characterization, 15(3), 2352–2368. https://doi.org/10.1007/s11694-020-00778-6; Brayden, M., L. Xu, G., Barbay, G., Koros, W. (March 26–30, 2017). Impact of impurities on carbon molecular sieve membranes for applications in olefins units. Spring Meeting and 13th Global Congress on Process Safety. Henry Gonzalez Convention Center, San Antonio, 2017.; Adebiyi, A. P., Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128(4), 902–908. https://doi.org/10.1016/j.foodchem.2011.03.116; Vélez-Erazo, E. M., Silva, I. L., Comunian, T., Kurozawa, L. E., Hubinger, M. D. (2021). Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 58(10), 3765–3779. https://doi.org/10.1007/s13197-020-04834-3; Houde, M., Khodaei, N., Benkerroum, N., Karboune, S. (2018). Barley protein concentrates: Extraction, structural and functional properties. Food Chemistry, 254, 367–376. https://doi.org/10.1016/j.foodchem.2018.01.156; Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., Aluko, R. E. (2018). Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science and Nutrition, 6(7), 1879–1889. https://doi.org/10.1002/fsn3.740; Lam, A. C. Y., Can Karaca, A., Tyler, R. T., Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135; Lobanov, V. G., Slepokurova, Y. I., Zharkova, I. M., Koleva, T. N., Roslyakov, Y. F., Krasteva, A. P. (2018). Economic effect of innovative flour-based functional foods production. Foods and Raw Materials, 6(2), 474–482. https://doi.org/10.21603/2308-4057-2018-2-474-482; Akter, D., Begum, R., Rahman, Md. N., Talukder, N., Alam, J. (2020). Optimization of extraction process parameter for rice bran protein concentrate and its utilization in high protein biscuit formulation. Current Research in Nutrition and Food Science, 8(2), 596–608. https://doi.org/10.12944/CRNFSJ.8.2.25; Higa, F., House, J. D., Nickerson, M. T. (2023). Functionality and nutritional properties of yellow pea, green lentil, chickpea, and navy bean proteins extracted by different methods. European Food Research and Technology, 250(1), 273–286. https://doi.org/10.1007/s00217-023-04385-9; Bajaj, P. R., Bhunia, K., Kleiner, L., Joyner (Melito), H. S., Smith, D., Ganjyal, G. et al. (2017). Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation, 34(2), 218–230. https://doi.org/10.1080/02652048.2017.1317045; Mession, J.-L., Chihi, M. L., Sok N., Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025; Sun, X. D., Arntfield, S. D. (2011). Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry, 124(3), 1011–1016. https://doi.org/10.1016/j.foodchem.2010.07.063; Moreno, H. M., Domínguez-Timón, F., Díaz, M. T., Pedrosa, M. M., Borderías, A. J., Tovar, C. A. (2020). Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocolloids, 99(4), Article 105375. https://doi.org/10.1016/j.foodhyd.2019.105375; Knopfe, C., Shwenke, K. D., Mothes, R., Mikheeva, L. M., Grinberg, V., Görnitz, E. et al. (1998). Acetilation and succinylated of faba bean legumin: Modification of hydrophobicity and conformation. Food/Nahrung, 42(03–04), 194–196.; Shih, F. F., Hamada, J. S., Marshall, W. E. (1999). Deamidation and phosphorylation to improve protein functionality in foods. Chapter in a book: Molecular aapproaches to improving food quality and safety. Springer New York, NY, 1999. https://doi.org/10.1007/978-1-4684-8070-2_2; Fang, L., Xiang, H., Sun-Waterhouse, D., Cui, C., Lin, J. (2020). Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase. Journal of Agricultural and Food Chemistry, 68 (6), 1691–1697. https://doi.org/10.1021/acs.jafc.9b06046; Gallart-Palau, X., Serra A., Sze, S. K. (2015). Uncovering neurodegenerative protein modifications via proteomic profiling. Chapter in a book: International Review of Neurobiology. Academic Press, 2015. https://doi.org/10.1016/bs.irn.2015.06.002; Schwenke, K. D., Mothes, R., Dudek, S., Görnitz, E. (2000). Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: Chemical and conformational aspects. Journal of Agricultural and Food Chemistry, 48(3), 708–715. https://doi.org/10.1021/jf9907900; Liu, Y., Wang, D., Wang, J., Yang, Y., Zhang, L., Li, J., et al. (2019). Functional properties and structural characteristics of phosphorylated pea protein isolate. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.14391; Nikbakht Nasrabadi, M., Sedaghat Doost, A., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, Article 106789. https://doi.org/10.1016/j.foodhyd.2021.106789; Ma, W., Wang, T., Wang, J., Wu, D., Wu, C., Du, M. (2020). Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food chemistry, 306, Article 125593. https://doi.org/10.1016/j.foodchem.2019.125593; Zhao, M., Xiong, W., Chen, B., Zhu, J., Wang, L. (2020). Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocolloids, 103. Article 105626. https://doi.org/10.1016/j.foodhyd.2019.105626; Mir, N. A., Riar, C. S., Singh, S. (2020). Сtructural modification in album (Chenopodium album) protein isolates due to controlled thermal modification and its relationship with protein digestibility and its relationship with protein digestibility and functionality. Food Hydrocolloids, 103, Article 105708. https://doi.org/10.1016/j.foodhyd.2020.105708; Bühler, J. M., Dekkers, B. L., Bruins, M. E., van der Goot, A. J. (2020). Modifying faba bean protein concentrate using dry heat to increase water holding capacity. Foods, 9(8), Article 1077. https://doi.org/10.3390/foods9081077; Ling, B., Cheng, T., Wang, S. (2019). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622– 2642. https://doi.org/10.1080/10408398.2019.1651690; Guo, C., Wang, X., Wang, Y. (2018). Dielectric properties of soy protein isolate dispersion and its temperature profile during radio frequency heating. Journal of Food Processing and Preservation, 42(7), Article e13659. https://doi.org/10.1111/jfpp.13659; Ling, B., Ouyang, S., Wang, S. (2019). Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran. Food Chemistry, 289, 537–544. https://doi.org/10.1016/j.foodchem.2019.03.072; Hassan, A. B., von Hoersten, D., Mohamed Ahmed, I. A. (2019). Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 271, 142–147. https://doi.org/10.1016/j.foodchem.2018.07.190; Moll, P., Salminen, H., Schmitt, C., Weiss, J. (2021). Impact of microfluidization on colloidal properties of insoluble pea protein fractions. European Food Research and Technology, 247(3), 545–554. https://doi.org/10.1007/s00217-020-03629-2; Vall-llosera, M., Jessen, F., Henriet, P., Marie, R., Jahromi, M., Sloth, J. J. (2021). Physical stability and interfacial properties of oil in water emulsion stabilized with pea protein and fish skin gelatin. Food Biophysics, 16(1), 139–151. https://doi.org/10.1007/s11483-020-09655-7; Asif, M. N., Imran, M., Ahmad, M. H., Khan M. K., Hailu, G. G. (2024). Physicochemical and functional properties of Moringa seed potein treated with ultrasound. ACS Omega, 9(3), 4102–4110. https://doi.org/10.1021/acsomega.3c09323; Yao, G., Guo, Y., Cheng, T., Wang, Z., Li, B., Xia, C. et al. (2022). Effect of γ-irradiation on the physicochemical and functional properties of rice protein. Food Science and Technology (Campinas), 42(1), Article e12422. http://dx.doi.org/10.1590/fst.12422; Helmick, H., Rodriguez, N., Kokini, J. L. (2023). Utilization of creep ringing and bioinformatic modelling in study of cold denatured pea protein emulsions. Innovative Food Science and Emerging Technologies, 88, Article 103420. https://doi.org/10.1016/j.ifset.2023.103420; Zhang, Z., Zhang, L., He, S., Li, X., Jin, R., Liu, Q. et al. (2023). High-moisture extrusion technology application in the processing of textured plant protein meat analogues: A review. Food Reviews International, 39(8), 4873–4908. http://doi.org/10.1080/87559129.2021.2024223; Meng, X.-Y., Zhu, X.-Q., An, H.-Z., Yang, J.-F., Dai, H.-H. (2023). Study on the relationship between raw material characteristics of soybean protein concentrate and textured vegetable protein quality. Food Science Technology (Campinas), 43(2), Article e121822. https://doi.org/10.1590/fst.121822; Kyriakopoulou, K., Dekkers, B., van der Goot, A. J. (2019). Plant-based meat analogues. Chapter in a book: Sustainable Meat Production and Processing, Cambridge: Academic Press, 2019. http://dx.doi.org/10.1016/B978-0-12-814874-7.00006-7; Liu, Y., Huang, Z.-H., Hu, Z.-X., Yu, Z., An, H.-Z. (2022). Texture and rehydration properties of texturised soy protein: analysis based on soybean 7S and 11S proteins. International Journal of Food Science and Technology, 58(1), 323–333. https://doi.org/10.1111/ijfs.15787; Samard, S., Ryu, G.-H. (2019). Physicochemical and functional characteristics of plant protein-based meat analogs. Journal of Food Processing and Preservation, 43(2), Article 14123. https://doi.org/10.1111/jfpp.14123; Semenova, M. (2017). Protein-polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003; Liu, S., Low, N. H., Nickerson, M. T. (2009). Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum Arabic complexes. Journal of Agricultural and Food Chemistry, 57(4), 1521–1506. https://doi.org/10.1021/jf802643n; Klemmer, K. J., Waldner, L., Stone, A., Low, N. H., Nickerson, M. T. T. (2012). Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry, 130(3), 710–715. https://doi.org/10.1016/j.foodchem.2011.07.114; Lan, Y., Chen, B., Rao, J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245–253. https://doi.org/10.1016/j.foodhyd.2018.02.021; Yekta, R., Assadpour, E., Hosseini, H., Jafari, S. M. (2023). The influence of ionic polysaccharides on the physicochemical and techno-functional properties of soy proteins; a comprehensive review. Carbohydrate Polymers, 319, Article 21191. https://doi.org/10.1016/j.carbpol.2023.121191; Silva, F. G., Passerini, A. B. S., Ozorio, L., Picone, C. S. F., Perrechil, F. A. (2024). Interactions between pea protein and gellan gum for the development of plantbased structures. International Journal of Biological Macromolecules, 255, Article 128113. https://doi.org/10.1016/j.ijbiomac.2023.128113; Lopes-da-Silva, J. A., Monteiro, S. R. (2019). Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry, 294, 216–223. https://doi.org/10.1016/j.foodchem.2019.05.039; Beniwal, A. S., Singh, J., Kaur, L., Hardacre, A., Singh, H. (2021). Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1221–1249. https://doi.org/10.1111/1541-4337.12721; Florowska, A., Hilal, A., Florowski, T., Wroniak, M. (2020). Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties. Foods, 9(7), Article 845. https://doi.org/10.3390/foods9070845; Salles, J., Gueugneau, M., Patrac, V., Malnero-Fernandez, C., Guillet, C., Le Bacquer, O. et al. (2023). Associating inulin with a pea protein improves fast-twitch skeletal muscle mass and muscle mitochondrial activities in old rats. Nutrients, 15(17), Article 3766. https://doi.org/10.3390/nu15173766; Maumela, P., van Rensbur., E., Chimphango, A. F. A., Görgens, J. F. (2020). Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). Journal of Food Science and Technology, 57(2), 775–786. https://doi.org/10.1007/s13197-019-04110-z; Strasser, R. (2016). Plant protein glycosylation. Glycobiology, 26(9), 926–939. https://doi.org/10.1093/glycob/cww023; Zhao, C., Yin, H., Yan, J., Qi, B., Liu, J. (2020). Structural and physicochemical properties of soya bean protein isolate/maltodextrin mixture and glycosylation conjugates. International Journal of Food Science and Technology, 55(10), 3315– 3326. https://doi.org/10.1111/ijfs.14595; Abe, R., Matsukaze, N., Kobayashi, H., Yamaguchi, Y., Uto-Kondo, H., Kumagai, H. et al. (2020). Allergenicity of deamidated and/or peptide-bond-hydrolyzed wheat gliadin by transdermal administration. Foods, 9(5), Article 635. https://doi.org/10.3390/foods9050635; Klost, M., Drusch, S. (2019). Functionalisation of pea protein by tryptic hydrolysis — characterisation of interfacial and functional properties. Food Hydrocolloids, 86(1), 134–140. https://doi.org/10.1016/j.foodhyd.2018.03.013; Brückner-Gühmann, M., Heiden-Hecht, T., Sözer, N., Drusch, S. (2018). Foaming characteristics of oat protein and modification by partial hydrolysis. European Food Research and Technology, 244(12), 2095–2106. https://doi.org/10.1007/s00217-018-3118-0; Tamm, F., Herbst, S., Brodkorb, A., Drusch S. (2016). Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids, 58, 204–214. https://doi.org/10.1016/j.foodhyd.2016.02.032; García Arteaga, V., Apéstegui Guardia, M., Muranyi, I., Eisner, P., Schweiggert-Weisz, U. (2020). Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science and Emerging Technologies, 65, Article 102449. https://doi.org/10.1016/j.ifset.2020.102449; Eckert, E., Han, J., Swallow, K., Tian, Z., Jarpa-Parra, M., Chen, L. (2019). Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 96(4), 725–741. https://doi.org/10.1002/cche.10169; Barać, M., Čabrilo, S., Pešić, M., Stanojević, S., Pavlićević, M., Maćej, O. et al. (2011). Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences, 12(12), 8372– 8387. https://doi.org/10.3390/ijms12128372; Лозовский, И. В. Орлова, Т. В. (13–15 июля 2022). Модификация функциональных свойств белков гороха (Pisum sativum l.). Сборник докладов IV Международной научно-практической конференции «Проблемы и перспективы научно-инновационного обеспечения агропромышленного комплекса регионов». Курск, 2022.; Cruz-Chamorro, I., Santos-Sánchez, G., Álvarez-López, A. I., Pedroche, J., Lardone, P. J., Arnoldi, A. et al. (2023). Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends in Food Science and Technology. 133, 244–266 https://doi.org/10.1016/j.tifs.2023.02.011; Esfandi, R., Willmore, W. G., Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49–57. https://doi.org/10.1016/j.foodchem.2018.11.110; Chen, L., Chen, J., Yu, L., Wu, K., Zhao, M. (2018). Emulsification performance and interfacial properties of enzymically hydrolyzed peanut protein isolate pretreated by extrusion cooking. Food Hydrocolloids, 77, 607–616. https://doi.org/10.1016/j.foodhyd.2017.11.002; Schlegel, K., Leidigkeit, A., Eisner, P., Schweiggert–Weisz, U. (2019). Technofunctional and sensory properties of fermented lupin protein isolates. Foods, 8(12), Article 678. https://doi.org/10.3390/foods8120678; Балабан, Н. П., Шарипова, М. Р. (2011). Практическое применение бациллярных протеаз. Ученые записки Казанского университета. Серия Естественные науки. 153(2), 29–40. [Balaban, N. P., Sharipova, M. R. (2011). Practical application of bacilli proteases. Proceedings of Kazan University. Natural Sciences Series, 153(2), 29–40. (In Russian)]; Колпакова, В. В., Чумикина, Л. В., Васильев, А. В., Арабова, Л. И., Топунов, А. Ф. (2011). Особенности действия эндо- и экзопротеиназных ферментных препаратов на белки пшеничной клейковины. Биотехнология, 3, 63–73.; Felix, M., Cermeño, M., FitzGerald, R. J. (2020). Influence оf hydrolysis оn the bioactive properties and stability of chickpea–protein–based o/w emulsions. Journal of Agricultural and Food Chemistry, 68(37), 10118–10127. https://doi.org/10.1021/acs.jafc.0c02427; Liu, X., Wang, C., Zhang, X., Zhang, G., Zhou, J., Chen, J. (2022). Application prospect of protein-glutaminase in the development of plant-based protein. Foods, 11(3), Article 440. https://doi.org/10.3390/foods11030440; Zheng, N., Long, M., Zhang, Z., Zan. Q., Osire, T., Zhou, H. et al. (2022). Proteinglutaminase engineering based on isothermal compressibility perturbation for enhanced modification of soy protein usolate. Journal of Agricultural and Food Chemistry, 70(43), 13969–13978. https://doi.org/10.1021/acs.jafc.2c06063; Qu, R., Zhu, X., Tian, M., Liu, Y., Yan, W., Ye, J. et al. (2018). Complete genome sequence and characterization of a protein–glutaminase producing strain, Chryseobacterium proteolyticum QSH1265. Frontiers in Microbiology, 9, Article 1975. https://doi.org/10.3389/fmicb.2018.01975; Amobonye, A., Singh, S., Pillai, S. (2019). Recent advances in microbial glutaminase production and applications–a concise review. Critical Reviews in Biotechnology, 39(7), 944–963. https://doi.org/10.1080/07388551.2019.1640659; Kumagai, H., Urade, R. (2019). Deamidation of gluten proteins as a tool for improving the properties of bread. Chapter in a book: Flour and breads and their fortification in health and disease prevention. Academic Press, 2019. https://doi.org/10.1016/B978-0-12-814639-2.00001-0; Chen, X., Fu, W., Luo, Y., Cui, C., Suppavorasatit, I., Liang, L. (2021). Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3788–3817. https://doi.org/10.1111/1541-4337.12759; Moreno, H. M., Tovar, C. A., Domínguez-Timón, F., Cano-Báez, J., Díaz, M. T., Pedrosa, M. M. et al. (2020). Gelation of commercial pea protein isolate: Effect of microbial transglutaminase and thermal processing. Food Science and Technology (Campinas), 40(4), 800–809. http://dx.doi.org/10.1590/fst.19519; Yaputri, B. P., Feyzi, S., Ismail, B. P. (2023). Transglutaminase-induced polymerization of pea and chickpea protein to enhance functionality. Gels, 10(1), Article 11. http://dx.doi.org/10.3390/gels10010011; Masiá, C., Ong, L., Logan, A., Stockmann, R., Gambetta, J., Jensen, P. et al. (2023). Enhancing the textural and rheological properties of fermentationinduced pea protein emulsion gels with transglutaminase. Soft Matter, 20(1), 133–143. https://doi.org/10.1039/D3SM01001E; Zhang, J., Li, T., Chen, Q., Liu, H., Kaplan, D. L., Wang, Q. (2023). Application of transglutaminase modifications for improving protein fibrous structures from different sources by high-moisture extruding. Food Research International, 166(2), Article 112623. https://doi.org/10.1016/j.foodres.2023.112623; Redd, A. J., Pike, O. A., Ahlborn, G. J. (2023). Effects of microbial transglutaminase on gluten-free sourdough bread structure and loaf characteristics. Journal of Cereal Science, 115(10), Article 103833. https://doi.org/10.1016/j.jcs.2023.103833; Shen, Y., Hong, S., Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101, 71–127. https://doi.org/10.1016/bs.afnr.2022.02.002; Fernández Sosa, E. I., Chaves, M. G., Quiroga, A. V., Avanza, M. V. (2021). Comparative study of structural and physicochemical properties of pigeon pea (Cajanus cajan L.) protein isolates and its major protein fractions. Plant Foods for Human Nutrition, 76(1), 37–45. https://doi.org/10.1007/s11130-020-00871-7; Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15(3), Article 100426. https://doi.org/10.1016/j.fochx.2022.100426; Feng, X., Wu, X., Gao, T., Geng, M., Teng, F., Li, Y. (2024). Revealing the interaction mechanism and emulsion properties of carboxymethyl cellulose on soy protein isolate at different pH. Food Hydrocolloids, 150(4), Article 109739. https://doi.org/10.1016/j.foodhyd.2024.109739; Soto–Madrid, D., Pérez, N., Gutiérrez-Cutiño, M., Matiacevich, S., Zúñiga, R. N. (2023). Structural and physicochemical characterization of extracted proteins fractions from chickpea (Cicer arietinum L.) as a potential food ingredient to replace ovalbumin in foams and emulsions. Polymers, 1(15), Article 110. https://doi.org/10.3390/polym15010110; Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., Rao, J. (2021). Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids, 123(20), Article 107165. https://doi.org/10.1016/j.foodhyd.2021.107165; Verkempinck, S. H. E., Duijsens, D., Mukherjee, A., Wilde, P. J. (2024). Pea protein extraction method impacts the protein (micro)structural organisation and in vitro digestion kinetics. Food and Function, 15(20), 953–966. https://doi.org/10.1039/D3FO04225A; GopikaJayaprakash, Chawla, P., Sridhar, K., Bains, A. (2023). Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein–phenols enriched fruit smoothie. Food Research International, 171(1), Article 113075. https://doi.org/10.1016/j.foodres.2023.113075; https://www.fsjour.com/jour/article/view/558

  13. 13
    Academic Journal

    Πηγή: Food systems; Vol 7, No 1 (2024); 84-90 ; Пищевые системы; Vol 7, No 1 (2024); 84-90 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/415/306; Wang, J., Chatzidimitriou, E., Wood, L., Hasanalieva, G., Markellou, E., Iversen, P.O. et al. (2020). Effect of wheat species (Triticum aestivum vs. T. spelta), farming system (organic vs. conventional) and flour type (wholegrain vs. white) on composition of wheat flour–Results of a retail survey in the UK and Germany-2. Antioxidant activity and phenolic and mineral content. Food Chemistry: X, 6, Article 100091. https://doi.org/10.1016/j.fochx.2020.100091; Mathebula, M. W., Mandiwana, K., Panichev, N. (2017). Speciation of chromium in bread and breakfast cereals. Food Chemistry, 217, 655–659. http://doi.org/10.1016/j.foodchem.2016.09.020; Barton, B. A., Eldridge, A. L., Thompson, D., Affenito, S. G., Striegel-Moore, R. H., Franko, D. L. et al. (2005). The relationship of breakfast and cereal consumption to nutrient intake and body mass index: The National Heart, Lung, and Blood Institute growth and health study. Journal of the American Dietetic Association, 105(9), 1383–1389. https://doi.org/10.1016/j.jada.2005.06.003; Guo, H., Wu, H., Sajid, A., Li, Z. (2021). Whole grain cereals: The potential roles of functional components in human health. Critical Reviews in Food Science and Nutrition, 62(30), 8388–8402. https://doi.org/10.1080/10408398.2021.1928596; Sinkovič, L., Rakszegi, M., Pipan, B., Meglič, V. (2023). Compositional traits of grains and groats of barley, oat and spelt grown at organic and conventional fields. Foods, 12(5), Article 1054. https://doi.org/10.3390/foods12051054; Lutsey, P. L., Jacobs, Jr, D. R., Kori, S., Mayer-Davis, E., Shea, S., Steffen, L.M. et al. (2007). Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: The MESA study. British Journal of Nutrition, 98(2), 397–405. https://doi.org/10.1017/S0007114507700715; Belobrajdic, D. P., Bird, A. R. (2013). The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutrition Journal, 12, Article 62. https://doi.org/10.1186/1475-2891-12-62; Knudsen, K. E. B. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Science, 93(9), 2380–2393. http://doi.org/10.3382/ps.2014-03902; Prasadi, N. V. P., Joye, I. J. (2020). Dietary fibre from whole grains and their benefits on metabolic health. Nutrients, 12(10), Article 3045. http://doi.org/10.3390/nu12103045; Biel, W., Kazimierska, K., Bashutska, U. (2020) Nutritional value of wheat, triticale, barley and oat grains. Acta Scienntiarum Polonorum Zootechnica, 19(2), 19–28. https://doi.org/10.21005/asp.2020.19.2.03; Giuntini, E. B., Sardá, F. A. H., de Menezes, E. W. (2022). The effects of soluble dietary fibers on glycemic response: An overview and futures perspectives. Foods, 11(23), Article 3934. https://doi.org/10.3390/foods11233934; Kupaeva, N. V., Ilina, M. A., Svetlichnaya, M. V., Zubarev, Yu. N. (2022). Study of the antioxidant potential of oat drinks enriched with plant components. Food Systems, 5(2), 157–163. https://doi.org/10.21323/2618-9771-2022-5-2157-163 (In Russian); Gaikwad, V., Rasane, P., Singh, J., Idate, A., Kumthekar, S. (2021). Millets: Nutritional potential and utilization. The Pharma Innovation Journal, 10(5), 310–313. http://doi.org/10.22271/tpi.2021.v10.i5e.6225; Widowati S., Luna P. (October 12–14, 2021). Nutritional and functional properties of sorghum (Sorghum bicolor (L.) Monech)based products and potential Valorisation of sorghum bran. IOP Conference Series: Earth and Environmental Science, Volume 1024, The 3rd International Conference on Agricultural Postharvest Handling and Processing. Bogor, Indonesia. 2021. http://doi.org/10.1088/17551315/1024/1/012031; Dias-Martins, A. M., Pessanha, K. L. F., Pacheco, S., Rodrigues, J. A. S., Carvalho, C. W. P. (2018). Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Research International, 109, 175–186. https://doi.org/10.1016/j.foodres.2018.04.023; Van der Kamp, J. W., Poutanen, K., Seal, C. J., Richardson, D. P. (2014). The HEALTHGRAIN definition of ‘whole grain’. Food and Nutrition Research, 58, Article 22100. https://doi.org/10.3402/fnr.v58.22100; Rao, D. B., Malleshi, N. G., Annor, G. A., Patil, J. V. (2016). Millets Value Chain for Nutritional Security: A Replicable Success Model from India. CABI. 2016.; Gowda, N. A. N., Siliveru, K., Prasad, P. V. V., Bhatt, Y., Netravati, B. P., Gurikar, C. (2022). Modern processing of indian millets: A perspective on changes in nutritional properties. Foods, 11(4), Article 499. https://doi.org/10.3390/foods11040499; Caldwell, E. F., McKeehen, J. D., Kadan, R. S. (2016). Cereals: Breakfast Cereals. Chapter in a book: Encyclopedia of Food Grains. Academic Press. 2016. 20. Kaur, K. D., ALok, J., Sabikhi, L., Singh, A. K. (2014). Significance of coarse cereals in health and nutrition: A review. Journal of Food Science and Technology, 51(8), 1429–1441. https://doi.org/10.1007/s13197-011-0612-9; Hu, X.-Z., Zheng, J.-M., Li, X.-P., Xu, C., Zhao, Q. (2014). Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries. Journal of Cereal Science, 60(2), 297–301. https://doi.org/10.1016/J.JCS.2014.05.015; Kruma, Z., Straumite, E., Kince, T., Klava, D., Abelniece, K., Balgalve, A. (2018). Influence of technological parameters on chemical composition of triticale flakes. Agronomy Research, 16(S2), 1417–1424. https://doi.org/10.15159/AR.18.109; AACC (2010). Approved Methods of the American Association of Cereal Chemists. St. Paul Minnesota, USA, 2010.; Takhellambam, R. D., Chimmad, B. V., Prkasam, J. N. (2016). Ready-to-cook millet flakes based on minor millets for modern Consumer. Journal of Food Science and Technology, 53(2), 1312–1318. https://doi.org/10.1007/s13197-015-2072-0; Patil, K., Chimmad, B. (2016). Physical, functional, nutrient and sensory characteristics of ready to eat flakes of little millet (Panicum miliare L.). Green Farming, 7(3), 725–728. 26. McGurie, R. G. (1992). Reporting of objective color measurements. Hort Science, 27, 1254–1255. https://doi.org/10.21273/HORTSCI.27.12.1254; Akaaimo, D. I., Raji, A. O. (2006). Some physical and engineering properties of prosopis africana seed. Biosystems Engineering, 95(2), 197–205. https://doi.org/10.1016/j.biosystemseng.2006.06.005; Mwithiga, G., Sifuna, M. M. (2006). Effect of moisture content on the physical properties of three varieties of sorghum seeds. Journal of Food Engineering, 75(4), 480–486. https://doi.org/10.1016/j.jfoodeng.2005.04.053; Yağcı, S., Göğüş, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from foodby-products. Journal of Food Engineering, 86, 122–132. https://doi.org/10.1016/j.jfoodeng.2007.09.018; Huang, L. L., Zhang, M., Yan, W. Q, Mujumdar, A. S., Sun, D. F. (2009). Effect of coating on post-drying of freeze-dried strawberry pieces. Journal of Food Engineering, 92(1), 107–111. http://doi.org/10.1016/j.jfoodeng.2008.10.031; AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists International. 21st Ed. Washington, DC, 2019. 32. AOAC (2016). Official Methods of Analysis of the Association of Official Analytical Chemists International. 20th Ed. Association of Official Analytical Chemists. (Ed. George, W. Latimer), Gaithersburg, Maryland, USA, 2016.; Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. https://doi.org/10.5344/ajev.1965.16.3.144; Eghdami, A., Sadeghi, F. (2010). Determination of total phenolic and flavonoids contents in methanolic and aqueous extract of Achillea millefolium. Journal of Organic Chemistry, 2, 81–84.; Fischer, S., Wilckensa, R., Jara, J., Aranda, M. (2013). Variation in antioxidant capacity of quinoa (Chenopodium quinoa Will) subjected to drought stress. Industrial Crops and Products, 46, 341–349. https://doi.org/10.1016/j.indcrop.2013.01.037; Glamočlija, N., Starcevic, M., Ćirici, J., Šefer, D., Glišići, M., Baltić, M. Ž. et al. (2018). The importance of triticale in animal nutrition. Veterinary Journal of Republic of Srpska, XVIII(1), 73–94. https://doi.org/10.7251/VETJEN1801073G; Taylor, J. R., Emmambux, M. N. (2008). Gluten-free foods and beverages from millets. Chapter in a book: Gluten-Free Cereal Products and Beverages. Academic Press, 2008. https://doi.org/10.1016/B978-012373739-7.50008-3; Bhasin, T. (2020). Sensory characteristics of wholegrain. Advances in Obesity, Weight Management and Control, 10(6), 191–194. https://doi.org/10.15406/aowmc.2020.10.00327; Lapveteläinen, A., Alho-Lehto, P., Sinn, L., Laukkanen, T., Lindman, T., Kallio, H. et al. (2001). Relationships of selected physical, chemical, and sensory parameters in oat grain, rolled oats, and cooked oatmeal — A three-year study with eight cultivars. Cereals Chemistry, 78(3), 322–329. https://doi.org/10.1094/CCHEM.2001.78.3.322; Cabrera, A. P. P., Salinasal, J. C. A., Abello, N. F. H. (2022). Quality evaluation of millet (Panicum miliaceum) instant cereal product in Cebu, Philippines. Food Research, 6(2), 225–230. http://doi.org/10.26656/fr.2017.6(2).242; Kӓlviӓinen, N., Salovaara, H., Tuorila, H. (2002). Sensory attributes and preference mapping of muesli oat flakes. Journal of Food Science, 67(1), 455–460. http://doi.org/10.1111/j.1365-2621.2002.tb11428.x; Abbas, K. A., Saleh, A. M., Mohamed, A., Lasekan, O. (2009). The relationship between water activity and fish spoilage during cold storage: A review. Journal of Food, Agriculture and Environment, 7(3&4), 86–90.; Jensen, P. N., Risbo, J. (2007). Oxidative stability of snack and cereal products in relation to moisture sorption. Food Chemistry, 103(3), 717–724. https://doi.org/10.1016/j.foodchem.2006.09.012; Seth, D., Rajamanickam, G. (2012). Development of extruded snacks using soy, sorghum, millet and rice blend — a response surface methodology approach. International Journal of Food Science and Technology, 47(7), 1526–1531. https://doi.org/10.1111/j.1365-2621.2012.03001.x; Martinez-Bustos, F., Viveros-Contreras, R., Galicia-Garcia, T., Nabeshima, E. H., Verdalet-Guzman, I. (2011). Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Food Science and Technology (Campinas), 31(4), 870–878. https://doi.org/10.1590/S0101-20612011000400007; Roopa, S., Premavalli, K. S. (2008). Effect of processing on starch fractions in different varieties of finger millet. Food Chemistry, 106(3), 875–882. https://doi.org/10.1016/j.foodchem.2006.08.035; Nour, A. A. M., Ahmed, I. A. M., Babiker, E. E., Ibrahim, M. A. E. M. (2015). Effect of supplementation and cooking on in vitro protein digestibility and antinutrients of pearl millet flour. American Journal of Nutrition and Food Science, 1(3), 69–75.; Beniwal, S. K., Devi, A., Sindhu, R. (2019). Effect of grain processing on nutritional and physico-chemical, functional and pasting properties of amaranth and quinoa flours. Indian Journal of Traditional Knowledge, 18(3), 500–507. https://doi.org/10.56042/ijtk.v18i3.26735; El-Samahy, E. S. K., El-Hady, E. A. A., Habiba, R. A., Moussa-Ayoub, T. E. (2007). Some functional, chemical and sensory characteristics of cactus pear rice based extrudates. Journal of the Professional Association for Cactus Development, 9, 136–147.; Albertson, A. M., Wold, A. C., Joshi, N. (2012). Ready-to-eat cereal consumption patterns: The relationship to nutrient intake, whole grain intake, and body mass index in an older American population. Journal of Aging Research, 2012, Article 631310. https://doi:10.1155/2012/631310; U. S. Department of Agriculture and U. S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. Washington, DC: US Government Publishing Office, 2020.; Nani, A., Belarbi, M., Ksouri-Megdiche, W., Abdoul-Azize, S., Benammar, C., Ghiringhelli, F. et al. (2015). Effects of polyphenols and lipids from Pennisetum glaucum grains on T-cell activation: Modulation of Ca2+ and ERK1/ERK2 signaling. BMC Complementary and Alternative Medicine, 15(1), Article 426. https://doi.org/10.1186/s12906-015-0946-3; Chandrasekara, A., Shahidi, F. (2011). Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59(17), 9563– 9571. https://doi.org/10.1021/jf201849d; Scherer, R., Godoy, T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654–658. https://doi.org/10.1016/j.foodchem.2008.06.026; https://www.fsjour.com/jour/article/view/415

  14. 14
    Academic Journal

    Συνεισφορές: The research was supported by Institutional Project 020405 “Optimizing food processing technologies in the context of the circular bioeconomy and climate change”, Bio-OpTehPAS, being implemented at the Technical University of Moldova., Исследование поддержано институциональным проектом 020405 “Оптимизация технологий переработки пищевых продуктов в контексте циклической биоэкономики и изменения климата”, Bio-OpTehPAS, реализуемым в Техническом университете Молдовы.

    Πηγή: Food systems; Vol 7, No 1 (2024); 52-58 ; Пищевые системы; Vol 7, No 1 (2024); 52-58 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/411/288; Farinon, B., Molinari, R., Costantini, L., Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), Article 1935. https://doi.org/10.3390/nu12071935; Landucci, E., Mazzantini, C., Lana, D., Davolio, P. L., Giovannini, M. G., Pellegrini-Giampietro, D. E. (2021). Neuroprotective effects of cannabidiol but not δ9-tetrahydrocannabinol in rat hippocampal slices exposed to oxygen-glucose deprivation: Studies with cannabis extracts and selected cannabinoids. International Journal of Molecular Sciences, 22(18), Article 9773. https://doi.org/10.3390/ijms22189773; Stasiłowicz-Krzemień, A., Sip, S., Szulc, P., Cielecka-Piontek, J. (2023). Determining antioxidant activity of cannabis leaves extracts from different varieties — unveiling nature’s treasure trove. Antioxidants, 12(7), Article 1390. https://doi.org/10.3390/antiox12071390; Golia, E. E., Bethanis, J., Ntinopoulos, N., Kaffe, G.-G., Komnou, A. A., Vasilou, C. (2023). Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, Article 100961. https://doi.org/10.1016/j.scp.2022.100961; Negoița, C., Capcanari, T., Chirsanova, A., Covaliov, E., Siminiuc, R. (June 3, 2022). The agro-industrial potential of Cannabis Sativa L. cultivation in the Republic of Moldova. International Scientific Conference «Perspectives and Problems of Integration in the European Research and Education Area, Cahul, Republic of Moldova, 2022.; Eurostat. (2023). Hemp production in the EU. Agriculture and rural development. Retrieved from https://agriculture.ec.europa.eu/farming/crop-productions-andplant-based-products/hemp_en Accessed September 16, 1023; Baldini, M., Ferfuia, C., Zuliani, F., Danuso, F. (2020). Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Industrial Crops and Products, 143, Article 111860. https://doi.org/10.1016/j.indcrop.2019.111860; Kaur, G., Kander, R. (2023). The sustainability of industrial hemp: A literature review of its economic, environmental, and social sustainability. Sustainability, 15(8), Article 6457. https://doi.org/10.3390/su15086457; Veit, D. (2023). Bast Fibers. Chapter in a book: Fibers. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-15309-9_6; Small, E. (2015). Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. The Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3; Shen, P., Gao, Z., Fang, B., Rao, J., Chen, B. (2021). Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends in Food Science and Technology, 1–15. https://doi.org/10.1016/j.tifs.2021.03.022; Capcanari, T., Chirsanova, A., Negoița, C., Covaliov, E., Siminiuc, R. (October 20–22, 2022). Agro-industrial potential of Cannabis Sativa L. seeds as a source of biological active substances. International Conference Modern Technologies in the Food Industry, TUM, Chisinau, 2022.; Rusu, I.-E., Marc (Vlaic), R. A., Mureşan, C. C., Mureşan, A. E., Filip, M. R., Onica, B.-M. et al. (2021). Advanced characterization of hemp flour (Cannabis sativa L.) from dacia secuieni and zenit varieties, compared to wheat flour. Plants, 10(6), Article 1237. https://doi.org/10.3390/plants10061237; Crini, G., Lichtfouse, E., Chanet, G., Morin-Crini, N. (2020). Traditional and New Applications of Hemp. Chapter in a book: Sustainable Agriculture Reviews 42. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-03041384-2_2; Alonso-Esteban, J. I., González-Fernández, M. J., Fabrikov, D., de Cortes SánchezMata, M., Torija-Isasa, E., Guil-Guerrero, J. L. (2023). Fatty acids and minor functional compounds of hemp (Cannabis sativa L.) seeds and other Cannabaceae species. Journal of Food Composition and Analysis, 115, Article 104962. https://doi.org/10.1016/j.jfca.2022.104962; Golimowski, W., Teleszko, M., Zając, A., Kmiecik, D., Grygier, A. (2023). Effect of the bleaching process on changes in the fatty acid profile of raw hemp seed oil (Cannabis sativa). Molecules, 28(2), Article 769. https://doi.org/10.3390/molecules28020769; Chen, T., He, J., Zhang, J., Li, X., Zhang, H., Hao, J., Li, L. (2012). The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chemistry, 134(2), 1030–1037. https://doi.org/10.1016/j.foodchem.2012.03.009; Liu, M., Childs, M., Loos, M., Taylor, A., Smart, L. B., Abbaspourrad, A. (2023). The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocolloids, 134, Article 108085. https://doi.org/10.1016/j.foodhyd.2022.108085; Sciacca, F., Virzì, N., Pecchioni, N., Melilli, M. G., Buzzanca, C., Bonacci, S. et al. (2023). Functional end-use of hemp seed waste: Technological, qualitative, nutritional, and sensorial characterization of fortified bread. Sustainability, 15(17), Article 12899. https://doi.org/10.3390/su151712899; Tura, M., Mandrioli, M., Valli, E., Toschi, T.G. (2023). Quality indexes and composition of 13 commercial hemp seed oils. Journal of Food Composition and Analysis, 117, Article 105112. https://doi.org/10.1016/j.jfca.2022.105112; Aloo, S. O., Kwame, F. O., Oh, D.-H. (2023). Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. Food Bioscience, 51, Article 102329. https://doi.org/10.1016/j.fbio.2022.102329; Burton, R. A., Andres, M., Cole, M., Cowley, J. M., Augustin, M. A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4(1), Article 45. https://doi.org/10.1186/s42238-022-00156-7; Smułek, W., Jarzębski, M. (2023). Hemp seed oil nanoemulsion with Sapindus saponins as a potential carrier for iron supplement and vitamin D. Reviews on Advanced Materials Science, 62(1), Article 20220317. https://doi.org/10.1515/rams-2022-0317; Rupasinghe, H. P. V., Davis, A., Kumar, S. K., Murray, B., Zheljazkov, V. D. (2020). Industrial hemp (Cannabis sativa subsp. Sativa) as an emerging source for valueadded functional food ingredients and nutraceuticals. Molecules, 25(18), Article 4078. https://doi.org/10.3390/molecules25184078; Vigil, J. M., Montera, M. A., Pentkowski, N. S., Diviant, J. P., Orozco, J., Ortiz, A. L. et al. (2020). The therapeutic effectiveness of full spectrum hemp oil using a chronic neuropathic pain model. Life, 10(5), Article 69. https://doi.org/10.3390/life10050069; Vonapartis, E., Aubin, M.-P., Seguin, P., Mustafa, A. F., Charron, J.-B. (2015). Seed composition of ten industrial hemp cultivars approved for production in Canada. Journal of Food Composition and Analysis, 39, 8–12. https://doi.org/10.1016/j.jfca.2014.11.004; Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J.-M., Hellström, J. et al. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108–115. https://doi.org/10.1007/s11130-018-0660-7; Callaway, J. C. (2004). Hempseed as a nutritional resource: An overview. Euphytica, 140, 65–72. https://doi.org/10.1007/s10681-004-4811-6; Lan, Y., Zha, F., Peckrul, A., Hanson, B., Johnson, B., Rao, J. et al. (2019). Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. Journal of the American Oil Chemists’ Society, 96(12), 1417–1425. https://doi.org/10.1002/aocs.12291; Makovicky, P., Makovicky, P., Caja, F., Rimarova, K., Samasca, G., Vannucci, L. (2020). Celiac disease and gluten-free diet: Past, present, and future. Gastroenterology and Hepatology from Bed to Bench, 13(1), 1–7.; Amaducci, S., Zatta, A., Pelatti, F., Venturi, G. (2008). Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Research, 107(2), 161–169. https://doi.org/10.1016/j.fcr.2008.02.002; Palomares-Navarro, M. J., Sánchez-Quezada, V., Palomares-Navarro, J. J., AyalaZavala, J. F., Loarca-Piña, G. (2023). Nutritional and nutraceutical properties of selected pulses to promote gluten-free food products. Plant Foods for Human Nutrition, 78(2), 253–260. https://doi.org/10.1007/s11130-023-01060-y; Liu, M., Toth, J. A., Childs, M., Smart, L. B., Abbaspourrad, A. (2023). Composition and functional properties of hemp seed protein isolates from various hemp cultivars. Journal of Food Science, 88(3), 942–951. https://doi.org/10.1111/1750-3841.16467; Capcanari, T., Covaliov, E., Negoița, C., Siminiuc, R., Chirsanova, A., Reșitca, V. Et al. (2023). Hemp seed cake flour as a source of proteins, minerals and polyphenols and its impact on the nutritional, sensorial and technological quality of bread. Foods, 12, Article 4327. https://doi.org/10.3390/foods12234327; Burton, R.A., Andres, M., Cole, M., Cowley, J.M., Augustin, M.A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4, Article 45. https://doi.org/10.1186/s42238-022-00156-7; Al Ubeed, H. M. S., Brennan, C. S., Schanknecht, E., Alsherbiny, M. A., Saifullah, M., Nguyen, K. et al. (2022). Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. International Journal of Food Science and Technology, 57(12), 7542–7555. https://doi.org/10.1111/ijfs.16116; Neacsu, M., Christie, J. S., Duncan, G. J., Vaughan, N. J., Russell, W. R. (2022). Buckwheat, fava bean and hemp flours fortified with anthocyanins and other bioactive phytochemicals as sustainable ingredients for functional food development. Nutraceuticals, 2(3), 150–161. https://doi.org/10.3390/nutraceuticals2030011; Amaral, J. S., Casal, S., Pereira, J. A., Seabra, R. M., Oliveira, B. P. P. (2003). Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in portugal. Journal of Agricultural and Food Chemistry, 51(26), 7698–7702. https://doi.org/10.1021/jf030451d; Porto, C. D., Decorti, D., Natolino, A. (2015). Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars. Journal of Dietary Supplements, 12(1), 1–10. https://doi.org/10.3109/19390211.2014.887601; Siano, F., Moccia, S., Picariello, G., Russo, G., Sorrentino, G., Di Stasio, M. et al. (2018). Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible fedora cultivar hemp (Cannabis sativa L.). Molecules, 24(1), Article 83. https://doi.org/10.3390/molecules24010083; Kriese, U., Schumann, E., Weber, W. E., Beyer, M., Brühl, L., Matthäus. (2004). Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica, 137(3), 339–351. https://doi.org/10.1023/B: EUPH.0000040473.23941.76; Malomo, S., Onuh, J., Girgih, A., Aluko, R. (2015). Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients, 7(9), 7616–7632. https://doi.org/10.3390/nu7095358; Chen, H., Xu, B., Wang, Y., Li, W., He, D., Zhang, Y. et al. (2023). Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Science and Human Wellness, 12(4), 929–941. https://doi.org/10.1016/j.fshw.2022.10.016; Tang, C.-H., Ten, Z., Wang, X.-S., Yang, X.-Q. (2006). Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. Journal of Agricultural and Food Chemistry, 54(23), 8945–8950. https://doi.org/10.1021/jf0619176; Choo, W.-S., Birch, J., Dufour, J.-P. (2007). Physicochemical and quality characteristics of cold-pressed flaxseed oils. Journal of Food Composition and Analysis, 20(3–4), 202–211. https://doi.org/10.1016/j.jfca.2006.12.002; Banskota, A. H., Tibbetts, S. M., Jones, A., Stefanova, R., Behnke, J. (2022). Biochemical characterization and in vitro digestibility of protein isolates from hemp (Cannabis sativa L.) by-products for salmonid feed applications. Molecules, 27(15), Article 4794. https://doi.org/10.3390/molecules27154794; Reggio, P.H. (2003). Pharmacophores for ligand recognition and activation / inactivation of the cannabinoid receptors. Current Pharmaceutical Design, 9(20), 1607–1633. https://doi.org/10.2174/1381612033454577; Rizzo, G., Storz, M. A., Calapai, G. (2023). The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods, 12(18), Article 3505. https://doi.org/10.3390/foods12183505; House, J. D., Neufeld, J., Leson, G. (2010). Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibilitycorrected amino acid score method. Journal of Agricultural and Food Chemistry, 58(22), 11801–11807. https://doi.org/10.1021/jf102636b; Schultz, C. J., Lim, W. L., Khor, S. F., Neumann, K. A., Schulz, J. M., Ansari, O. et al. (2020). Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research, 2, Article 100025. https://doi.org/10.1016/j.jafr.2020.100025; Mattila, P. H., Pihlava, J.-M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S. et al. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality and Safety, 2(4), 213–219. https://doi.org/10.1093/fqsafe/fyy021; Alonso-Esteban, J. I., Torija-Isasa, M. E., de Cortes Sánchez-Mata, M. (2022). Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. Journal of Food Composition and Analysis, 109, Article 104516. https://doi.org/10.1016/j.jfca.2022.104516; Bernstein, N., Gorelick, J., Zerahia, R., Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Frontiers in Plant Science, 10, Article 736. https://doi.org/10.3389/fpls.2019.00736; Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., Sineiro, J. (2010). Flaxseed as a source of functional ingredients. Journal of Soil Science and Plant Nutrition, 10(3). 373–377. https://doi.org/10.4067/S0718-95162010000100010; Ma, Z. F., Zhang, H., Teh, S. S., Wang, C. W., Zhang, Y., Hayford, F. et al. (2019). Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxidative Medicine and Cellular Longevity, 2019, Article 2437397. https://doi.org/10.1155/2019/2437397; Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D’Angelo, V., Circosta, C. (2016). Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. Phytotherapy Research, 30(8), 1298–1307. https://doi.org/10.1002/ptr.5623; Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L. et al. (2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry, 262, 56–66. https://doi.org/10.1016/j.foodchem.2018.04.078; Moccia, S., Siano, F., Russo, G. L., Volpe, M. G., La Cara, F., Pacifico, S. et al. (2020). Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. International Journal of Food Sciences and Nutrition, 71(4), 410–423. https://doi.org/10.1080/09637486.2019.1666804; Russo, R., Reggiani, R. (2013). Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant, 1(2), 25–29. https://doi.org/10.11648/j.plant.20130102.13; Yu, L. L., Zhou, K. K., Parry, J. (2005). Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chemistry, 91(4), 723–729. https://doi.org/10.1016/j.foodchem.2004.06.044; Bourjot, M., Zedet, A., Demange, B., Pudlo, M., Girard-Thernier, C. (2016). In Vitro mammalian arginase inhibitory and antioxidant effects of amide derivatives isolated from the hempseed cakes (Cannabis sativa). Planta Medica International Open, 3(03), e64–e67. https://doi.org/10.1055/s-0042-119400; Luo, Q., Yan, X., Bobrovskaya, L., Ji, M., Yuan, H., Lou, H. et al. (2017). Antineuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Molecular and Cellular Biochemistry, 428(1–2), 129–137. https://doi.org/10.1007/s11010-016-2923-7; Maiolo, S. A., Fan, P., Bobrovskaya, L. (2018). Bioactive constituents from cinnamon, hemp seed and polygonum cuspidatum protect against H2O2 but not rotenone toxicity in a cellular model of Parkinson’s disease. Journal of Traditional and Complementary Medicine, 8(3), 420–427. https://doi.org/10.1016/j.jtcme.2017.11.001; Wang, S., Luo, Q., Fan, P. (2019). Cannabisin F from hemp (Cannabis sativa) seed suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia as SIRT1 modulator. International Journal of Molecular Sciences, 20(3), Article 507. https://doi.org/10.3390/ijms20030507; Yan, X., Tang, J., dos Santos Passos, C., Nurisso, A., Simões-Pires, C. A., Ji, M. et al. (2015). Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. Journal of Agricultural and Food Chemistry, 63(49), 10611–10619. https://doi.org/10.1021/acs.jafc.5b05282; Pontonio, E., Verni, M., Dingeo, C., Diaz-de-Cerio, E., Pinto, D., Rizzello, C. G. (2020). Impact of enzymatic and microbial bioprocessing on antioxidant properties of hemp (Cannabis sativa L.). Antioxidants, 9(12), Article 1258. https://doi.org/10.3390/antiox9121258; Teh, S.-S., Bekhit, A. E.-D. A., Carne, A., Birch, J. (2016). Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chemistry, 203, 199–206. https://doi.org/10.1016/j.foodchem.2016.02.057; Logarušić, M., Slivac, I., Radošević, K., Bagović, M., Redovniković, I. R., Srček, V. G. (2019). Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 46(6), 6079–6085. https://doi.org/10.1007/s11033-019-05043-8; Rodriguez-Martin, N. M., Toscano, R., Villanueva, A., Pedroche, J., Millan, F., Montserrat-de La Paz, S. et al. (2019). Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food and Function, 10(10), 6732–6739. https://doi.org/10.1039/C9FO01904A; Zanoni, C., Aiello, G., Arnoldi, A., Lammi, C. (2017). Hempseed peptides exert hypocholesterolemic effects with a statin-like mechanism. Journal of Agricultural and Food Chemistry, 65(40), 8829–8838. https://doi.org/10.1021/acs.jafc.7b02742; Palmer, S. L., Thakur, G. A., Makriyannis, A. (2002). Cannabinergic ligands. Chemistry and Physics of Lipids, 121(1–2), 3–19. https://doi.org/10.1016/S00093084(02)00143-3; Iversen, L. (2003). Cannabis and the brain. Brain, 126(6), 1252–1270. https://doi.org/10.1093/brain/awg143; Harding, E. K., Souza, I. A., Gandini, M. A., Gadotti, V. M., Ali, M. Y., Huang, S. et al. (2023). Differential regulation of Cav3.2 and Cav2.2 calcium channels by CB1 receptors and cannabidiol. British Journal of Pharmacology, 180(12), 1616–1633. https://doi.org/10.1111/bph.16035; Román-Vargas, Y., Porras-Arguello, J. D., Blandón-Naranjo, L., Pérez-Pérez, L. D., Benjumea, D. M. (2023). Evaluation of the analgesic effect of high-cannabidiolcontent cannabis extracts in different pain models by using polymeric micelles as vehicles. Molecules, 28(11), Article 4299. https://doi.org/10.3390/molecules28114299; Wu, J.-H., Saseendrakumar, B.R., Moghimi, S., Sidhu, S., Kamalipour, A., Weinreb, R. N. et al. (2023). Epidemiology and factors associated with cannabis use among patients with glaucoma in the All of Us research program. Heliyon, 9(5), Article e15811. https://doi.org/10.1016/j.heliyon.2023.e15811; Ried, K., Tamanna, T., Matthews, S., Sali, A. (2023). Medicinal cannabis improves sleep in adults with insomnia: A randomised double-blind placebo-controlled crossover study. Journal of Sleep Research, 32(3), Article e13793. https://doi.org/10.1111/jsr.13793; Nduma, B. N., Mofor, K. A., Tatang, J., Ekhator, C., Ambe, S., Fonkem, E. (2023). The use of cannabinoids in the treatment of inflammatory bowel disease (IBD): A review of the literature. Cureus,15(3), Article e36148. https://doi.org/10.7759/cureus.36148; https://www.fsjour.com/jour/article/view/411

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 1, Pp 116-119 (2022)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/dcd199ae01b4439ca07e93c20ff954da

  19. 19
  20. 20